BASICS OF DEFAULT LOGIC (NON-MONOTONIC REASONING)

What is non-monotonic reasoning

Some approaches to non-monotonic reasoning

Some problems with non-monotonic reasoning

Consistency-based diagnosis

NON-MONOTONIC REASONING

Motivations

- Decisions with incomplete knowledge
- Rules with exceptions
- Handling inconsistent information

Monotonicity

 $A \Vdash q \Rightarrow A \cup \{p\} \vdash q$

Types of non-monotonic reasoning

- Default reasoning rules with exceptions
- Autoepistemic reasoning knowledge about knowledge and non-knowledge
- Reasoning on the basis of communication conventions

SOME BASIC PROBLEMS (1)

Closed world assumption (CWA)

p is derivable from T under CWA means that

 $T \cup \{\neg q \mid q \text{ atomic and not } T \mid -q\} \mid -p$

Problem with inconsistent CWAs, e.g., $T = \{a \lor b\}$

Frame problem

Specifying what does not change when an event occurs Using persistence defaults

SOME BASIC PROBLEMS (2)

Qualification problem

Defaults for describing normal effects of actions

Negation as failure

flies(_x) :- bird(_x), not abnormal(_x).
abnormal(_x) :- penguin(_x).
bird(tweety).
flies(tweety)? ⇒ SUCCESS

If we add penguin(tweety).

 $flies(tweety)? \Rightarrow FAIL$

PRINCIPLED APPROACHES

Representation of defaults

Derivation techniques

Reiter's default logic	Non-classical inference rules	Fixpoint construction	
Modal approach (McDermott, Doyle, Moore)	Modal operator for beliefs	to define theorems	
Circumscription (McCarthy, Lifschitz)	Validity in minimal models	Elimination of uninteresting models by axiom schema	
Inconsistency-tolerant reasoning	Inconsistent sets of premises	Derivation w.r.t. preferred sets of premises	

REITER'S DEFAULT LOGIC

Components

Defaults theorys is a pair (D,W)

- W: set of facts (formulas in 1. order pred. logic)
- D: set of "inference rules" (defaults)

 $A:B_1,...,B_n/C$

If A derivable, and $\neg B_i$ not, then infer C

Example

 $W = \{penguin(x) \Rightarrow abnormal(x), bird(tweety)\}$

D = {bird(x): abnormal(x)/flies(x)}

Default theories generate *extensions*

EXTENSIONS IN REITER'S DEFAULT LOGIC

Desirable properties of extensions

- 1 contain W
- 2 deductively closed (classically)
- 3 uses as many defaults as possible
- 4 contain no unjustified facts

Fixpoint construction

 $E_0 = W$

 $\mathbf{E}_{i+1} = \mathbf{Th}(\mathbf{E}) \cup \{\mathbf{c} \mid \mathbf{a}: \mathbf{b}_1, \dots, \mathbf{b}_n / \mathbf{c} \text{ in } \mathbf{D}, \mathbf{a} \text{ in } \mathbf{E}_i, \neg \mathbf{b}_i \text{ not in } \mathbf{E}\}$

E is an extension of (D,W) iff $E = \bigcup E_i$

PROPERTIES OF EXTENSIONS

Building extensions

Theories may have several extensions

Example: $W = \{p \lor q\}$ $D = \{\underbrace{:\neg p}, \underbrace{:\neg q}_{\neg p}, E_1 = \{p, \neg q\}, E_2 = \{\neg p, q\}$ $\neg p \neg q$

Automated construction process in the general case NP hard

Position towards extensions

- *Credulous* reasoner Valid in at least one extension
- *Sceptical* reasoner Valid in at all extensions

Too weak: Case distinctions

<u>Emu:runs</u> <u>Ostrich:runs</u> Emu v Ostrich

runs

runs

runs derivable?

Too weak: Case distinctions

<u>Emu:runs</u> <u>Ostrich:runs</u> Emu v Ostrich runs runs

runs derivable? – No.

Too weak: Case distinctions

<u>Emu:runs</u> <u>Ostrich:runs</u> Emu v Ostrich runs runs

runs derivable – No.

Too strong- No global consistency

<u>:usable(x)&¬broken(x)</u> broken(l-arm) v broken(r-arm) usable(x)

usable(l-arm) & usable(r-arm) derivable?

Too weak: Case distinctions

<u>Emu:runs</u> <u>Ostrich:runs</u> Emu v Ostrich runs runs

runs derivable? – No.

Too strong- No global consistency

:usable(x)&¬broken(x) broken(l-arm) v broken(r-arm)

usable(x)

usable(l-arm) & usable(r-arm) derivable? – Yes.

FLOATING CONCLUSIONS (Horty)

- Witness John says: the suspect *shot* the victim to death
- If a witness says P then usually P is the case
- So, the suspect *shot* the victim to death
- So, the suspect *killed* the victim
- Witness Bob says: the suspect *stabbed* the victim to death
- If a witness says P then usually P is the case
- So, the suspect *stabbed* the victim to death
- So, the suspect *killed* the victim

Is the conclusion warranted?

FLOATING CONCLUSIONS (2)

- **D1:** People live where they work.
- **D2:** People live where their partners live.
- W1: Jan works in Amsterdam.
- W2: Jan's wife Mary works in Arnheim.

Where do Jan and Mary live?

ANOTHER EXAMPLE

• American civil law:

evidence has to prove claim "on the balance of probabilities

- (Imaginary) statistics:
 51% of American husbands commit adultey within 10 years
- Mary has been married to John for 10 years: Can she sue John for divorce?

Is the conclusion warranted?

A PROBLEM WITH DEFAULT LOGIC - PRIORITIES

Priorities among defaults required

hurts(x,y) ⇒ guilty(x) hurts(x,y) & notwehr(x) ⇒ ¬guilty(x) attacks(x,y) ⇒ notwehr(x) hurts(Peter,Hans) attacks(Hans,Peter)

derivable: guilty(Peter), ¬guilty(Peter), ¬notwehr(Peter)

MODELING ACTIONS

Situation calculus (McCarthy, Hayes) – components

- *Situations* real world snapshots, causes of actions
- *Fluents* time-dependent properties
- Actions lead from situations to successor situations
- Holds(f,s) atomic formula: fluent f true in situation sResult(a,s) – term: situation after executing action a in s

Example – Blocksworld

- 1) Holds(On(C,Table),S0)
- 2) Holds(On(B,C),S0)
- 3) Holds(On(A,B),S0)
- 4) Holds(On(D,Table),S0)
- 5) Holds(Clear(A),S0)
- 6) Holds(Clear(D),S0)
- 7) Holds(Clear(Table),S0)

move(x,y) move x on top of y

- 8) Holds(Clear(x),s) & Holds(Clear(y),s) &
 x≠ y & x ≠ Table ⇒
 Holds(On(x,y),Result(Move(x,y),s)
- 9) Holds(Clear(x),s) & Holds(Clear(y),s) & Holds(On(x,z),s) & x≠ y & y ≠ z ⇒ Holds(Clear(z),Result(Move(x,y),s)

YALE SHOOTING PROBLEM

Example – Definitions

- 1) S1 = Result(LOAD,S0)
- 2) S2 = Result(WAIT,S1)
- 3) S3 = Result(SHOOT,S2)
- 4) Holds(Alive,S0)

5) \symbol{\symbol{s}} s Holds(LOADED,RESULT(LOAD,s))

6) \forall s Holds(LOADED,s) \Rightarrow

¬Hold2s(ALIVE,Result(SHOOT,s))

7) ∀s ¬Holds(LOADED,Result(SHOOT,s))

8) [¬]Holds(f,s): [¬]Holds(f, Result(e,s)) /

[¬]Holds(f, Result(e,s))

YALE SHOOTING PROBLEM

Example – Definitions

- 1) S1 = Result(LOAD,S0)
- 2) S2 = Result(WAIT,S1)
- 3) S3 = Result(SHOOT,S2)
- 4) Holds(Alive,S0)

- 5) \vee s Holds(LOADED, RESULT(LOAD, s))
- 6) \forall s Holds(LOADED,s) \Rightarrow

¬Hold2s(ALIVE,Result(SHOOT,s))

- 7) ∀s ¬Holds(LOADED,Result(SHOOT,s))
- 8) [¬]Holds(f,s): [¬]Holds(f, Result(e,s)) /

[¬]Holds(f, Result(e,s))

	S0	S1	S2	S3
1.	ALIVE	ALIVE	ALIVE	¬ALIVE
		LOADED	LOADED	¬LOADED
Apply persistence default chronologically				

YALE SHOOTING PROBLEM

Example – Definitions

- 1) S1 = Result(LOAD,S0)
- 2) S2 = Result(WAIT,S1)
- 3) S3 = Result(SHOOT,S2)
- 4) Holds(Alive,S0)

- 5) ∀s Holds(LOADED,RESULT(LOAD,s))
- 6) \forall s Holds(LOADED,s) \Rightarrow

¬Hold2s(ALIVE,Result(SHOOT,s))

- 7) \delta \sqrt{Holds(LOADED,Result(SHOOT,s))}
- 8) [¬]Holds(f,s): [¬]Holds(f, Result(e,s)) /

[¬]Holds(f, Result(e,s))

	S0	S1	S2	S3
1.	ALIVE	ALIVE	ALIVE	¬ALIVE
		LOADED	LOADED	¬LOADED
	A nnly no	reistanca dafa	ult chronolog	ricolly

Apply persistence default chronologically

	S0	S1	S2	S3
2.	ALIVE	ALIVE	ALIVE	ALIVE
		LOADED	¬LOADED	¬LOADED

Apply persistence default for ALIVE up to S3, then derive ¬LOADED in S2 (6, 8) Unintended – gun unloads mysteriously

YALE SHOOTING PROBLEM - ASSESSMENT

Early simple (naive?) formalization

- Based on minimizing the changes
- Changes in the fluents over time are as minimal as possible

A severe obstacle to the use of logic for formalizing dynamical scenarios

Better formalizations provide solutions

- Predicate completion in the specification of actions: according to this solution, the fact that shooting causes Fred to die is formalized by the preconditions: alive and loaded, and the effect is that alive changes value
- Erik Sandewall includes a new condition of occlusion, which formalizes the "permission to change" for a fluent. What is minimized is not the set of changes, but the set of occlusions being true.

Several authors obtain prices and publish in AI journal

PROBLEM WITH GLOBAL INCONSISTENCY

Properties of extensions

- Consistency of applied default in single extension
- Global consistency of defaults not guaranteed
- E.g., lottery paradox: a lot does'nt win l~ no lot wins
- Undesired and unintuitive results may occur

Important property – cumulativity

- Adding a theorem does'nt change derivable formulas
- If X |~ a then X {a} |~ b if and only if X |~ b
- Essential if inferencing meant as 'making explicit'

Counterexample

- 1) true:p/p
- 2) р v q:¬р/¬р

Extension contains p, hence p v q Adding p v q to the premises yields an extension ¬p

OVERCOMING GLOBAL INCONSISTENCY

Extensions – Brewka's cumulative default logic

• Logic based on assertions (p,Q), with p being a formula and Q a set of consistency constraints

Also possible – restrictions on feasible defaults (disallowing disjunctions)

CONSISTENCY-BASED DIAGNOSIS

Information

- Set of components (K)
- Effect of components if error-free (model M)
- Observations (N)

Explanation for O, i.e., minimal set of components K', such correctness of $K \setminus K'$ is consistent with $M \cup O$

Default theory

K' is diagnosis iff

there is an extension E of default theory (D,W) with

- $W = M \cup O$
- **D** = {true: OK(x)/OK(x) | x in K}
- ¬OK(x) for all k in K'

Well suited for error diagnosis (e.g., electronic circuits)

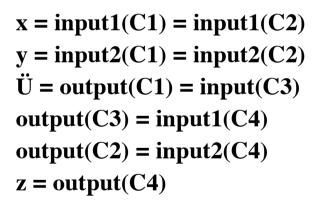
CONSISTENCY-BASED DIAGNOSIS

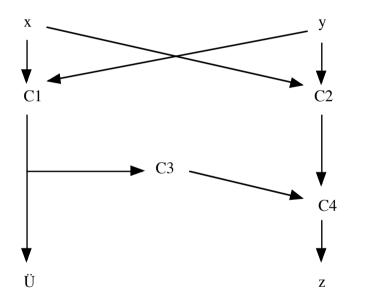
Example – semiadder

Types of components

ADD(C1), **OR**(C2), **NOT**(C3), **AND**(C4)

Topology





CONSISTENCY-BASED DIAGNOSIS (2)

Normal behavior

$$AND(x) \land OK(x) \Rightarrow [output(x) = 1 \Leftrightarrow (input1(x) = 1 \land input2(x) = 1)]$$

$$OR(x) \land OK(x) \Rightarrow [output(x) = 1 \Leftrightarrow (input1(x) = 1 \lor input2(x) = 1)]$$

NOT(x) \land **OK**(x) \Rightarrow [output(x) = 1 $\Leftrightarrow \neg$ input(x) = 1]

Defaults for correct behavior

true: OK(x)/OK(x) for all x = C1, ..., C4

Observations (example)

x =1, y = 1, z = 1

Extensions (only 1 component faulty)

 $OK(C1), OK(C2), OK(C3) \Rightarrow \neg OK(C4)$ $OK(C1), OK(C2), OK(C4) \Rightarrow \neg OK(C3)$ $OK(C1), OK(C3), OK(C4) \Rightarrow \neg OK(C2)$ $OK(C2), OK(C3), OK(C4) \Rightarrow \neg OK(C1)$

CONSISTENCY-BASED DIAGNOSIS (3)

Additional observation (example)

output(C3) = 1 OK(C1), OK(C2), OK(C4) $\Rightarrow \neg OK(C3)$ OK(C2), OK(C3), OK(C4) $\Rightarrow \neg OK(C1)$ Alternative observation (example)

output(C3) = 0 OK(C1), OK(C2), OK(C3) $\Rightarrow \neg OK(C4)$

Additional domain knowledge – Some components are more reliable than others Iterative building of extensions $(D_1, ..., D_{n-1}, W)$ E extension of $(D_1, ..., D_n, W)$ iff

n = 1 and E is extension of (D_1, W)

n > 1 and there is extension E' of $(D_1, ..., D_{n-1}, W)$ such that E is extension of (D_n, E')

Example – NOT component more reliable than others Default theory (D_1, D_2, W) $D_1 = \{:OK(C3)/OK(C3)\}$ $D_3 = \{:OK(Ci)/OK(Ci)\}$ i = 1, 2, or 4 $W = M \cup O$ Yields only extensions with OK(C3)

EXTENSIONS FOR INCOMPLETE OBSERVATIONS (Havel 2010)

Assumptions

Models may be complex Not all components (easily) observable Hierarchical models of systems are meaningful

Motivation

Assessing the competence of diagnosis with limited resources Simplification of the diagnostic model

Ideas

Assessing components as observable or not (given set of observable points) Abstracting away components that cannot be diagnosed into compound items Future idea – segmenting the model into parts, solving by "divide-and-conquer"

THE NOTION OF DIAGNOSIBILITY

A definition which is close to the idea of component diagnosability

We say that a system is diagnosable with a given set of sensors iff

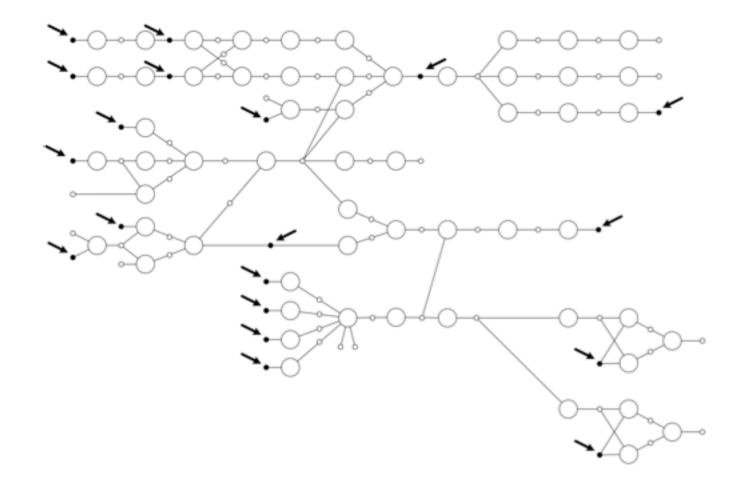
- (i) for any relevant combinations of sensor readings there is only one minimal candidate diagnosis and
- (ii) all faults of the system correspond to a candidate diagnosis for some sensor reading

e.g., an AND-gate is observable on the basis of its output and one of its inputs

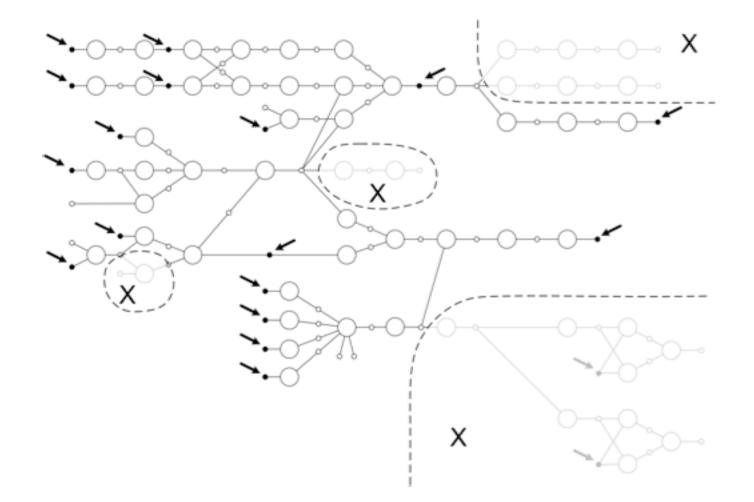
Suppose we plan to examine a system that is expected to be observed only partially

The proposed model simplification procedure attempts to reduce the size of the diagnostic model of a system while preserving the diagnostic power – with respect to the expected observation conditions

A DIAGNOSTIG MODEL BEFORE SIMPLIFICATION



A DIAGNOSTIG MODEL AFTER SIMPLIFICATION



COMPONENT DIAGNOSABILITY ALGORITHM

Input: a component description Δ in CNF, a set of health variables A, a set of observed ports \mathbf{P}_o , and a set of unobserved ports \mathbf{P}_u . Output: decision whether the component is diagnosable.

1. For each assumable A from A do: $\Delta' = \Delta \cup \{A\}$.

Create ordering o = (O₁,...,O_k,U₁,...,U_l, A₁,...,A_m), where O₁,...,O_l are members of P_o, U₁,...,U_l are members of P_u and A₁,...,A_m members of A in arbitrary order.

3. Perform directional resolution on theory Δ' , ordering o, and only over variables in $\mathbf{A} \cup \mathbf{P}_u$.

If the result is 'Δ is unsatisfiable',

return 'component behavior is faulty by nature'

else

store the *buckets*.

 If ∀i, i ∈ (1...Card(P_o)) bucket_i = Ø, return 'component is not diagnosable'

else

return 'component is diagnosable'.

MODEL PRUNING ALGORITHM (1)

Input: a set of components C, a component description Δ^c and a set of assumables A^c for each $c \in C$, a set of nodes N, a set of observed nodes $N_o \subseteq N$, and projections $\varepsilon^c : P \to N$ of the component ports onto nodes. Output: simplified model of the system.

1. Initialize:

Assign an initial state to every node, 'bound' if the node is physically observed, 'unknown' otherwise.

For each node n in the model do:

if $state(n) \neq 'bound'$ and c - card(n) = 1 then set state(n) = 'free' and insert n into DEL.

MODEL PRUNING ALGORITHM (2)

2. If DEL is not empty then

remove the first node n from ${\bf DEL}$ and go to step 3 ${\bf else}$

stop and **return** the current model.

- 3. Find component c_n connected to node n.
 If two or more ports of c_n share a node then replace all with one substitutive port.
 For each port p of component c_n do:

 if state(ε(p)) = 'free' then
 insert p into the set of unobserved ports P^{c_n}_u
 else
 insert p into the set of observed ports P^{c_n}_o.
- Decide component diagnosability of the component c_n, using component description Δ^{c_n}, set of health variables H^{c_n}, and sets of ports P^{c_n}_o and P^{c_n}_u.

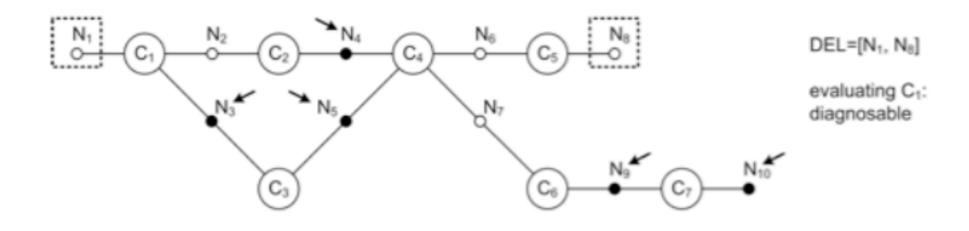
MODEL PRUNING ALGORITHIM (3)

- 5. If the result is 'component is diagnosable' then set state(n) = 'bound' and go back to step 2.
- Delete the component c_n and the node n from the model.
 For each other node n' previously connected to the component c_n do:

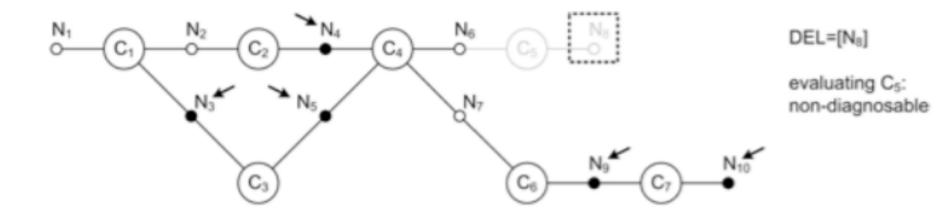
 if n' is in DEL then
 remove n' from DEL and delete it from the model

 $\begin{array}{l} \mathbf{if} \ c-card(n')=0 \ \mathbf{then} \ \mathrm{delete} \ n' \ \mathrm{from} \ \mathrm{the} \ \mathrm{model} \\ \mathbf{if} \ c-card(n')=1 \ \mathrm{and} \ state(n')\neq \ bound \ \mathbf{then} \\ \mathrm{set} \ state(n')=\ \mathbf{'free'} \ \mathrm{and} \ \mathrm{insert} \ n' \ \mathrm{into} \ \mathbf{DEL}. \\ \end{array}$ Go back to step 2.

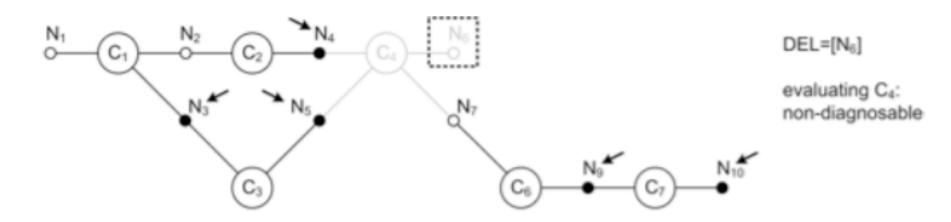
EXAMPLE MODEL PRUNING SEQUENCE (1)



EXAMPLE MODEL PRUNING SEQUENCE (2)

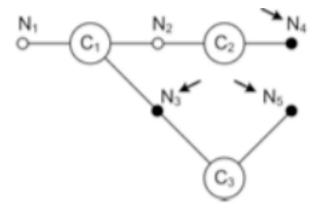


EXAMPLE MODEL PRUNING SEQUENCE (3)



EXAMPLE MODEL PRUNING SEQUENCE (4)

EXAMPLE MODEL PRUNING SEQUENCE (5)



DEL=[]

procedure stops

LIMITATIONS OF THE MODEL

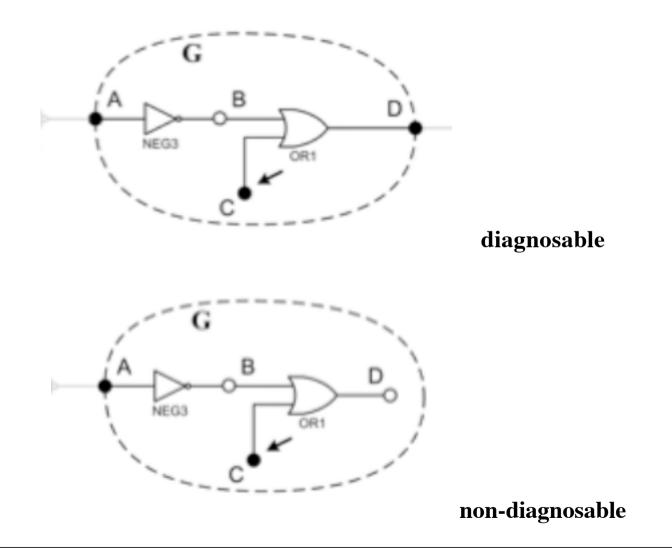
- The pruning algorithm examines only diagnosability of individual components the only chance to remove any undiagnosable component is only when at least one of its ports is a free dead-end
- To cut the model not only from dead-ends but also from inside,

one must examine not only individual components but groups of components

Nodes of a component group are classified into

- inner nodes of the group,
- boundary nodes connected to both components in the group and outside the group, and
- outer nodes not incident to the group

DIAGNOSABILITY OF COMPONENT GROUPS



ALGORITHIM MODIFICATION FOR DIAGNOSABILITY OF COMPONENT GROUPS

The adaptation of the original component diagnosability algorithm to the component-group diagnosability algorithm comprises:

- substitution of individual component port variables for corresponding system node variables,
- replacement of single component descriptions (behavior equations) with the group's joint description,
- consideration of the physically observed nodes and boundary nodes as observed for this evaluation,
- consideration of the unobserved inner nodes as unobserved for this evaluation, and finally
- performing directional resolution as it is done in the original algorithm.

EXTENDED MODEL PRUNING ALGORITHM

Input: a model $M = (C, N, \Delta, A, P, E)$ and a set of observed nodes $N_o \subseteq N$. Output: simplified model of the system.

- 1. Let $\mathbf{R} = \emptyset$ is the set of *removed* components.
- 2. For every component group $G, G \subseteq C$, do
- Let G = G \ R (ignore components already removed from the model)
 If G = Ø then continue with the next group.
- 4. Decide component-group diagnosability of G, using component descriptions Δ^c ; $\forall c \in \mathbf{G}$, sets of assumables \mathbf{A}^c ; $\forall c \in \mathbf{G}$, set of group's inner nodes $\mathbf{N}_i^{\mathbf{G}}$, set of group's boundary nodes $\mathbf{N}_b^{\mathbf{G}}$, set of group's observed nodes $\mathbf{N}_o^{\mathbf{G}} = \mathbf{N}_o \cap (\mathbf{N}_i^{\mathbf{G}} \cup \mathbf{N}_b^{\mathbf{G}})$, and projections ε^c ; $\forall c \in \mathbf{G}$.
- If the result is 'component-group is not diagnosable' then remove all components in G from the model and let R = R ∪ G.