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Abstract. Semantic tagging in technical documentation is an impor-
tant but error-prone process, with the objective to produce highly struc-
tured content for automated processing and standardized information
delivery. Benefits thereof are consistent and didactically optimized doc-
uments, supported by professional and automatic styling for multiple
target media. Using machine learning to automate the validation of the
tagging process is a novel approach, for which a new, high-quality dataset
is provided in ready-to-use training, validation and test sets. In a series
of experiments, we classified ten different semantic text segment types
using both traditional and deep learning models. The experiments show
partial success, with a high accuracy but relatively low macro-average
performance. This can be attributed to a mix of a strong class imbalance,
and high semantic and linguistic similarity among certain text types. By
creating a set of context features, the model performances increased sig-
nificantly. Although the data was collected to serve a specific use case,
further valuable research can be performed in the areas of document
engineering, class imbalance reduction, and semantic text classification.

Keywords: semantic text classification · context features · technical
documentation.

1 Introduction

The area of technical documentation is highly relevant in the industry, due to
the legal need for technical information, such as user manuals, alongside com-
mercial products [4]. There are established standards to ensure efficiency and
quality in the document creation process. One important standard is the uni-
form assignment of XML tags to text segments. Some of these segments, such as
notes, commands or warnings, contain semantics, while others, like continuous
text or generic lists, are non-semantic. Semantic text segments are indicated by
the XML name tag. Depending on the communicative goal of the segment type,
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the respective tags are connected to rules, which ensure consistent structure and
layout in the documentation [4]. Besides supporting readability of the contents,
this provides the prerequisites for intelligent information processing.

When multiple authors, eventually located at multiple sites, write documents
for the same customer, or even work together on a single document, divergent
tag assignments are likely to happen. Some text segments are semantically very
close, which might as well lead to different tagging. Our research focuses on the
automated validation of the tagging process through the support of machine
learning, and thus on the improvement and standardization of highly structured
content, including all the associated benefits.

There is much prior research on text classification, especially on applications
for social media [5,15,2], and online product customer reviews [7,11,6]. As op-
posed to this type of content, technical content is highly structured, emotionally
unbiased, and usually follows writing guidelines. Consequently, important fea-
tures for the classification remain in the communicative style, and in contextual
patterns. Therefore, we extracted a set of context features specific to structured
content, and tailored to the standards of the data source.

Our study makes several contributions: first, we developed a new concept for
validating automated tagging, which enables intelligent and automated informa-
tion processing; second, we created a comprehensive, high-quality dataset, as a
basis for further research on the use case, or similar scenarios; third, we designed
context features to increase model performance and to save resources.

2 Related Work

Text classification is a common area in computational linguistics and has been
applied to diverse domains such as health [2], law [8], finance [20], and social
media [5,15]. The text input size reaches from document, chapter, and paragraph,
to even sentence level. The few works done at the interface between machine
learning and technical documentation deal with classification of relatively large,
self-contained units of content, for example on chapter [12,13] or document level
[9]. Writing in all conscience, this work is the first dealing with paragraph-level
text classification in the technical documentation domain.

Oevermann and Ziegler [13] conducted a comprehensive study, where they
applied traditional machine learning models to categorize product component-
related text blocks in technical documents. They also used real-world data, which
was manually tagged by professionals such as technical writers, or content ex-
perts. While they used data from the engineering sector, the data for our work
is software-related. They applied the vector space model as baseline, and tf-idf
weighting for single words and word groups, where word n-grams of two and
three achieved the best performances. The classification was done by finding the
highest cosine similarity between a document vector and the class vectors.

Since the invention of BERT in 2018 [1], the model has been frequently ap-
plied to various text classification tasks and compared to traditional machine
learning methods, which mostly used tf-idf feature extraction. The superior-
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ity of BERT was found in most cases. González-Carvajal and Garrido-Merchán
[6] conducted several binary- and multi-classification tasks on movie and hotel
reviews, where BERT achieved better performance than traditional models, in-
cluding a support vector machine (SVM). In our work, we use similar-sized text
data, and we apply the same models, but to a fairly unexplored domain. Lund
[9] contradicts the results found by González-Carvajal and Garrido-Merchán [6]
by achieving parity of a tf-idf model and BERT. Lund applied BERT to tech-
nical documents following the product life cycle such as installation, operation,
maintenance, troubleshooting, and disposal. In our work, we also match BERT’s
performance with a tf-idf model, but only by using additional context features.

Di Iorio et al. [3] followed the goal of standardized document structures to
achieve consistent layouts. But instead of applying machine learning, they ap-
proached the task with an algorithm based on a pattern rules concept. This
concept was developed by abstracting XML patterns from large amounts of doc-
uments. Hereby, the authors identified common structural and content-related
characteristics in and between typical XML elements that applied to all docu-
ments. Unlike in our work, the semantic value of the contents was irrelevant.
Examples for patterns were blocks, containers, or fields. While the authors con-
sidered structural patterns as the basis for styling decisions, we are considering
the semantics as more important. For instance, our documents contain tables
with entries of definitions, and while we would capture the actual definitions,
the authors from this work would capture the whole table. Due to the strong
abstraction, this approach is not as fine-granular as ours, but generalization can
be achieved more easily.

3 Data

3.1 Data Collection

Data Source. The dataset for this work was scraped from the SAP Help
Portal4, an open-source online documentation platform containing a high num-
ber of user manuals for different SAP products. The documentation is created
and maintained in a content management system, and structured according to
DITA.5 DITA is a popular XML standard, which is frequently used in the tech-
nical documentation industry.

Segment Type Definition. We defined ten text segment types by manually
examining documents in the SAP Help Portal across different products. Hereby,
we used the underlying CSS classes in the HTML code to identify the differ-
ent segment types. The following semantic text segment types are contained in
the dataset: Command, Definition, Example, Note, Recommendation, Reminder,
Restriction, Tip, Warning, Shortdescription.

4 https://help.sap.com/viewer/index
5 https://www.oasis-open.org/committees/tc home.php?wg abbrev=dita

https://help.sap.com/viewer/index
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita


4 J. Höllig et al.

Data Quality. Although in no official cooperation, SAP confirmed the defined
segment types and gave insight in their content creation process. The contents
in the SAP Help Portal are written by experts in the field of technical writing,
who are supported by an editorial guide stating tagging standards and writing
style recommendations. After data collection, we reviewed 100 random samples of
each segment type to validate the data quality. Review criteria were the semantic
correctness and data cleanness. Apart from a few outliers (text missing, incorrect
tag assignments), the quality was good.

Scraping Process. For the data collection process, we built a web scraper using
the Python framework selenium. Selenium offers user-like interaction with web
content by taking control of the browser [17]. The segment types were identified
in the underlying CSS class of the web page, and retrieved via XPath expressions.
Example 1 illustrates this process.

Example 1. The example shows how to scrape segment type Warning.

driver.find_elements_by_xpath("//section/descendant::aside[@class =

’note note caution’]")

The object driver is a WebDriver element at the currently active browser win-
dow. The function find elements by xpath finds the required elements via a
XPath expression. In this example, the driver traverses the DOM tree and looks
for all HTML elements descending from section, being tagged with aside and
containing the class attribute note note caution.

3.2 Dataset Description

Data Statistics. The dataset was randomly split into training (70%), test
(20%), and validation (10%) sets. Figure 1(a) shows the count of collected text
segments per class (=type), and for each set, with a total count of 86,450,
after postprocessing. There are huge divergences between the class counts, which
are visualized in Figure 1(b). This strong class imbalance caused issues in the
following classification experiments.

Data Access. We provide the datasets on Github6 in three json files (train.json,
val.json, test.json) in postprocessed form. On request, we also provide all data
before preprocessing in one big XML file, which contains all semantic and non-
semantic segments collected. Along with the XML file, we provide a Python
module dataset.py for data cleaning, sampling, context feature extraction, and
transformation into pandas data frames. The data cleaning involves removal of
inline HTML tags, HTML-generated newlines / tabs / spaces, ‘None’ values, and
duplicates. The sampling involves oversampling on minority and undersampling
on majority classes to enable the model to learn small classes [18].

6 https://github.com/juhoUnibw/semSegClass

https://github.com/juhoUnibw/semSegClass
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Total count: Class counts
86,450

Train Val Test

Commands 20,081 2,231 9,180

Notes 11,604 1,289 5,336

Shortdescriptions 11,498 1,278 5,409

Examples 4,746 528 625

Warnings 3,123 347 459

Definitions 2,756 306 368

Tips 2,151 239 291

Recommendations 981 109 156

Reminders 558 62 69

Restrictions 529 59 82

(a) Class counts for training, validation
and test sets

103 104

Restriction
Reminder
Recommendation
Tip
Definition
Warning
Examples
shortdesc
Notes
Command

(b) Relative class distributions
(logarithmic scale)

Fig. 1: Dataset: overview of class counts and distributions

4 Methods

4.1 Feature Extraction

In addition to the presented text segments, we developed nine context features,
which were added to all models in different combinations. They can be catego-
rized in topical, structural, environmental, and grammatical features. Table 1
states the categories, underlying features, and short explanations. All features
were normalized for values between zero and one.

4.2 Models

Model Selection. We evaluated the use case through a series of experiments
with a deep learning and a traditional model. Hereby, we applied the transformer
model BERT (Bidirectional Encoder Representations from Transformers) from
the transformers library by Huggingface 7, and a linear SVM (Support Vector
Machine) from the sklearn library. As deep learning model, we chose BERT
due to its state-of-the-art performances in many text classification tasks [16].
BERT also uses the so-called self-attention mechanism to capture long-range
dependencies in text sequences [19], which we assumed to be helpful in find-
ing complex writing style patterns. As traditional model we chose linear SVM
because it shows the best results for text classification tasks between several tra-
ditional models [10]. Alternative deep learning and traditional models such as
ALBERT, Gradient Boosting, Decision Tree, and Bagging performed worse than
the presented models in first experiments, which is why they were deprecated.

7 https://huggingface.co/transformers/model doc/bert.html#
tfbertforsequenceclassification

https://huggingface.co/transformers/model_doc/bert.html#tfbertforsequenceclassification
https://huggingface.co/transformers/model_doc/bert.html#tfbertforsequenceclassification
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Table 1: Categorization and explanation of extracted context features

Category Feature Explanation

Topical
TF =Text Function. States the text function of the chap-

ter where the segment was found (e.g. instructing, de-
scriptive). Represented as binary feature over all text
function categories (concept, task, reference, topic).

chapTitle =Chapter Title. Extracts a tf-idf representation of the
chapter title where the segment was found.

Structural
ST =Sibling Types. States the predecessor and successor

segment types of the current segment. Represented as
binary feature over all segment types.

segPos =Segment Position. States the position of the current
segment within the chapter (0=start, 1=end).

chapPos =Chapter Position. States the position of the current
segment within the document (0=start, 1=end).

Environmental
nSeg =Number of Segments. States the number of segments

within the chapter where the segment was found.
CS =Content Share. Measures how much of the chapter

content is owned by the segment (chars segment / chars
chapter).

semDistr =Semantic Distribution. Measures the semantic quan-
tity and diversity within the chapter where the segment
was found (number of semantic segments + number of
unique semantic segments).

Grammatical POS =Part-of-speech. Extracts a tf-idf representation of the
segment text after it was transformed into part-of-
speech tags.

Model Design. In order to use the pre-trained BERT model, a classification
layer was built on top of the traditional BERT architecture. During training,
the additional context features were appended to the output of the pooler layer
of BERT, which is the sequence representation fed into the classification layer.
The weight embedding matrix was adapted to the increased number of features.
To access the pooler layer, the source code of the feed forward function was
extracted from the transformers library and modified accordingly. For the SVM,
the context features were appended as numpy array to the text representation.

Hyperparameter Selection. Table 2 shows the hyperparameter configura-
tions we used with the models. BERT’s configuration is recommended by Akshay
Prakash [14]. For the linear SVM model, we validated different combinations to
find the optimal one.

4.3 Sampling

An oversampling of factor 2 was applied to the minority classes (Definition,
Example, Warning, Tip, Recommendation, Reminder, Restriction), and an un-
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Table 2: Hyperparameters used with BERT (left) and SVM (right)

BERT

Batch size 16

Learning rate 2e-5

Epochs 4

Max. sequence length 128

Loss function Cross-entropy

Linear SVM

Stemming Yes

Stop words English

Tolerance 0.0001

Max. features 20,000

Loss function Hinge-loss

dersampling factor of 0.6 to the majority classes (Command, Note, Shortdescrip-
tion). The samplings were only applied to the training and validation sets, the
test set retains the real-world data distribution.

5 Experiments

5.1 Setup

In a series of experiments with eleven setups, we evaluated the classification of
the ten presented semantic segment types through application of the presented
models. In setup 1, bare text input was used for modeling. In setups 2-10 the
impacts of the presented context features were evaluated. In setup 11, the best
combinations of features for BERT and SVM were modeled. For the SVM, we ad-
ditionally modeled bare context features, to compare their performance against
bare text features.

The experiments were evaluated both quantitatively and qualitatively. In the
quantitative evaluation, we present the overall performances of each experiment,
measured in accuracy (1) and macro-average (5). The accuracy specifies the frac-
tion of correctly classified text segments, the macro-average reflects the average
success of all classes. We also specify the individual performances of each class
in F1-score (4) for the best models. The exact definitions of the measures are as
follows (where TP stands for True Positives, FP for False Positives, FN for False
Negatives, N for the count of test samples, and C for the number of classes):

Accuracy =
TP + TN

N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
(4)

Macro-average =

∑C
i=1 F1

C
(5)
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In the qualitative evaluation, we reveal some challenging aspects of the clas-
sification task by analyzing the test samples that were hard to distinguish for
the model.

5.2 Quantitative Evaluation

Table 3 shows the overall model performances of all experiments. The highest
macro-average (60%) was achieved by BERT combined with the context features
‘Text Function’ and ‘Siblings Type’. The highest accuracy (88%) was achieved
by SVM combined with all context features. Overall, these models match in
performance, which indicates that superior text embedding in deep learning
models can be equalized by using context features in traditional models.

Table 3: Overall model performance comparison across all setups (values in %)

Accuracy Macro AVG
BERT SVM BERT SVM

Setup 1: Text only 83 77 54 45

Setup 2: +TF 84 79 59 48

Setup 3: +chapTitle 84 78 54 50

Setup 4: +ST 83 87 54 54

Setup 5: +segPos 83 79 56 46

Setup 6: +chapPos 83 77 56 46

Setup 7: +nSeg 83 77 54 46

Setup 8: +CS 84 77 55 45

Setup 9: +semDistr 83 77 54 47

Setup 10: +POS 84 78 54 46

Setup 11: +Best combination 84 88 60 56

Only context features - 85 - 46

Table 4 shows the individual class performances of the two best models.
The five best classes, which are the same for both models, are marked in bold.
The other classes show low performances, due to high semantic (and linguistic)
similarities, and the negative class imbalance influence. These challenges are
further examined in the following subsection.

5.3 Qualitative Evaluation

Here, we examined individual test predictions to understand the challenges of
the classification task. The basis of our analysis was 100 random test samples of
each segment type, of which 50 samples were correctly, and 50 samples were in-
correctly predicted. In the following, we focus on examples of conflicting segment
type pairs, where the one type was mispredicted as the other type.
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Table 4: Class performances (values in %) of the two best models: BERT and
SVM from setup 11 (PREC=Precision, REC=Recall, F1=F1-score)

BERT+TF+ST SVM+ALL
PREC REC F1 PREC REC F1 Count

Command 95 94 95 94 96 95 9,180

Definition 87 69 77 96 98 97 368

Example 75 78 77 60 72 66 625

Note 77 76 77 81 75 78 5,336

Recommendation 46 45 45 35 33 34 156

Reminder 71 30 42 14 10 12 69

Restriction 41 28 33 42 22 29 82

Tip 30 39 34 30 26 28 291

Warning 34 44 38 23 25 24 459

Shortdescription 85 85 85 97 98 97 5,409

Accuracy 84 88
21,975

Macro AVG 60 56

Command vs. Note. Example 2 shows the command-like syntax of type Com-
mand, but the wording legitimates the type Note, due to the phrase ‘Make sure’.
Without further context, it is difficult to say whether the true class Command
or predicted class Note should actually be correct.

Example 2. “Make sure the SNC PSE is still the selected PSE.”

Shortdescription vs. Definition. Shortdescription and Definition both con-
tain descriptions of some kind, which is why they have similar linguistic patterns.
The sample in Example 3 of type Definition could also be used in a Shortde-
scription segment, for example, to introduce a chapter.

Example 3. “The options that describe the operation of an object, which are
viewable in the workspace when you open the object.”

Note vs. Warning. Generally, the Note type is semantically very similar to the
other note-like classes Tip, Recommendation, Restriction, Reminder, or Warn-
ing. The terms ‘should’ and ‘have to’ in Example 4 justify the falsely predicted
Warning as well as the correct type Note.

Example 4. “The following checks and steps should be performed on all hosts
of the affected sap HANA system. They have to be executed as the root user in
the Linux shell.”

Restriction vs. Note. Example 5 shows a sample of the type Restriction, which
was predicted as Note. In this case, one could argue that the term ‘available only’
indicates a restriction. However, the models were trained with far more Note than
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Restriction samples (11,604 : 529), so that a single linguistic difference like this
seems to be not strong enough to influence the model.

Example 5. “The feature is available only on browsers (desktop / laptop).”

Tip vs. Note. A similar effect can be observed for Tips, which often contain
the indicator ‘you can’ in order to animate the reader to act. Example 6 shows
such a case, where the sample was predicted as Note. In this example, we can
observe a mix of segment types, which would be legitimate, but hard to learn
for the model. The last sentence for itself could easily belong to type Command.

Example 6. “If you have one instructor and you want to authorize that one
instructor to teach many learning items, you can do that in the instructor’s
record. Go to people instructors authorized to teach.”

Reminder vs. Command. A challenge of the type Reminder is that it can
easily be formed by just repeating any statement made at some point in the
documentation, while changing the semantics of that statement. The statement
in Example 7 shows all linguistic patterns of a Command (verb at the start of
sentence, imperative form), but the author might have tagged it legitimately as
Reminder to prevent the reader from missing an action.

Example 7. “Copy and save the client secret as you won’t be able to retrieve it
later.”

Discussion. Most of the challenging test samples belong to one of the sub-note
types because they are hard to distinguish from the general Note type, both lin-
guistically and semantically. This can be supported by the fact that 57.6% of the
mispredicted note sub-type samples were falsely predicted as Note. The strong
class imbalance in the data adds additional complexity to the classification of
these types. In an experiment with equal class distribution, the performances of
the sub-note type classes increased, but still remained below the other classes.
Consequently, both the class imbalance and close class similarity affect their clas-
sification results negatively. Selective random oversampling, multiple SMOTE
variants, class re-weighting, and a feature selection method did not improve the
performance. The most effective solution to both problems is to merge all note
type classes, taking into account the restraints it puts on the use case. For this
scenario, the performance for the best model achieved 93%/89%.

6 Conclusion and Future Work

In this paper, we introduced the novel approach of validating document struc-
tures by means of machine learning in order to enable intelligent information
processing and ensure consistent document layouts. We showed model evalua-
tions with promising results, and revealed the remaining challenges. Moreover,
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we provided a comprehensive dataset for further research in different areas such
as document engineering, text classification, and the handling of imbalanced
data, along with baseline results. During the experiments, we discovered the
strong impact of context features on the performance of traditional models. Our
SVM model, which was originally thought of as baseline model, matched BERT’s
performance through using context features. We could derive that structured
semantic content yields useful underlying contextual patterns besides linguis-
tic features. Thus, choosing traditional models with context features over deep
learning models in such a scenario can achieve the same results with significantly
less resources.

Our experimental results showed that the best deep learning model (BERT)
and the best traditional model (SVM) achieve equal performances. They solve
the classification task partially well, with a combined macro-average performance
of 83.4% for the classes Command, Definition, Example, Note, and Shortdescrip-
tion, and of 31.8% for the classes Recommendation, Reminder, Restriction, Tip,
and Warning. Hereby, the SVM model achieves better performance on the first
group of the classes (86.6%), while BERT achieves better performance on the
second group of the classes (38.2%).

A big constraint of this work is the semantic and linguistic similarity between
the note type elements. Combined with the class imbalance, the generic majority
class Note is mostly predicted in unclear cases. Merging the sub-note types into
a common note-type class, shows the potential of the application, and produces
a ready-to-use model for the use case, although restricted to fewer classes.

A substantial advancement of our system would be the automated tagging
of unstructured documents, for example, in the context of migration of large
document collections to content management systems. Such an application would
significantly lower the initial workload of content structure standardization in the
industry and therefore, accelerate the process of intelligent content processing
and delivery.
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