Some central notions

Discourse

Coherent piece of text, with length of several sentences/paragraphs Comprises dialogs *and* monologs

Pragmatics

Issues that reach beyond sentence boundaries Issues of language use, interpretations consistent with the real world Several definitions in the literature, some are debatable

Context

Setting/embeddings relevant for the interpretation of utterances

Inference

Makes information entailed by the content of utterances explicit

Some properties of discourse/pragmatics

Differences to syntax/semantics

Structure mapping not such a dominant factor Compositionality frequently not an adequate principle Impact of expectations, effects of utterances seriously matter

What makes discourse analysis difficult

Relevant factors of the context hard to grasp Human inferences are often complex, subtle, and subjective Detailed world knowledge sometimes indispensible Human conversation is inherently fallible

Motivations for research on discourse/pragmatics

Discrepancies between human and machine adequate communication

	Machine	Human
Structure	mostly uniform	variations to increase vividness
Explicitness	entirely explicit	exploiting contextual expectations
Granularity	mostly uniform	opportunistic, changes possible

Challenges for discourse processing

Differences between form and content sometimes considerable Adaptation to human preferences may increase the effectiveness of systems Balancing between the costs underlying formal models and their impact

Theories about discourse

The formalist approaches

Discourse exhibits internal structure, encapsulate closely related semantic units Theories used to explain pronominalizations and quantifier scoping effects Weak on actual contents (precise interrelationship, communicative purpose) Prominent representative: *Discourse Representation Theory* (DRT)

The functionalist approaches

Discourse segments are defined by communicative purposes Theories focus on interrelationships between segments (how they fulfil goals) Complementary to formalist approaches in terms of strenghts and weaknesses Prominent representative: *Rhetorical Structure Theory* (RST)

A (combined) theory of discourse (Grosz amd Sidner 1986) Segmentation of the utterances (formalist view) Structure of the interlocutor intentions (functionalist view) Attentional state (record of referentially available objects)

Reference

Function

Expression refers to an entity in the discourse "referring expression" denotes a "referent" Purposes: identification and information about a referent

Forms of referring expressions

Personal pronouns, proper names

Definite NPs, indefinite NPs, demonstrative NPs, quantified NPs

Challenges in processing referring expressions

Interpretation of pronouns (structural preferences vs. world knowledge) Generation of human-adequate expressions

Presupposition

Felicity of sentences

"The king of France is wise"

presupposes there is a king of France

Frege's theory

- (i) referring phrases and temporal clauses do refer
- (ii) sentence and its negations share propositions
- (iii) presuppositions must be satisfied for a sentence to be either true or false

A simple view justified by distinction between sense and reference

Challenged by Russell

Presuppositions are defeasible

Relevant for evaluating database queries cooperatively

Presupposition properties

Triggers of presuppositions (selection)

Referential:	"The chacellor decides"	
	-> There is a chancellor	
Lexical:	"John has opened the window again"	
	> The window was closed, John has opened it before	
Syntax-driven:	"Who has eaten the cake"Someone has eaten the cake	

Defeat of presuppositions

Presuppositions that occur in negation, modal contexts, or discourse: John does not regret that Mary is married. Mary is single.

* John regrets that Mary is married. Mary is single.

Conversational implicature

Beyond what is said explicitly

"Can you tell me the time"

"Well, the milkman has come"

Grice's theory of implicature based on general cooperative principle, 4 Maximes

- (i) Quality say what you believe to be true
- (ii) Quantity say exactly as much as required
- (iii) Relevance say only relevant things
- (iv) Manner avoid ambiguity and obscurity, be brief

Implicatures are defeasible

Relevant for (inference-rich) discourse, indirect answers

Conversational implicature - examples

Scalar implicatures

"John has three children" "Some of the candidates passed" "I am sometime late"

Special/general implicatures

"I went into a house"

"Did you see the steak?"

"The dog looks very happy"

Explanation

"Why has A been assigned to B" "Group leaders go to single rooms"

- -> (not more than three)
- -> (not all of them passed)
- -> (I am not always late)
- -> (not my house)
- -> (the dog has eaten the steak)

"Group leaders go to single rooms" -> (A is a group leader, B a single room)

Metaphor

Examples

- (1) "Ctrl-z kills the process"
- (2) "This boxer is a tank"

One entity stands for another one to which it is related

- (1) metaphoric use of verb
- (2) transferring essential meanings from physical domain

Metaphoric relation must be transferred

Literal reading preferred, if meaningful

Metaphors are creative

Relevant for processing discourse appropriately

Metonymy

Examples

- (1) "The Boston office called"
- (2) "The ham sandwich is waiting for his check"

One entity stands for another one to which it is related

- (1) purely semantic phenomenon, regularities
- (2) pragmatic justification

Metonymic extensions make implicit item explicit

Literal reading preferred, if meaningful

Metonymies are chainable

Relevant for evaluating database queries appropriately

Discourse relations

A example

Jones has lots of experience. He has been on the board for 10 years. And he 's refused bribes. So he's honest. He would really make a good president.

[Cohen 1987]

Diagnosis

- Relations between facts/assertions not explicitly expressed
- Cue phrases (here: and, so) only contribute to a limited extent ambiguous!

Challenges

- Reconstructing the intended argumentative structure (in analysis)
- Presenting arguments in a natural and understandable form (in generation)

Intentional approach (Grosz and Sidner)

Three dimensions of discourse

Linguistic structure

- The utterances themselves
- Expressions that indicate discourse structure (cue phrases, aspect, tense, intonation, gesture)

Intensional structure

- Hierarchy of intentions (dominance and precedence)
- Purpose/intention held by discourse initiator (assumption: one per discourse)

Attentional structure

- Model of objects, properties and relations according to their salience
- Participants' focus of attention modeled by focus spaces

Rhetorical structure theory (Mann and Thompson)

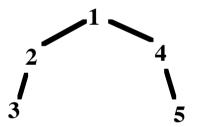
Model of discourse

- Relations between discourse units (mostly binary relations)
- Domain-independent rhetorical structure, compositionally built trees (cue phrases, aspect, tense, intonation, gesture)

Examples of relations

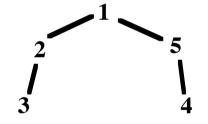
- Nucleus/satellite: elaboration, condition, purpose, result
- Multi-nuclear: contrast, sequence, joint

Limitations

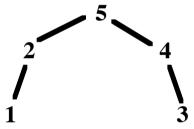

- Repertoire of relations not determined, singularity of relations problematic
- Issues of dialog, overall structure of the discourse

Generation - presenting discourse relations

Some possible variations


PRE-ORDER

- 1. Jones would make a good president.
- 2. He has lots of experience.
- **3.** He has been on the board for 10 years..
- 4. And he's honest.
- 5. He's refused bribes.


HYBRID

- 1. Jones would make a good president.
- 2. He has lots of experience.
- **3.** He has been on the board for 10 years.
- 4. And he 's refused bribes.
- 5. So he's honest.

POST-ORDER

- 1. Jones has been on the board for 10 years.
- 2. He has lots of experience.
- 3. And he 's refused bribes.
- 4. So he's honest.
- 5. He would *really* make a good president.

Methods

• Ordering and cue-phrase selection, embedded in sentence planning

(e.g., [Grote, Stede 1998])

• Decisions guided by heuristics expressing aspects of linguistic/rhetorical adequacy (e.g., [Scott, de Souza 1992])

Speech acts (Searle)

Simultaneous acts of a speech act

- Locutionary act sense and reference of an utterance
- Illocutionary act statement or promise through conventional force of act
- Perlocutionary act effects on the audience

Categories of speech acts

- Representatives entail a commitment of the speaker to the truth of content
- Directives attempt to get the hearer to do something
- Commissives commitment the speaker to some future form of action
- Expressives expresses a psychological state
- Declarations effect changes state of institutional affairs

Symbolic methods

Processing on surface-near levels

Use of automata, cascaded compositions

Representations

Expressing generalizations, use of inheritance methods (also non-monotonic ones)

Attribute-valuee structures, unification

Reasoning

Rule-based inferencing, planning

Tools

Morphological analysis and generation, syntactic parsing, surface generation

Statistical methods

Development

Data-based methods may be promising where rules are hard to build Increasingly more areas, dominating in the meantime

Typical areas

Word sense disambiguation, syntactic disambiguation, bi-lingual machine translation

Techniques

Different learning methods are effective in dependency of linguistic data structures

Tendency

Statistical, corpus-based techniques are increasingly overtaking

Reference resolution

Constraints

Agreements

Syntactical constraints

Selectional restrictions

Preferences

Recency

Grammatical role

Repeated mention

Paralellism

Verb semantics

Centering theory (Grosz, Joshi, Weinstein 1995)

Major ingredients

- each utterance has one backward looking center C_b and an ordered set of forward looking centers C_f
- proposed C_f ordering Subj < Obj < Other
 (various other proposals considered in the literature)
- the most highly ranked item on C_f is the C_p,
 i.e., the preferred C_b for the next utterance
- types of center-transitions depending on whether backward looking center is maintained or changed: continuation, retaining, shift

Centering theory cont'd

Preference rules

If any item is pronominalized, then C_b is pronominalized

Preference for sequences of center continuation, or smooth (gradual) shift

Centering transition types:

	${C}_b({U}_i)={C}_b({U}_{i-1})$	$C_b(U_i) \neq C_b(U_{i-1})$
$C_b(U_i) = C_p(U_i)$	Continue	Smooth Shift
$C_b(U_i) \neq C_p(U_i)$	Retain	Rough Shift

 $C_b(U_k)$ — backward looking center of utterance U_k $C_f(U_k)$ — (partially) ordered list of forward looking centers of utterance U_k $C_p(U_k)$ — highest ranked item on $C_f(U_k)$, the preferred (next) center

Information structure

Theme - given information, anchoring in the discourse (purpose, topic)*Rheme* - new information, advances the discourse*Focus* - emphasis within an utterance

Expressive means differ across languages

(e.g., word order, syntactic form, intonation)

A famous example

The good news is that Czechs made revolution,

the bad news is that revolution is made by Czechs

Dialog systems

"Make an appointment for Tuesday"

What time is your appointment?

●●●●● AT&T M-Cell 〒 6:37 PM

"215"

* 79% 🗖

OK, I can create your meeting. Note that you already have an appointment at 2:15 pm. Shall I schedule it anyway?

"No"

••••• AT&T M-Cell 🗢 6:37 PM 🛛 🕸 78% 🔤

To continue, you can Confirm, Cancel, Change the Time, or Change the Title.

Canceled

OK. You're probably way too busy anyway, Dan.

●●●●● AT&T M-Cell 🗢 6:18 PM

🕴 87% 💷 🕨

"Find restaurants near me" tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy's Spaghetti Shack 0.2 mi >

18 Virginia Ave Italian, \$\$\$\$ ★★★★★ 1101 Reviews

ICHI Sushi 3369 Mission St Japanese, Sushi Bars, \$\$\$ ★★★★ ★ 260 Reviews 0.2 mi >

••••• AT&T M-Cell 🗢 6:19 PM 🛛 🕺 86% 🛽

"Tell me more about the second one"

tap to edit

I'm sorry, Dan, I'm afraid I can't do that. ●●●●● AT&T M-Cell 🗢 6:18 PM

"Find restaurants near me" tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy's Spaghetti Shack 0.2 mi >

18 Virginia Ave Italian, \$\$\$\$ ★★★★ ★ 1101 Reviews

ICHI Sushi 3369 Mission St Japanese, Sushi Bars, \$\$\$ +++++ 260 Perious 0.2 mi >

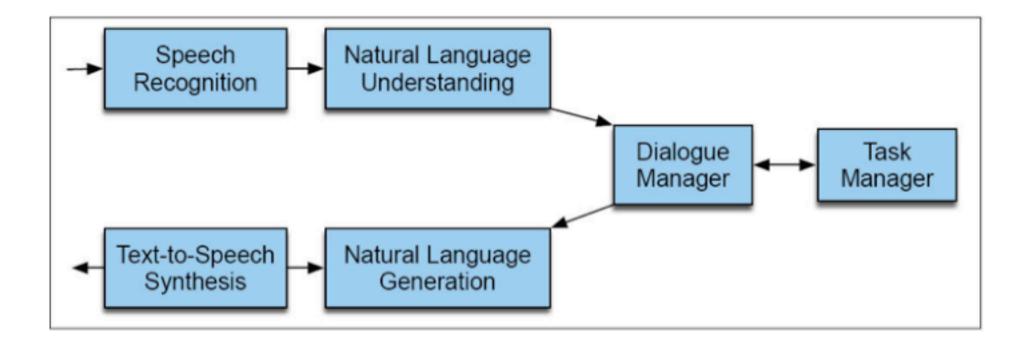
87%

●●●●● AT&T M-Cell 🗢 6:19 PM

* 86% 🗖

"Are any of them Italian" tap to edit

My web search turned this up:


Web Search

Are any of them Italian

any - Dizionario inglese-italiano WordReference www.wordreference.com English-Italian Dictionary | any ... of any sort adj (of an unspecified variety) di qualsiasi

Italian language - Wikipedia, the free

Dialogue System Architecture

ARCHITECTURES FOR DIALOG MANAGEMENT

Finite state

Reliable in general, but inflexible

Compiled versions resulting from more abstract models useful

Frame-based

Domain-specific target structure

Requires processing component to interpret state of the frame

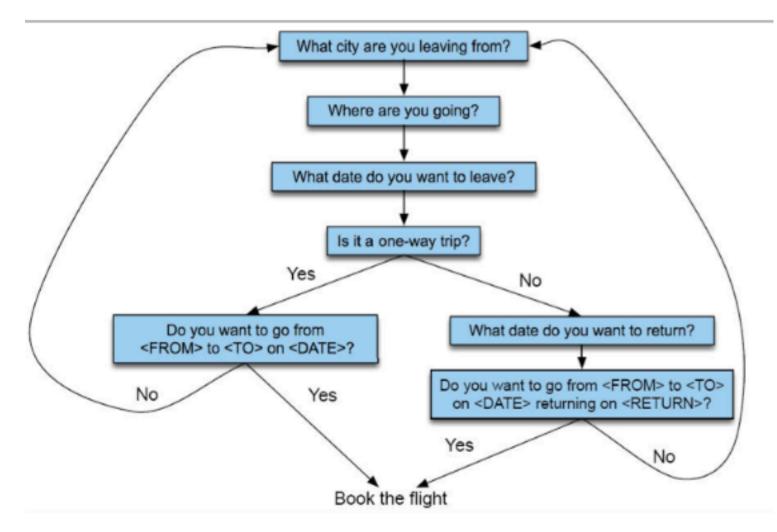
Information state

Theoretically motivated model Based on force of speech acts, central notion discourse obligations No generally agreed vocabulary Theretical elaborations for selected discourse phenomena/situations Used in some experimental systems (GODIS)

A SIMPLE EXAMPLE

Airline travel system

Asking required about


Departure city

Destination city

Time

Single- or round trip

Finite State Dialog Manager

ASSESSMENT OF THE FINITE STATE APPROACH

Conceptually

Completely controls the dialog, asking a series of questions Ignores or misunderstands anything that is not a direct answer

Technically

Easy to build

Expectations usable by speech recognition and language analysis

Usability

Only for very simple tasks

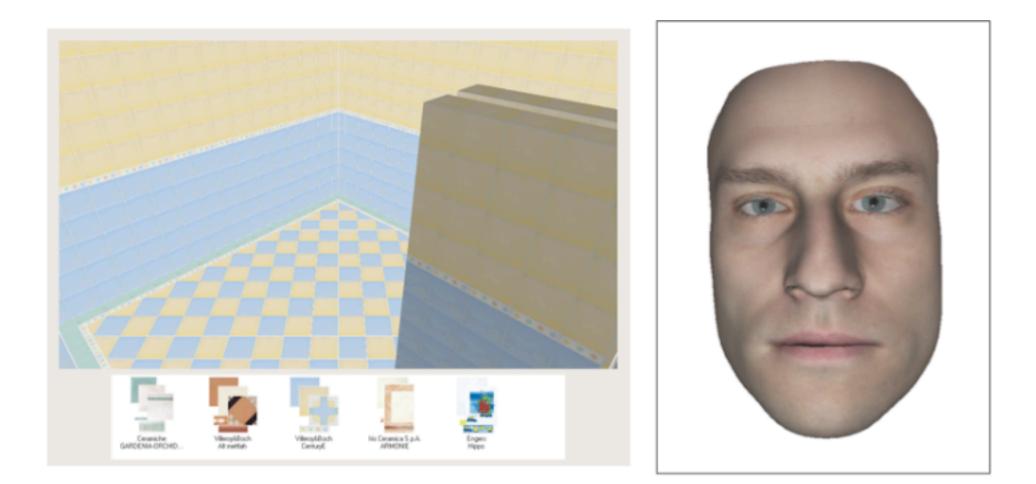
Very tedious, ineffective dialogs

FRAME-BASED DIALOG MANAGEMENT

Dialog control extensions

Answering several questions at once possible Specifying

Conceptual extensions


Multiple frames, e.g.,

flights, hotels, rental cars

multiple-leg flights, general information about airlie policy

Additional problems

Scope of specifications may sometimes be a concern/problematic Recgnition of implicit topic shifts challenging

(a) Bathroom-design application

(b) Talking head

Figure 1: Components of the COMIC interface

THE COMIC SYSTEM

User Tell me about this design [click on Alt Mettlach]

COMIC [Look at screen]

THIS DESIGN is in the CLASSIC style. [circle tiles]

As you can see, the colours are DARK RED and OFF WHITE. [point at tiles]

The tiles are from the ALT METTLACH collection by VILLEROY AND BOCH. [point at design name]

Figure 2: Sample COMIC input and output

HANDLING DISJUNCTIVE INPUTS (White 2006)

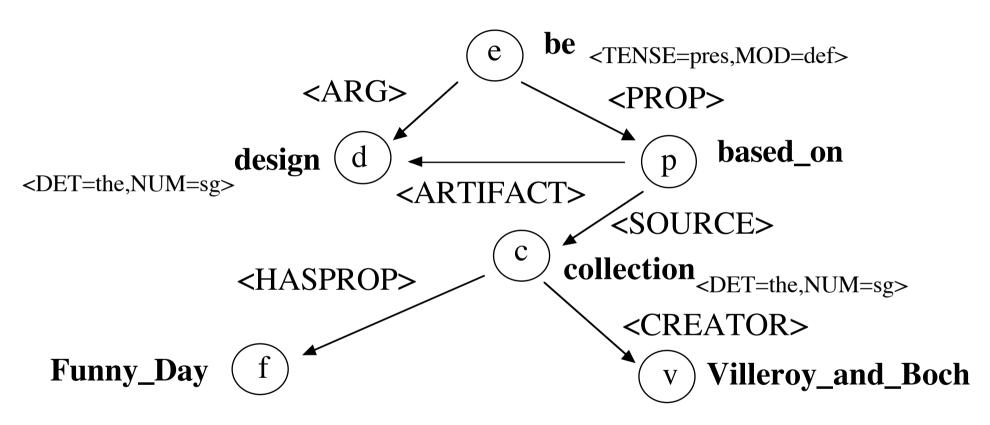
Motivation

Language planning components produce sets of reasonable expressions

- Paraphrases with no preferences among them
- Alternatives within context widely interchangable
- Surface realizer may decide

Representation alternatives

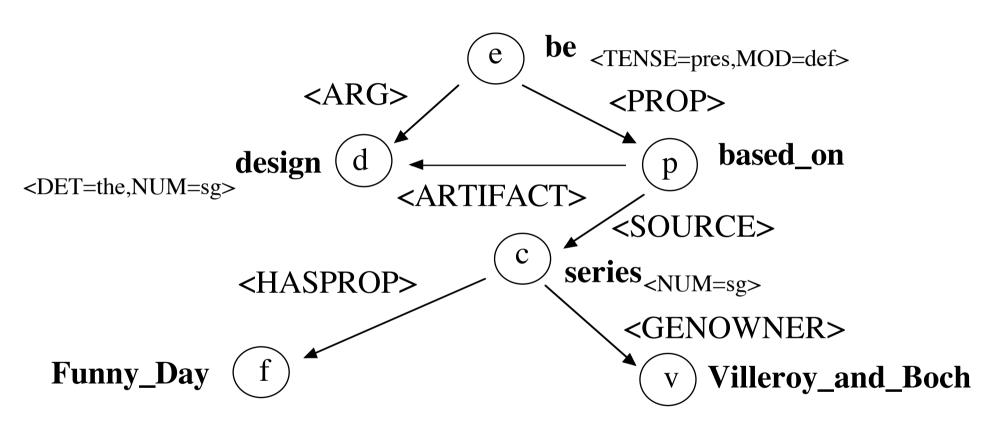
Underspecified expressions


Explicit disjunctions (the alternative used here)

Functionality

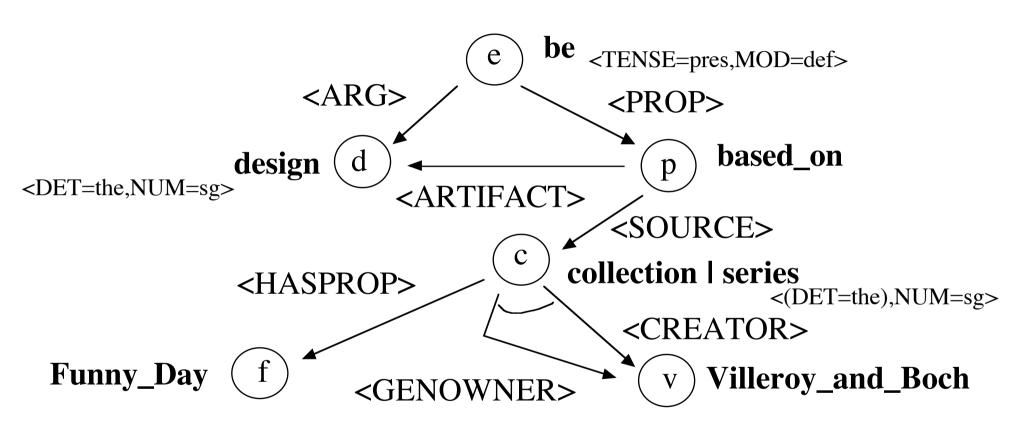
Generate most alternatives in parallel (overlapping substructures)

Decide on the basis of corpus frequencies of surface expressions


EXAMPLE REPRESENTATION (1)

Semantic dependency graph for

"The design is based on the Funny Day collection by Villeroy and Boch"


EXAMPLE REPRESENTATION (2)

Semantic dependency graph for

"The design is based on Villeroy and Boch's Funny Day series"

EXAMPLE REPRESENTATION (3)

Disjunctive Semantic dependency graph covering

"The design is based on (the Funny Day (collection | series)

by Villeroy and Boch | Villeroy and Boch's Funny Day (collection | series))"

THE PROCEDURE (SKETCH)

Flattening

Preprocessing step - array of elementary predications, alternations and options Through tree traversal with incrementally building alternative groups

Edges

Edges associated with bit vectors to record coverage of alternatives

Lexical instantiation

Returns non-overlapping matches with coverage indicating bit vectors

Derivation

Edges may be introduced as alternatives

Edge combination involves a coverage check

Unpacking

Realizations recursively unpacked, filtering duplications

SOMIE SYSTEM FEATURES

Dialog management

- High-level, modality-independent specifications (input and output)
- Simple stack architecture with a control structure
- Topics and are pushed onto and popped off of the stack as the dialog proceeds

Natural language generation

- **Opportunistic processing**
- Delaying decisions, producing compact intermediate representations
- Decisions about alternatives at the very end, whenever possible