
Mixture Variational Autoencoder of Boltzmann
Machines for Text Processing

Bruno Guilherme Gomes1, Fabricio Murai1, Olga Goussevskaia1,
Ana Paula Couto da Silva1

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
{brunoguilherme, murai, olga, ana.coutosilva}@dcc.ufmg.br

Abstract. Variational autoencoders (VAEs) have been successfully used
to learn good representations in unsupervised settings, especially for im-
age data. More recently, mixture variational autoencoders (MVAEs) have
been proposed to enhance the representation capabilities of VAEs by as-
suming that data can come from a mixture distribution. In this work, we
adapt MVAEs for text processing by modeling each component’s joint
distribution of latent variables and document’s bag-of-words as a graphi-
cal model known as the Boltzmann Machine, popular in natural language
processing for performing well in a number of tasks. The proposed model,
MVAE-BM, can learn text representations from unlabeled data without
requiring pre-trained word embeddings. We evaluate the representations
obtained by MVAE-BM on six corpora w.r.t. the perplexity metric and
accuracy on binary and multi-class text classification. Despite its sim-
plicity, our results show that MVAE-BM’s performance is on par with
or superior to that of modern deep learning techniques such as BERT
and RoBERTa. Last, we show that the mapping to mixture components
learned by the model lends itself naturally to document clustering.

1 Introduction

Digital libraries and online social networks are current examples of ecosystems
where large volumes of textual data are generated by users at every instant. On
average, it is estimated that 500 million tweets are posted daily on Twitter1,
while 600 articles are created every day on Wikipedia.2. Similar figures also hold
for other digital platforms such as Amazon Review, Yahoo Answers and Yelp
Reviews. This explains in part the ever increasing importance of analyzing user-
generated patterns in large textual data sets for Natural Language Processing
(NLP) research.

In the last two decades, probabilistic graphical models (PGMs) have under-
pinned many successful applications in NLP [15,12]. Many popular word em-
beddings methods, such as word2vec [13] and GloVe [16], are based on simple
Bayesian networks, which are PGMs defined over directed acyclic graphs. The

1 http://www.tweetstats.com/
2 https://en.wikipedia.org/wiki/Wikipedia:Statistics
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success of PGMs in NLP stems from their ability to use unlabeled samples effec-
tively for learning complex patterns in the data by allowing to explicitly specify
dependencies among variables. For some more complex PGMs, exact inference is
intractable due to the calculation of high-dimensional integrals. In these cases,
variational inference techniques for approximating conditional distributions have
been proposed and successfully applied to address the computational complexity
issues [8,10].

In computer vision, similar approximations have been used in non-deterministic
neural network models for learning compact image representations in unsuper-
vised settings. These models, called variational autoencoders [8], typically consist
of two networks respectively called encoder and decoder. The role of the encoder
is to obtain a compact representation – an encoding – of an input image through
non-linear transformations. This encoding is combined with some noise, i.e., a
random variable sampled from a Gaussian distribution, and passed onto the
decoder, whose role is to recover the original images through more non-linear
transformations. More recently, a mixture variational autoencoder (MVAE) was
proposed to make better use of the latent representation space [7].

In this paper, we propose a novel framework based on MVAE for text pro-
cessing. Each mixture component models the joint distribution of the latent
variables and the bag-of-words vector that represents a document. This distri-
bution is represented as the graphical model known as the Boltzmann Machine,
popular in NLP for performing well in a number of tasks and for being efficiently
trained with variational learning due to its simple structure [2]. Despite the cur-
rent trends in deep learning, we show that a shallow network can be effectively
used as an encoder.

Our model, named MVAE-BM3, can learn text representations from unla-
beled data without requiring pre-trained word embeddings. MVAE-BM takes
as input the bag-of-word vector representing a document and outputs its latent
representation. We evaluate the representations obtained by MVAE-BM using
six corpora w.r.t. the perplexity metric and accuracy on text classification. In
spite of its simplicity, our results demonstrate that MVAE-BM’s performance is
on par with or superior to that of sophisticated deep learning techniques such
as BERT [4] and RoBERTa [9]. Last, we show that the association between text
and mixture component learned by the model lends itself naturally to document
clustering.

2 Related work

The task of learning patterns in large textual data sets has received significant
interest in the last two decades. Here we discuss the main fronts of research
related to our work.
Probabilistic Graphical Models (PGMs): PGMs provide a declarative lan-
guage for blueprinting prior knowledge and valuable relationships in complex

3 https://github.com/brunoguilherme1/MVAE-BM/
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datasets. They contributed to fundamental advances in NLP, such as Topic Mod-
eling [20] and word embedding [13,16]. A simple, yet effective graphical model
used for language modeling is the Boltzmann Machine. This technique repre-
sents texts as bags-of-words and aims to learn their latent representation [2].
While these models represent documents using vectors of binary latent variables
(since they are based on the Restricted Boltzmann Machine), MVAE-BM em-
ploys dense continuous document representations that are both expressive and
easy to train.
Variational Autoencoder (VAE): VAE is a generative model that can be seen
as an improved version of a standard autoencoder. VAE models are able to learn
meaningful representations from the data in an unsupervised fashion. Variational
inference with the re-parameterization trick was initially proposed in [8] and
thereafter VAE has been widely adopted as a generative model for images [7].
Our MVAE-BM builds its encoder networks based on the VAE strategy [8] for
the estimation of the latent variables present in the Boltzmann Machine and the
Gumbel-Softmax strategy [6] to efficiently estimate the latent indicator variable
of the mixture model.

Recently, several studies have presented efficient ways of combining PGM
and VAE to solve NLP problems, with similar outcomes to MVAE-BM. In [23]
an approach is presented for text modeling with latent information explicitly
modeled as a Dirichlet variable. [12] and [11] introduced a generic variational
inference framework for generative and conditional models of text, as well as
alternative neural approaches for topic modeling. More recently, [15] combined
non-parametric distribution models with VAE for text modeling.

Even though a mixture model using VAE has already shown promising results
[7], MVAE-BM differs from the techniques listed above because it uses two neural
networks to encode its latent variables and, in this way, it provides an estimation
of the Boltzmann Machine as well as its mixture.

3 The MVAE-BM model: Mixture Variational
Autoencoder of Boltzmann Machines

In this section, we present MVAE-BM, an unsupervised model for document rep-
resentation, based on mixture variational autoencoders. We first briefly introduce
how variational autoencoders are used to estimate latent representations.

3.1 Background on variational autoencoders

A variational autoencoder (VAE) is a generative model which combines the
encoder-decoder architecture for unsupervised learning with variational infer-
ence. In a VAE, the latent variables are sampled from a distribution (typically
Gaussian) whose parameters are computed by passing the input through the
encoder. VAE modifies the autoencoder network by replacing the latent vari-
able h of an input x with a learned posterior recognition model pθ(h|x). Let
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X = {x(n)}Nn=1 be a dataset comprised of N i.i.d. samples from a random vari-
able x, and h be an unobserved continuous random variable, assuming that x is
dependent on h. The marginal distribution of x is defined as:

p(x; θ) =

∫
p(h; θ)p(x|h; θ)dh. (1)

In practice, the integral in Eq. (1) is intractable [8]. Hence, VAE uses a recog-
nition model qφ(h|x) to approximate the true posterior pθ(h|x). So, instead of
maximizing the marginal likelihood directly, the objective function becomes the
variation lower bound, a.k.a. the evidence lower bound (ELBO) of the marginal:

L(x; θ, φ) = Eqφ(h|x)[log pθ(x|h)]−KL(qφ(h|x)||pθ(h)),

where qφ(h|x) is the approximation distribution variational for the true posterior
pθ(h|x). In the VAE model, qφ(h|x) is known as the recognition (encoder) model,
and pθ(x|h), the decoder model. Both encoder and decoder models are imple-
mented via neural architectures. As discussed in [8], optimizing the marginal
log-likelihood is essentially equivalent to maximizing L(x; θ, φ), i.e., the ELBO,
which consists of two terms. The first term is the expected reconstruction er-
ror, indicating how well the model can reconstruct data, given a latent variable.
The second term is the KL divergence between the approximate posterior and
the prior, acting as a regularization term that forces the learned posterior to be
as close to the prior as possible. The prior pθ(h) and the variational posterior
qφ(h|x) are frequently chosen from conjugate distribution families, allowing the
KL divergence to be calculated analytically [8,6].

3.2 Proposed Model

MVAE-BM is an unsupervised learning model where two vectors of hidden vari-
ables, h ∈ RH and c ∈ RK , are used for representing documents. Let V be
the vocabulary and x ∈ R|V | be the bag-of-words representation of a docu-
ment. We consider the generative model p(x,h, c) = pπ(c)p(h)pΘ(x|h, c), in
which the latent variable h is generated from a centered multivariate Gaussian
N (0, I), and the latent indicator c is generated from a categorical distribution
Multinomial(π). The latent indicator c = [c1, c2, . . . , cK ] satisfies the conditions

ci ∈ {0, 1},
∑K
i=1 ci = 1. Each x is associated with an unique sample of h,

and is generated from a single component in the mixture model pΘ(x|h, c). The
generative process is given by:

c ∼
K∏
k=1

πckk , (2)

h ∼ N (0, I),

x|h, c ∼
K∏
k=1

pΘ(k)(x|h)ck ,
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where K is the predefined number of components in the mixture, and each com-
ponent pΘ(k)(x|h) is an energy function based on the Boltzmann machine [14]

parameterized by Θ(k). For K = 1, it reduces to a VAE. In a VAE, an encoder
network is used for learning a function qφ(h|x) that compresses documents’
original representation into a low-dimensional continuous space. In a MVAE, an
additional encoder network is needed to learn the function qη(c|x) that clusters
documents into specific groups. We found that using a simple Multi-Layer Per-
ceptron (MLP) with two hidden layers for each of MVAE-BM’s encoders works

well in practice. For the decoder model pΘ(x|h, c) =
∏K
k=1 pΘ(k)(x|h)ck , MVAE-

BM uses a simple softmax decoder to reconstruct the document by independently
generating words given c and h.

To maximize the log-likelihood of a document x, we derive the ELBO of
L(x;Θ,φ,η):

Eqφ(h|x)qη(c|x)

[
K∑
k=1

ck log pΘ(k)(x|h)

]
−KL(qφ(h|x)||p(h))−KL(qη(c|x)||p(c)).

(3)
The conditional probability over words in a document pΘk(x|h) is modeled by

the multinomial logistic regression energy with parameters Θ(k) = (R(k), b(k)):

pΘ(k)(x|h) =
1

Z
exp(−E(x;h,Θ(k))),

E(x;h,Θ(k)) = −h>R(k)x− (b(k))>x,

where Z is the partition function,R(k) ∈ RH×|V | is the semantic word embedding
and b(k) ∈ R|V | is the bias term for the k-th mixture component. Figure 1 depicts
the complete architecture for the recognition and generative models. A vector
x representing a document passes through two neural networks (encoders) in
parallel to obtain the latent representations c and h used by the mixture of
Boltzmann machines.

The posterior approximation qφ(h|x) is conditioned on the current document
x. The inference network qφ(h|x) is modeled as:

qφ(h|x) ∼ N (h|µ(x),diag(σ2(x))),

l = g(fA2
(g(fA1

(x)))),

µ = fA3
(l),

logσ = fA4
(l),

where fAi(.) is the function represented by a linear layer Ai, i = 1, . . . , 4, and
g(.) is an activation function. For each document x, the neural network com-
putes the parameters µ and σ that parameterize the distribution of the latent
variable h. Since the prior p(h) is a standard Gaussian, the KL-Divergence
KL(qφ(h|x)||p(h)) can be computed analytically [8].

For qη(c|x) we use a Gumbel-softmax as a proxy for the true posterior.
The Gumbel-softmax [6,10] is a continuous approximation for sampling from a
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Fig. 1: MVAE-BM encoders qφ(h|x) and qη(c|x) compress document x into la-
tent representations h and c. Each of the K decoders is a Boltzmann machine
that computes pΘ(k)(x|h) through the energy function E(x;h,Θ(k)). The mix-
ture is controlled by the latent indicator vector c.

categorical distribution. More specifically, the recognition qη(c|x) is given by:

qη(ci = 1|x) ∼ exp((log(Bi) + εi)/τ)∑K
j=1 exp((log(Bj) + εj)/τ)

,

log(B) = g(fO2
(g(fO1

(x))),

where εi ∼ Gumbel(0, 1) and fO1
(.) and fO2

(.) represent linear layers. The
approximation is accurate for a discrete distribution when the hyperparameter
τ (known as ‘temperature’) goes to 0 and smooth for τ > 0. Hence, using this
approach, the KL-Divergence KL(qη(c|x)||p(c)) can be easily evaluated [6].

Finally, to compute the expectation term in Eq. (3), we use the “re-parameterization
trick” proposed in [8] (for qφ(h|x)) and in [6] (for qη(c|x)).

4 Experimental results

In this section we describe the datasets used in our experiments, study MVAE-
BM’s hyperparameters and analyze MVAE-BM’s performance on three different
learning tasks: topic modeling, text classification, and document clustering.
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Table 1: Properties of the datasets used in the experiments.

Dataset Training set Test set Vocabulary #Classes

20NewsGroups 11, 314 7, 531 2, 000 20
Reuters (RCV1-v2) 794, 414 10, 000 10, 000 90
Yelp Reviews 100, 000 10, 000 90, 000 5
Yahoo Answers 100, 000 10, 000 20, 000 10
TwitterHate 19, 500 5, 512 15, 334 3
Subjectivity 9, 756 3, 323 5, 563 2

4.1 Datasets and experimental setup

In our experiments, we leverage six corpora previously used in the literature for
analyzing text representation models. Table 1 lists the number of samples in the
training and test sets, vocabulary size and number of classes of each dataset. To
make a direct comparison with the prior work, we reproduce the experiments
in [20] (20NewsGroups and RCV1-v2 datasets) and in [25] (Yelp Reviews and
Yahoo Answers datasets), following the same pre-processing procedures and us-
ing the same training and test sets. Moreover, we compare the performance of
MVAE-BM to the performance values reported in [20,11,5,22,15] and [25,23] for
several baseline models, listed in Tables 2 and 3. For the Subjectivity and Twit-
terHate datasets, on the other hand, we created our own train-test splits, given
that this information was not available from the related work.

Hyperparameter configuration: For each dataset, the MVAE-BM’s hyperparam-
eters were chosen by grid search in the training set. The search was performed
over the values 50, 200, 1,000, 2,000 for the number of neurons in each layer
A1, A2, A3, A4 and O1, respectively. Moreover, the search covered the values
1, 2, 4, 6, 8 for the parameter O2, which determines the number of components
K in the mixture, and values 0.1, 0.5, 1 for τ to obtain approximate categorical
samples [6]. For the activation function g, we experimented with the tanh and
sigmoid functions. The final hyperparameters can be found at.4

All of our experiments were executed on Google Colab5. Unlike more com-
putationally expensive techniques, such as BERT and XLM-RoBERTa, MVAE-
BM can be trained within a few minutes on platforms that provide public virtual
machines. Its implementation, based on neural networks, is also suitable for par-
allelization via GPU/TPU.

4.2 Document modeling

Here we evaluate the likelihood of documents left-out of the training set accord-
ing to the model, using the perplexity metric. Perplexity measures how poorly

4 https://github.com/brunoguilherme1/MVAE-BM/tree/main/hyperparameters
5 https://colab.research.google.com
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Table 2: Document modeling: perplexity values. (The latent dimension is indi-
cated in parenthesis, and results not available in the original papers by dashes)

20NewsGroups RCV1

Model (50) (200) (50) (200)

LDA 1,091 1,058 1,437 1,142
RSM 953 836 988 —
DocNade 836 — 742 —
GSM 787 829 717 602
fDARN 917 — 724 598
NVDLA 1,073 993 791 797
NVDM 836 852 563 550
NTM-R 775 763 — —
NB-NTM 740 — — —
iTM-VAE-Prod — 779 — 508
MVAE-BM 730 740 550 504

a probability model predicts a sample (lower is better), and is widely used with
language models to measure their capacity to represent documents. Perplexity

is defined as exp(− 1
D

∑D
i=1

log p(xi)
|xi| ), where D is the number of documents, and

|xi| is the number of words in the document xi. Following previous approaches,
the variational lower bound (ELBO) is used to estimate p(xi) (which is actually
an upper bound on perplexity[20]). A low perplexity indicates the model is good
at predicting a given corpora.

Table 2 presents the perplexity metric of document modeling in 20News-
Groups and RCV1-v2, for latent variable dimensions 50 and 200 (shown as sep-
arate columns), for MVAE-BM and for 10 baselines: LDA [12], NVLDA [19],
GSB [11], NVDM [12], NB-NTM [22], RSM [20], DocNADE [12], fDARN [20],
SBN [12], NTM-R [5] and iTM-VAE-Prod [15]. These baselines represent a va-
riety of techniques for topic modeling, some based on graphical models (LDA
and RSM) and some based on belief networks and on deep networks (DocNADE,
SBN, fDARN, NVDM).

MVAE-BM achieves the lowest perplexity values among all baselines in both
datasets. Compared to the graphical models, MVAE-BM with a latent variable
of dimension H = 50 in RCV1-v2 performs even better than some baselines
with 200 dimensions, which is likely due to the interaction between c and h,
indicating that using c as an additional latent representation is more effective
than increasing H.

4.3 Classification based on learned representations

We now turn our attention to the task of text classification, using the representa-
tions learned by different models. In this supervised experiment the performance
of MVAE-BM is compared against baselines based on VAE models: CNN-VAE
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Table 3: Document classification: models’ accuracy (%). Baselines’ results were
transcribed from reference papers (dashes denote absent values).

Model Yahoo Answers Yelp Reviews Subjectivity TwitterHate

SCNN-VAE-Semi
CVAE

CVAE BoW
Dirichlet VAE

Dirichlet VAE BoW
BERT

RoBERTa
XLM-RoBERTa

DistilBERT
MVAE-BM

65.0
18.7
58.5
51.5
59.0
67.6
66.6
69.2
70.1
66.5

52.0
29.2
45.5
39.2
46.3
52.5
53.0
52.5
52.3
55.3

—
—
—
—
—

87.7
86.5
76.2
88.2
89.2

—
—
—
—
—

78.2
77.5
74.2
80.3
82.3

[25] and Dirichlet-VAE [24] and on deep learning (Transformer) architectures:
BERT [4], RoBERTa [9], XLM-RoBERTa [1], and DistilBERT [17].

The experiment consists of a document classification task on the test set of
each dataset, performed by classifiers that were trained with the representations
learned by MVAE-BM and the baseline models. We train a logistic regression
classifier for the classification task. Since our main goal is to develop and eval-
uate text representations for classification tasks, we used the classifier standard
implementation6 without any optimizations.

Table 3 displays the classification accuracy obtaine by each baseline and by
MVAE-BM. For Yelp Reviews and Yahoo Answers, we transcribed the results of
VAE and deep learning baselines from the original papers. For Subjectivity and
Twitter, only the results for Transformers were found.

In Yelp Reviews, MVAE-BM has the highest accuracy. In Yahoo Answers,
although the Transformer models and, in particular, DistilBERT, perform best,
MVAE-BM outperforms the VAE baselines and its accuracy is on par with
RoBERTa’s. In Subjectivity and TwitterHate datasets, MVAE-BM achieves the
highest accuracy among all the baselines, even though the deep learning models
require significantly more computation power.

4.4 Document clustering

In this section we evaluate how MVAE-BM performs at document clustering
tasks. In general, automatic labeling can be done by applying any unsupervised
method (e.g., K-means7) to the embeddings obtained for the documents. MVAE-
BM, however, already includes a labeling of the data by means of the latent
indicator vector c = [c1, c2, . . . , cK ], defined in Eq. (2). Since c is approximately
a one-hot vector, it can be interpreted as a clustering of the input into K groups.

6 www.sklearn.com
7 https://github.com/UKPLab/sentence-transformers#clustering
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We aim to compare the quality of the clusters defined by MVAE-BM against
those found by applying K-means to the text representations obtained using
Transformer models.

Table 4 exhibits the results measured w.r.t. the Silhouette [18], the Calinski-
Harabasz [21] and the Davies-Bouldin [3] clustering quality measures. We set
MVAE-BM’s and the baselines’s hidden dimension h to 1024 and the number
of clusters K in MVAE-BM and in K-means to the number of classes of each
dataset (Table 1). The proposed model achieves the highest quality scores in
almost all of the combinations (dataset, measure). In particular, in some cases
(Yahoo Answers,Yelp Reviews and TwitterHate), the Silhouette score for MVAE-
BM is one or two orders of magnitude higher than the baselines’.

Table 4: Clustering Score: SI (Silhouette), DB (Davies-Bouldin) and CA
(Calinski-Harabasz). K-means used to cluster BERT variants’ embeddings.

TwitterHate Subjectivity 20News Yahoo Answers Yelp Reviews

SI DB CA SI DB CA SI DB CA SI DB CA SI DB CA

BERT 0.03 3.23 378 0.005 5.4 110 0.11 6.3 623 0.01 10.34 654 0.05 11.69 781
DistilBERT 0.02 3.45 367 0.06 4.8 113 0.012 6.1 589 0.02 10.89 689 0.02 11.98 769
RoBERTa 0.01 3.43 378 0.05 5.2 112 0.01 6.5 650 0.04 10.45 623 0.018 11.67 720
XLM-RoBERTa 0.06 3.89 389 0.01 5.4 114 0.10 6.3 677 0.07 10.33 656 0.07 11.34 754
MVAE-BM 0.23 3.12 372 0.15 4.1 98 0.23 6.0 687 0.33 10.01 698 0.46 11.23 712

5 Conclusion

In this work, we presented MVAE-BM, a mixture of unsupervised latent models
for language modeling. MVAE-BM is inspired by the Boltzmann machine and
uses modern neural inference techniques to estimate the intractable latent dis-
tributions that appear in the model. In our experiments, we compared to more
than 15 different baselines. In these tasks , our model outperformed all baselines
in 5 of the 6 datasets used in this work. Apart from the performance gains, our
model also has the advantage of learning text representations from unlabeled
data without requiring pre-trained word embeddings. Those text representa-
tions can be applied with success in various learning tasks, including clustering.
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