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Abstract. Recent research fields tackle high-level machine learning tasks
which often deal with multiplex datasets. Image-text multimodal learn-
ing is one of the comparatively challenging domains in Natural Language
Processing. In this paper, we suggest a novel method for fusing and
training the image-text multimodal feature. The proposed architecture
follows a multi-step training scheme to train a neural network for image-
text multimodal classification. In the training process, different groups of
weights in the network are updated hierarchically in order to reflect the
importance of each single modality as well as their mutual relationship.
The effectiveness of Cross-Active Connection in image-text multimodal
NLP tasks was verified through extensive experiments on the task of
multimodal hashtag prediction and image-text feature fusion.

Keywords: Multi-modal Learning · Feature Fusion · Natural Language
Processing.

1 Introduction

The development of high-performance language models has brought remarkable
advance in machine learning based language tasks. As recently emerged methods
[5] [14] are able to represent the complex semantic properties of words regardless
of tasks, comprehension abilities of word-wise encoders have been strengthened
enough to tackle challenging NLP tasks. Nevertheless, high-level tasks involv-
ing both natural language understanding and text generation such as dialogue
and question answering face another drawback. In real life communication be-
tween human beings, semantic representation of text is also dependent of visual
information as they affect the context of words used in an utterance. Current
trends of research reflect efforts to contemplate this multimodal dependency of
humanlike communication tasks. A variety of models were developed to solve
the challenge of Visual Question Answering [1], along with attempts to fuse im-
age and text features for multimodal classification tasks[15] [6]. However, many
of the high-performance models are implemented with the ensemble of multiple
networks dealing with different modalities. This shows that multimodal feature
fusion is a field of research that still needs advancement.
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Our research focuses on building a training scheme that can effectively fuse
image and text features. Researchers of this field are already informed that
baseline methods for image-text feature fusion involve concatenating the image
and text representations separately extracted from two neural networks. But
concatenation is not enough to achieve rich representation that reflects the mu-
tual relationship between text and image information. We designed a two-phase
training scheme to subdue the limitations of end-to-end models that use con-
catenated multimodal feature as the input. The complete architecture of the
proposed model in this paper integrates two single feature extracting models
with a multi-label classifier. The training scheme of the neural network multi-
label classifier breaks itself down to be equivalent to training the ensemble of
four individual networks; two individual single-modal networks and a set of two
complementary multimodal networks.

The evaluation of our model was conducted with the task of image-text hashtag
prediction. Researchers are now aware that single-modal hashtag prediction is a
limited area of research as the majority of online SNS platforms deal with both
image and text. It is challenging to achieve solid performance in multimodal
hashtag prediction, as hashtags do not directly represent the objects in the im-
age or written captions. To be considered as a successful approach, a multimodal
predictor must not only perform better than single-modal predictors, but also
be capable of handling cases when one of the two modalities does not relate to
the ground truth. The results of our experiments show that the implementation
of cross-active connection within the neural network is effective for building a
multi-label classification model with multimodal inputs.

The main contributions of our research are summarized below:

– We present Cross-Active ConNet (CACNet), a novel network design for
image-text multimodal classifier.

– Training process of CACNet involves fusing the features of two modalities
within the hidden layer. As a result, the weights of the hidden layers become
effective image-text feature extractor.

– The multi-level training scheme that we propose is effective for multimodal
feature fusion, but too complex to implement without Batch Gradient De-
scent. We simplified the implementation by grouping the weight matrices
into sub-sections and utilizing a virtual sigmoid output. As a result, the
multi-step training scheme is reduced into the problem of training four
sub-networks that add up to build CACNet, and we can apply Mini-Batch
Stochastic Gradient Descent.

– Cross-Active weights are updated when the two modalities share similar
latent features. This selective updating algorithm helps the network to build
a complementary relationship between two modalities, making the classifer
less vulnerable to cases in which one of the two inputs do not relate to the
label.



Cross-Active Connection for Image-Text Multimodal Feature Fusion 3

– Experiments conducted in our paper show that CACNet is an effective ap-
proach for image-text multimodal classification and image-text feature fu-
sion.

2 Related Work

Multimodal Feature Fusion Several recently published works deal with multi-
modal feature fusion. Multi-modal gender prediction model[15] was implemented
with Gated Multimodal Units[2]. Another recent approach [6] exploits the well-
known CNN sentence classification model [9] to fuse image and text features.
They have shown that the fused feature performs better than baseline models
of image and text single-modal classification.

Image based Hashtag Prediction HARRISON[12] is a benchmark dataset
for image based hashtag prediction, which is provided along with prediction
experiment results using a baseline method. The authors suggest three models
for evaluation, which use features extracted from VGG-Object, VGG-Scene and
both of them respectively. The evaluation results of these baseline models are
included in the result section of this paper for comparison of our model against
single-modal classifiers.

Multimodal Hashtag Prediction Not many published works tackle multi-
modal hashtag prediction. However, several online authors propose models that
can handle the task. Previous work on public online repository introduces a hi-
erarchical ensemble model of CNN [8] and word feature extractor [11] [13] for
image-text hashtag prediction. They have also conducted an ablation study on
the importance of hashtag segmentation in terms of text pre-processing. We
constructed our own dataset to conduct the experiments of our research, adapt-
ing parts of the pre-processing methods described in their works. A multimodal
hashtag predictor implemented by concatenating text feature extracted from [10]
and visual feature from [16] won second place on OpenResource Hackathon 2019.

3 Methods

The Overall Architecture
The complete architecture for multi-label hashtag prediction is shown in Figure
1. The model integrates two feature extractors and a multi-label classifier. The
extracted features of two modalities serve as the inputs of the multi-label clas-
sifier CACNet.

Feature Extraction
We use VGG16 model pre-trained on the 1.2 million ImageNet dataset [7] as our
image feature extractor. The 1x4096 vector output is reduced into the dimension
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Fig. 1. The overall architecture of the multi-label classifier proposed in this paper.

of 300, which is directly used as the image feature input of the multi-label classi-
fier. Word2Vec model pretrained on Google News corpus of over 3 million words
was used as the text feature extractor. Although there exist various methods
to form representations of sentence-level texts using Recurrent Neural Network
based encoding methods, previous work[3] have proven that the weighted av-
erage of word embedding can strongly represent sentences. Particularly in the
task of hashtag prediction, the importance of word sequence in the captions are
reduced compared to other types of tasks such as reading comprehension. Thus
our model takes the weighted average of the word vectors to represent the cap-
tion of an Instagram post as the text feature input instead of taking RNN based
approaches.

Cross-Active Connection Network
The proposed network design of our research, CACNet serves as the multi-label
classifier. It consists of two fully connected hidden layers of 600 dimension each
and a sigmoid output for 300 categories of hashtags that our training dataset
contains. The architecture of CACNet seems similar to a general Multi Layer
Perceptron model with two hidden layers and the concatenated vector input
of image and text features. The training algorithm of CACNet to be described
later differentiates our classifier from general MLP for single-modal classification
tasks. Using sigmoid function as the activation allows our classifer to perform
multi-label classification.

In a Mini-Batch Stochastic Gradient Descent training scenario, CACNet updates
the weights with a two-phase hierarchy. The idea of this training algorithm is
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Fig. 2. Two different ways to visualize one equivalent CACNet multi-label classifier.
Change of neuron alignments in the hidden layer help visualize how the weight param-
eters of CACNet are grouped into different sub-sections.

to maintain the relationship between the output and each single-modality while
also reflecting the complementary relationship each modality shares per single
iteration. The concept is similar to adaptive dropout [4] in the sense that selec-
tive parts of the neurons are deactivated in each training phase according to a
control variable. Figure 2 illustrates the structure of CACNet. Each layer is no-
tated as a concatenation of two subsections of the neural network for convenience
in mathematical formulation, and the weights that connect each subsection are
grouped by the notation. The network on the right side of Figure 2 is equivalent
to the one on the left, where a slight change of arrangements of weights has
been made. All layers are fully connected and the weights are grouped into 10
subsections as labeled in the figures.

The first phase of training involves minimizing the cross entropy cost function
for the passive subsections when the cross-active connections are deactivated.
We cannot directly derive the loss function from the sigmoid output y when
Cross-Active subsections are deactivated, as it is connected to both of the out-
put subsections. We introduce the concept of creating a virtual sigmoid output
which is only of temporary use for deriving the cross entropy independent of
the other output subsection. Solving to minimize the error between the ground
truth output and the virtual sigmoid output lets each output subsection lose
dependency to the other, thus we can derive the following chain rule of partial
derivatives to update passive subsections related to the image feature, where t
is ground truth output.

y′ = σ(g′ · w(g′, y)) (1)

E′ = −y′logt− (1 − y′)log(1 − t) (2)

∂E′

∂w(g′, y)
=
∂E′

∂y′
· ∂y′

∂g′ · w(g′, y)
· ∂g

′ · w(g′, y)

∂w(g′, y)
(3)
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∂E′

∂w(h′, g′)
=
∂E′

∂g′
· ∂g′

∂h′ · w(h′, g′)
· ∂h

′ · w(h′, g′)

∂w(h′, g′)
(4)

∂E′

∂w(x′, h′)
=
∂E′

∂h′
· ∂h′

∂x′ · w(x′, h′)
· ∂x

′ · w(x′, h′)

∂w(x′, h′)
(5)

Notations were written as matrix multiplication for convenience. The gradients
in the chain rule can all be calculated since E’ is independent of the weights of the
text feature related subsections and the cross-active weights. The same procedure
can be processed through the text feature subsection of CACNet vice versa, by
creating another virtual output y”. Notice that we maintain the notation of
the weight matrix w(g’,y) to emphasize that the connection between the output
subsection and y’ is temporary. The procedure of the first phase of training is
then equivalent to updating the weights of two Passive sub-networks that work
as independent single-modal classifiers, illustrated in Figure 3.

Fig. 3. The first phase of training is equivalent to training a pair of passive sub-networks
to minimize the error between target output and virtual sigmoid output, when given
each single-modal feature. Case 2 of the second phase is equivalent to training the
Cross-Active Sub-net shown in the figure and the counterpart of it.

The second phase of training is divided into two cases controlled by the activation
control variable γ,

α =
1

N

N∑
i=1

E′i + E′′i
2(−yilogti − (1 − yi)log(1 − ti))

(6)
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β = α/1 + α (7)

The activation parameter β shows how effective the whole network performs
compared to the single-modal subsections. Low value of β also implies cases in
which one of the two modalities do not reflect the training batch well. We define
a control variable γ that ranges between 0 and 1 as a threshold that divides the
high level training into two cases:

– Case 1 If β < γ, update the whole network in an end-to-end manner with-
out grouping the weights layer to minimize the cross-entropy loss of y. As
described earlier, low value of β implies that the two modalities do not relate
well, and it is better not to isolate the Passive subsections.

– Case 2 If β ≥ γ, activate the Cross-Active connection weights and deactivate
passive subsections. Minimize the cross entropy cost function of a virtual
sigmoid output by updating the cross-active weights.

In Case 2, where Cross-Active subsections are activated, the partial derivatives
for calculating the gradients differ from the first phase training as follows.

y′ = σ(g′ · w(g′, y)) (8)

∂E′

∂w(g′, y)
=
∂E′

∂y′
· ∂y′

∂g′ · w(g′, y)
· ∂g

′ · w(g′, y)

∂w(g′, y)
(9)

∂E′

∂w(h′′, g′)
=
∂E′

∂g′
· ∂g′

∂g′ · w(h′′, g′)
· ∂g

′ · w(h′′, g′)

∂w(h′′, g′)
(10)

∂E′

∂w(x′, h′′)
=
∂E′

∂h′′
· ∂h′′

∂h′′ · w(x′, h′′)
· ∂h

′′ · w(x′, h′′)

∂w(x′, h′′)
(11)

Vice-versa can be done for the text-feature input involving counterpart subsec-
tion w(x”,h’) — w(h’,g”) — w(g”,y) The loss function is independent to the
deactivated weights when we minimize error between virtual output and the
target output, so gradients involved in the partial derivatives are all easy to
calculate. Notice that in the second phase, we are training the weights of the
hidden layers connecting to the other modality, which we named Cross-Active
subsections. This process is equivalent to training another complementary pair
of sub-networks of structure labeled as Cross-Active Sub-net in Figure 3.

When β ≥ γ, the complexity of weight updates involving activating and deacti-
vating parts of the network makes the procedure difficult to implement, especially
for Mini-Batch Stochastic Gradient Descent scenarios. By utilizing virtual sig-
moid outputs and grouping the weight matrix into subsections, we simplified the
two-level training process into an equivalent problem of updating weights for 4
sub-networks given the same input and target output. After an iteration of Case
2 in second phase training, the 4 sub-networks jointly form CACNet.
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4 Experiments

Our model was implemented with PyTorch 1.6.0, under a multi-GPU environ-
ment with 4 NVIDIA Titan Xp GPUs installed and CUDA Toolkit 10.2. The
training procedure was conducted by Mini-Batch Stochastic Gradient Descent
of batch size 20. Our complete dataset consists of 30k pairs of image-text mul-
timodal inputs and text output. The CACNet classifier was trained over 500
epochs on the training dataset. The activation control variable γ described in
the Methods section was set to 0.4 at the start of the training, and linearly in-
creased up to 0.8 in the last 100 epochs. Dataset
There are some benchmark datasets for image-based hashtag prediction[12] [17],
but there are no public dataset available for use in image-text multimodal hash-
tag prediction. For training and evaluation of our classifier, we constructed our
own datasets. The process was conducted by scraping Instagram posts using
Selenium over top 300 popular hashtags, as last updated on 2020-08-20. Non-
english segments of the post including emoticons and special characters were
removed, and the characters were converted into lower case.There has been a
study about hashtag segmentation using the Viterbi algorithm to overcome the
complexity caused by hashtags in Instagram posts combining multiple words
into a single tag. Our multi-label classifier does not involve the ensemble of word
embeddings in the prediction stage, so the pre-processing method was unnec-
essary. The ground truth outputs of our dataset consists of up to 10 hashtags
used in a post. The details of the training and evaluation datasets are explicitly
shown in Table 1 and Figure 4.

CACTrain CACEval

# of posts 25,017 5,000
average # of words per caption 12.82 13.1
average # of Hashtags per post 8.71 9.11
Hashtag categories 300 300
average # of <unk> per caption 2.51 2.27

Table 1. Details of the dataset used in our research. Train and Evaluation sets were
both collected with Selenium web crawler.

We conducted experiments to evaluate our model against baseline methods in
two tasks, Image-Text Feature Fusion and Image-Text Multimodal HashTag Pre-
diction.
Feature Fusion The weight parameters of the trained CACNet can be extracted
to serve the task of image-text feature fusion. We evaluated the feature fusion
performance of CACNet against baseline methods published with UPMC Food-
101, a large multimodal dataset that contains over 100k food recipes classified
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Fig. 4. The number of posts containing 40 mostly appearing hashtags in our training
dataset. Single post is labeled with up to 10 multiple hashtags

.

in 101 categories.

Hashtag Prediction Despite the efforts of researchers on image-text multi-
modal tasks, there are no available published work that we can evaluate per-
formance of CACNet on multimodal HashTag prediction against. To prove the
validity of our multimodal classifier, we evaluated our model under the metrics
of [12], as they provide a benchmark dataset for image-based Hashtag prediction
and a baseline model. For generic evaluation, we also trained and evaluated their
baseline model with our independent dataset.

5 Results

Feature Fusion Performance in image-text feature fusion task was evaluated
using the UPMC Food-101 dataset. As the authors describe, higher scores with
text-only baseline method result from the bias introduced by their data crawl-
ing protocol. Evaluation was performed by comparing our results against their
baseline models[18]. Our classifier CACNet achieved higher performance in clas-
sification than the baseline models. The results are shown in Table 2.

Prediction examples shown in Figure 5 show successful prediction examples
in challenging cases, all of which single-modal baseline classifiers fail to predict
accurately. CACNet successfully predicts hashtags in cases even when the input
image does not relate to the ground truth hashtags, or when the words in the in-
put caption are useless. HashTag Prediction We used Precision@K, Recall@K,
Accuracy@K as the evaluation measures for quantitative comparison against the
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Methods Avg.Precision

Very Deep (Vision only) 40.21%
TF-IDF (Text only) 82.06%
TF-IDF + Very Deep (Fusion) 85.10%
VGG16-Word2Vec300-CACNet(Fusion) 87.63%

Table 2. Evaluation on the UPMC Food-101 dataset.

Methods@Dataset Precision@1 Recall@5 Accuracy@5

VGG-Object@HARRISON 28.30% 20.83% 50.70%
VGG-Scene@HARRISON 25.34% 18.66% 46.30%
VGG-Object + VGG-Scene@HARRISON 30.16% 21.38% 52.52%
VGG16-Word2Vec300-CACNet@CACEval 59.7% 42.72% 71.13%

Table 3. Comparison of performance for hashtag prediction against image baseline
models trained with HARRISON benchmark dataset.

Methods Accuracy@1 Accuracy@3 Accuracy@5

VGG-Object 8.41% 37.56% 48.12%
VGG-Scene 7.8% 33.74% 47.71%
VGG-Object + VGG-Scene 9.64% 38.44% 54.81%
VGG16-Word2Vec300-CACNet(γ=1) 9.11% 41.47% 55.19%
VGG16-Word2Vec300-CACNet 12.82% 48.91% 71.13%

Table 4. Generic evaluations of baseline models and our model measured with Accu-
racy@K

baseline models introduced in the HARRISON benchmark dataset.[12]
Precision@K is the portion of top K ranked hashtags that match ground truth
output. Recall@K is the portion of ground truth hashtags that match top K
ranked hashtags. Accuracy@K is defined as 1 if there exists at least one match
between top K ranked hashtags and the ground truth hashtags. The evaluation
results for Hashtag prediction are shown in Table 3. The HARRISON bench-
mark contains 1,000 categories of hashtags while our dataset contains 300 cat-
egories. Thus the quantitative comparison of best results might not be reliable.
For generic evaluation, we conducted further research by evaluating the base-
line methods provided by HARRISON benchmark on our dataset, CACEval.
Instead of using precision and recall as the metric, we evaluated the models on
Accuracy@K only. To show the validity of our training scheme, we also trained
a version of CACNet with the control variable γ set to 1. Table 4 shows the
generic evaluation results.
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Fig. 5. Examples of successful predictions are shown above. Matching hashtags are in
bold letters. Examples show cases in which our classifier was able to predict multiple
matches with the ground truth when either one of caption or image are hard to relate
to the hashtags.

6 Discussion

In this paper, we introduced a novel method for training a network with mul-
timodal inputs. As far as we know, the multi-label classifier trained with our
implementation, CACNet holds the state-of-the-art performance in hashtag pre-
diction tasks. Our model has advantages over ensemble-based approaches and
end-to-end approaches. The multi-phase training scheme lets the network main-
tain single-modal dependency as well as fusing the complimentary characteristics
of two modalities. Another contribution of our research comes from introducing
the concept of virtual outputs when observe the gradients from small sections of
weight parameters in a whole network. This approach makes it possible to divide
a network into sub-sections of weights and simplify complex training schemes.
We expect our works to inspire fields of research involving image-text multimodal
classification and feature fusion.
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