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Abstract. High-fidelity Graphical User Interface (GUI) prototyping rep-
resents a suitable approach for allowing to clarify and refine requirements
elicitated from customers. In particular, GUI prototypes can facilitate to
mitigate and reduce misunderstandings between customers and develop-
ers, which may occur due to the ambiguity and vagueness of informal
Natural Language (NL). However, employing high-fidelity GUI proto-
types is more time-consuming and expensive compared to other simpler
GUI prototyping methods. In this work, we propose a system that auto-
matically processes Natural Language Requirements (NLR) and retrieves
fitting GUI prototypes from a semi-automatically created large-scale GUI
repository for mobile applications. We extract several text segments from
the GUI hierarchy data to obtain textual representations for the GUIs.
To achieve ad-hoc GUI retrieval from NLR, we adopt multiple Informa-
tion Retrieval (IR) approaches and Automatic Query Expansion (AQE)
techniques. We provide an extensive and systematic evaluation of the
applied IR and AQE approaches for their effectiveness in terms of GUI
retrieval relevance on a manually annotated dataset of NLR in the form
of search queries and User Stories (US). We found that our GUI retrieval
performs well in the conducted experiments and discuss the results.

Keywords: Automatic Prototyping of Graphical User Interfaces (GUISs),
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1 Introduction

Effective requirements elicitation techniques play a vital role in early develop-
ment stages [18], in order to mitigate or eliminate misunderstandings of re-
quirements between customers and developers, which might occur due to the
ambiguity and vagueness inevitably encompassed in Natural Language (NL)
communication [4]. GUI prototyping poses a meaningful technique to visualize
the developers’ understanding of the requirements and enable their verification
by the customer as a tangible artifact. Moreover, GUI prototypes can provide
the foundation for incorporating the customer early into the application devel-
opment and lead to productive discussions and clarification of requirements [16].
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In this work, we propose an ad-hoc GUI retrieval approach that is based on a
semi-automatically created large-scale GUI repository for mobile apps. Kolthoff
et al. [12] showed how such a GUI retrieval system can be useful to support rapid
prototyping and it could be used as part of a virtual prototyping assistant [11].

2 Approach: GUI2R

The main goal of our GUIZR approach is to retrieve matching GUI prototypes
for a NL query provided by a user. In order to achieve that, we employ Nat-
ural Language Processing (NLP) and Information Retrieval (IR) techniques to
compute a ranking over a large-scale GUI prototype repository for the given
NL query. In addition, we experiment with various Automatic Query Expan-
sion (AQE) techniques to tackle the vocabulary mismatch problem [13]. In our
approach, we employ a GUI repository of mobile applications (Android). Fig. 1
shows an overview of the system architecture of GUI2ZR, which in general follows
the extended Boolean model [13]. First, a user specifies a NLR in the form of
a search query or in the structured form of a US. The input is processed (A)
by a NLR parser that detects US and extracts only specific parts for further
processing. Subsequently, a pipeline of text preprocessing techniques is applied
on the NL input. As a foundation for the GUI repository, we employ (B) the
large-scale mobile app GUI dataset Rico [7]. This dataset consists of Android
apps crawled from Google Play. To make the GUI prototypes searchable for NL
input, we extract particular text segments from the corresponding GUT hierarchy
data and represent the GUI prototypes as text documents. Afterwards, (C) an
inverted index is computed from the GUI text documents and applied to match
GUI documents that contain at least a single query term. The matched GUI
documents are then scored by a retrieval model and the top-ranked documents
are used for AQE to compute (D) the final ranking of the GUI prototypes. In
the following, we describe the individual components of GUI2R in more detail.

2.1 NLR Parsing and Preprocessing

We employ several text preprocessing methods on the NL input. First, we lower-
case the NL input and apply tokenization. Tokens are then excluded by several
filters: We remove basic English stopwords, words comprising numeric or non-
ASCII characters and out-of-vocabulary words based on a dictionary derived
from the textual representation of the GUIs. We initially apply our US parser
that is based on pattern matching to detect US and extract the user-role, user-
task and user-goal from the US template (based on the Connextra format). From
the parsed US, we only use the user-task description as NL input to our GUI
retrieval system, but apply previously discussed preprocessing steps beforehand.

2.2 GUI Repository and Preprocessing

Recent research on data-driven design published several GUI datasets suitable
for our retrieval system such as ReDraw [14], ERICA [8] and Rico [7]. All of
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Fig. 1: Overview of GUI2R with (A) NLR parsing of US and text preprocessing,
(B) GUI repository and its preprocessing, (C) Matching of NLR and GUIs with
index and GUI scoring with multiple retrieval models and (D) final GUT ranking

these GUI datasets are gathered from mobile applications crawled from the app
store Google Play. We decided to use Rico and the reasons for employing Rico as
our GUI repository are manifold: (i) the large scale, making a retrieval system
particularly valuable, (i) the wide spectrum and diversity of mined applications
available for retrieval, covering potentially many reusable GUIs and (iii) the
provided rich textual information, including component identifiers and semanti-
cally tagged GUI components. Rico mines GUI screenshots, GUI hierarchy data,
application meta data and interaction traces with both human-based and auto-
matic exploration techniques and constitutes the largest design dataset of the
discussed ones with 72,219 GUTIs collected from 9,772 unique Android apps.

Since Rico crawls applications and extracts GUIs partly in an automatic
fashion, incorporating noisy GUIs in the dataset is inevitable. First, (1) we filter
all GUIs that belong to applications of the entertainment category, since we are
not interested in game GUIs. Second, (2) we remove GUIs covered with adver-
tisement overlay screens by checking for particular patterns of the component
labels in the semantically tagged GUI document. Third, (3) we apply language
detection on the extracted text segments in order to remove non-English GUIs
from the repository. To achieve that, we employ a language detection framework
that computes language probabilities by accumulating character-level n-gram
spelling feature probabilities [17].

To enable NL-based search queries on the mobile app GUI repository, we
first require to represent the GUIs as text documents. From the GUI hierarchy
data provided in Rico, we extract several text segments through XPath expres-
sions. We extract text from all components that are explicitly marked as text
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or text-hint and displayed to the user. In addition, we extract the full activity
name of the GUI and the resource identifier of each individual GUI component.
Developers often provide semantically rich descriptive names for their activities
and GUI component identifiers, thus we consider them as a valuable resource
for retrieval. To make these special strings such as ”com.sample.sens.register.-
CreateNewAccountActivity” searchable, we apply a pipeline of various tokenizers.
First, we apply punctuation, basic camel case and snake case tokenization. On
top, we use a custom probabilistic tokenizer based on English Wikipedia unigram
frequencies to split remaining concatenated words. On the resulting tokens, we
apply a specially created stopword list to remove non-descriptive general terms
(e.g. "com”, "main” and "activity”). From the semantically tagged GUI repre-
sentation, we extract the textual descriptions of the detected icons (for example
“add” and ”search”) since they often provide descriptive terms that may simi-
larly be used in NL queries. The text segments are preprocessed identically to the
query and represent the GUI as a text document as the basis for GUI retrieval.

2.3 Information Retrieval Models

To retrieve matching GUIs from NL queries from our GUI repository, we adopt
retrieval methods that have a long history in IR research [13]. In particular, we
employ TF-IDF, BM25 and BM25L [15]. These models provide a strong base-
line to many other specific IR tasks and have shown their effectiveness in other
domains before. In addition, we evaluate a more recent method that exploits
TF-IDF weighted pre-trained dense word embeddings (based on 300-dimensional
word2vec embeddings) for similarity scoring (IWCS) [9]. Another way to enhance
the retrieval performance of IR systems is the introduction of AQE techniques
to tackle the vocabulary mismatch problem through Pseudo-Relevance Feedback
(PRF) [13]. Many expansion candidate scoring methods based on PRF have been
proposed [1]. These methods follow a similar underlying notion. First, a rank-
ing over the terms contained in the relevant documents Dg (top-k documents
initially retrieved by a base model) is computed. Here, terms that are special
for the relevant documents Dg and distinguish them from the rest of the docu-
ment collection D¢ should receive a higher ranking score. This can be achieved
through comparing the term distributions between the Dr and D¢ documents.
The initial user query is then expanded with the top-n words from the ranked
candidate terms. For our retrieval system, we compute the Kullback-Leibler Di-
vergence (KLD) score [5] for each term ¢ € Dp, as

_ o PHDR)
Scorexrp(t) = p(t|Dr) - log o({De)

with p(t|Dg) and p(t|D¢) being the probability of term ¢ occurring in D and
D¢, respectively. The probabilities are computed as the Maximum Likelihood

Estimates i.e. p(t|Dx) = \JB;| . We decided to apply and evaluate the KLLD score

in our experiments since it showed its effectiveness compared to other scoring
methods before [5]. We also evaluated two other variants that include the KLD
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Table 1: Evaluation dataset overview and examples for the three different NLR

# |INLR Type|Size| Examples

(1) "daily log” (2) ”watch video” (3) "image blog with

. search” (4) ”export data” (5) ”select clothing size between
(1)| KB Queries | 30 |5 and x1” (6) ”select my age” (7) ”image grid” (8) "new
price old price product” (9) ”show training statistics”

(1) 7As a user I want to see the product price, product
image and product description” (2) ”As a user I want to
(2)| US (int.) | 20 |choose my favorite language” (8) ”As a user I want to see
the number of votes of a post (4) ”As a user I want to
create a new account”

(1) 7As an OlderPerson, I want to maintain my contact
list in my phone.” (2) ”As a user, I want to be able to
search any dataset published and publicly accessible by
(3)] US (ext.) 10 |their title and metadata, So that I can find the datasets
I'm interested in.” (3) ”As a User I want to set my own
username, So that my data is more easily discoverable.”

score as a weight for the expanded terms in the retrieval model to control their
influence and by computing expansion terms for each text segment separately.

3 Experimental Evaluation

In order to evaluate the proposed approach, we investigate two research questions
that relate to the retrieval performance of the discussed IR and AQE models.
In the following, we describe our evaluation dataset, the annotation schema,
the employed evaluation metrics and discuss the obtained evaluation results. In
particular, we investigate the following research questions:

— RQ;: Are traditional Information Retrieval (TF-IDF, Okapi BM25, BM25L)
and more modern scoring functions (IWCS) suitable for GUI prototype re-
trieval from Natural Language Requirements (NLR)? Which method per-
forms best for GUI retrieval from NLR?

— RQ2: Can pseudo-relevance feedback methods based on the Kullback-Leibler
divergence score improve the retrieval performance using Okapi BM25 as a
base model? Which AQE method performs best for GUI retrieval from NLR?

3.1 Experimental Setup

In order to evaluate the proposed research questions, we created a requirement
collection consisting of 60 Natural Language Requirements (NLR)), since there is
no evaluation dataset available for evaluating the GUI retrieval systems perfor-
mance. This dataset provides the foundation for our evaluation and is separated
into three sub-datasets: (1) Keyword-based search queries that represent the
typical format for conducting searches with 30 examples, (2) User Stories (US)
(internal) that we created to investigate different US types and their application
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in our GUI retrieval approach with 20 examples and (3) User Stories (US) (ex-
ternal) that we gathered from an external resource with 10 examples [6]. Table
1 shows an overview of the evaluation dataset and provides concrete examples
for all three sub-datasets. For the keyword-based search queries sub-dataset (1),
we attempted to include many diverse topics from rather broad queries such as
(1.1) requiring daily log functionality and (1.2) requiring functionality to watch
a video to more specific queries such as (1.5) requiring a particular clothing size
selection range. For the internal User Story sub-dataset (2), we included US that
represent typically reusable requirements and occur among many applications
such as (2.2) requesting functionality to choose the favorite language or (2.4)
requiring functionality to create a new account, but also US that are more spe-
cific to a particular domain and difficult such as (2.1) containing many details.
For the external User Story sub-dataset (3), we employed a publicly available
US requirement dataset [6] and gathered 10 US that are related to GUIs from
two applications (openspending and alfred). These requirements are generally
more specific and custom to their particular application such as example (3.2)
requiring a dataset search functionality with very specific search parameters. To
evaluate the retrieval performance in terms of relevancy of the returned GUI pro-
totypes and since there is no goldstandard available for this particular problem,
we annotated the retrieval results manually. We annotated the top-k retrieved
GUI prototypes for all requirements from our evaluation dataset. In our experi-
ments in particular, we retrieved and annotated the top-15 GUI prototypes for
each requirement and method (k = 15). For a particular evaluation require-
ment, we annotated each retrieved GUI prototype on a relevancy scale of 0 (not
relevant), 1 (related), 2 (relevant) through a web-based evaluation application.
Finally, we computed the following standard IR metrics: Precision (P@Qk), Aver-
age Precision (AP) and Normalized Discounted Cumulative Gain (NDCGQk).

3.2 Results and Discussion

The evaluation results for our different experiments are shown in Table 2. For
our first experiment (RQ;), we observe that BM25 outperforms all other evalu-
ated IR models by a large margin for datasets (1) and (2), and only for dataset
(3) TF-IDF outperforms all other models. IWCS can outperform TF-IDF on
the search query dataset (1) but performs worse on both US datasets (2) and
(3). During the annotation of the results, we observed some typical retrieval er-
rors. GUI prototypes with an opened menu overlapping most of the screen were
often ranked among the top-15 results since the underlying GUI contained rele-
vant text that was not marked as non-visible. We also observed GUIs that were
represented properly as textual documents, however, have erroneous GUI screen-
shots due to GUI capturing errors. Often, semantic retrieval errors occurred, for
example, login screens which are retrieved for requirement (1.1) ”daily log”.
For our second experiment (RQz), we observe that BM25-PRF (w) and
BM25-PRF (cw) outperform the BM25 model for most of the cases, however,
often only on small margins. During the annotation, we observed that the base
model performance could be improved especially for requirements that are less
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Table 2: Evaluation results overview of the different experiments

(1) Search queries (2) User Stories (int.) | (3) User Stories (ext.)

PQl PQ5 PQ15 AP NQ15|/PQl PQ5 PQl5 AP N@15/PQl PQ5 PQl5 AP NQI15
TF-IDF 467 .427 344 .496 .763 |.500 .430 .407 .530 .777 |.200.240 .193 .376 .532
BM25 .767 .633 .513 .710 .902 |.600 .580 .503 .676 .839 |.000 .180 .167 .207 .493
BM25L .333 .320 .256 .417 .714 |.400 .310 .300 .398 .752 |.100 .140 .153 .196 .412
IWCS .600 .507 .427 .608 .825 |.500 .400 .383 .518 .747 |.100 .140 .087 .179 .336
BM25 .767 .633 .513 .710 .902 |.600 .580 .503 .676 .839 |.000 .180 .167 .207 .493
+PRF .667 .647 .509 .687 .901 |.650 .510 .460 .571 .837 |.400 .180 .147 .331 .494
+PRF(c) .633 .647 .484 .670 .887 |.500 .550 .487 .601 .829 |.300 .200 .160 .315 .541
+PRF(w) .733 .673 .527 .718 .905 |.650 .550 .543 .637 .823 |.200 .220 .160 .257 .495
+PRF(cw) .600 .673 .493 .672 .892 |.650 .590 .550 .656 .831 |.300 .200 .180 .264 .520

ambiguous and where it is in general easier to find matching GUIs for. For exam-
ple, for requirements such as ”login” or requirement (2.4) requesting functional-
ity for creating a new account, the AQE method could filter out some incorrect
GUIs by extracting relevant expansion terms from the top-ranked results.

4 Related Work

Guigle [3] automatically crawls and extracts GUI screenshots and GUI hierar-
chy data from Android apps harvested from Google Play [14]. Their approach
indexes multiple parts of the hierarchy such as the app name, screen color, GUI
component text and type and employs a basic Boolean query language to quickly
retrieve relevant GUIs. However, our GUI retrieval system GUIZR particularly
focuses on customer-friendly NLR input, proposes are more sophisticated re-
trieval architecture including IR methods based on word embeddings and AQE
techniques and provides an in-depth evaluation of these methods. In contrast,
Swire [10] and G UIFetch [2] enable mobile app GUI retrieval not through simple
NL input, however, using basic Android apps or hand-drawn sketches. In partic-
ular, Swire employs a neural network-based joint embedding space between the
GUI screenshots and the hand-drawn sketches for retrieval, whereas GUIFetch
computes similarities between GUIs to rank applications based on an app sketch.

5 Conclusion

In this work, we presented a GUI retrieval system for Android applications that
ranks GUIs from a semi-automatically created large-scale GUI repository based
on NLR to facilitate GUI prototyping with customers. Our experimental results
showed that standard IR models can be employed to effectively retrieve GUIs
from NLR formulated as search queries or US. We also showed that AQE tech-
niques could slightly improve the retrieval effectiveness of the BM25 base model.

Acknowledgements. This work is supported by the German Federal Ministry
of Education and Research (BMBF).
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