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Abstract. Identification of Cause-Effect (CE) relation is crucial for cre-
ating a scientific knowledge-base and facilitate question-answering in
the biomedical domain. An example sentence having CE relation in the
biomedical domain (precisely Leukemia) is: viability of THP-1 cells was
inhibited by COR. Here, COR is the cause argument, viability of THP-
1 cells is the effect argument and inhibited is the trigger word creating
a causal scenario. Notably CE relation has a temporal order between
cause and effect arguments. In this paper, we harness this property and
hypothesize that the temporal order of CE relation can be captured well
by the Long Short Term Memory (LSTM) network with independently
obtained semantic embeddings of words trained on the targeted disease
data. These focused semantic embeddings of words overcome the labeled
data requirement of the LSTM network. We extensively validate our
hypothesis using three types of word embeddings, viz., GloVe, PubMed,
and target-specific where the target (focus) is Leukemia. We obtain a sta-
tistically significant improvement in the performance with LSTM using
GloVe and target-specific embeddings over other baseline models. Fur-
thermore, we show that an ensemble of LSTM models gives a significant
improvement (∼ 3%) over the individual models as per the t-test. Our
CE relation classification system’s results generate a knowledge-base of
277478 CE relation mentions using a rule-based approach.

Keywords: Cause-Effect Relation Extraction · Biomedical Domain ·
Deep Neural Network (Long Short Term Memory) · Semantic Embed-
dings.

1 Introduction

The MEDLINE database is growing at the rate of 500, 000 new citations each
year. With such explosive growth, it is challenging to keep up to date with all
of the discoveries and theories in biomedical research. Thus, there is a need to
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provide automatic extraction of the user-oriented biomedical knowledge [1, 4].
Cause-Effect (CE) relation is one such type of user-oriented biomedical knowl-
edge. The semantic connection between a causal argument and its effect is re-
ferred to as a CE relation. For example, virus causes flu has a CE relation, where
virus is the cause argument, and flu is the effect argument, and causes is the trig-
ger argument creating causal relation. Moldovan et al., [19] reported that causal
questions are answered with a very low precision score of 3.1%. It is crucial to
answering causal questions with high precision in the biomedical domain as it
is related to human life. Identifying CE relation from the biomedical data can
produce a scientific knowledge-base that can facilitate answering user queries in
the biomedical domain [8]. The following example illustrates the purpose of the
identification of CE relation in the biomedical domain.

– Input: “Tumor cell killing was achieved by concerted action of necrosis apop-
tosis induction.”

– Proposed Output: CE relation found with the following CE mentions:

Causal Cue: achieved by

Cause: Concerted action of necrosis apoptosis induction

Effect: Tumor cell killing

– QA System based on the proposed output:

Question: What is the effect of concerted action of necrosis apoptosis induc-
tion on tumor cells of Leukemia?

Answer: Tumor cell killing

The correct answer to the question could help understanding the disease
to the patient or diagnosing a terminal illness such as Leukemia to the doc-
tors/patients. Utilizing cause-effect relations in the development of a question
answering system leads to improved performance [8].3 Another direct application
domain is a scientific database dedicated to a disease. Record of arguments of CE
relations for a disease viz., cause, effect, the cue for causality can form a scientific
knowledge-base dedicated to the disease [23]. Such knowledge-bases can help sci-
entists, doctors, and other users perform tasks such as diagnosis, exploring and
validating hypotheses, understanding the state-of-the-art, and identifying oppor-
tunities for new research.

Various complex constructs are used to express causality in text. The simplest
way of expressing CE relations in the text is by using generic causative verbs,

3 Causal questions are frequently used in general on Web. Naver Knowledge iN,
http://kin.naver.com reported 130,000 causal questions from 950,000 sentence-sized
database [19].
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such as cause, lead, result. Apart from this, different domains have their causative
verbs, which are either new verbs specific to that domain (e.g., over-express, up-
regulate in the biomedical domain) or generic verbs that have a special causative
sense specific to that domain (e.g., inhibit, express in the biomedical domain).
There are other complexities with the linguistic expression of CE relations in
text. One is the negation of the apparent CE relation mention, e.g., However,
the precise mechanisms by which BCR stimulation leads to accumulation of ma-
lignant cells remain incompletely understood. Next is the use of discourse connec-
tives like after, while etc., to express causal linking between two arguments, e.g.,
{Cleaved caspase-3 was increased}Effect after {treatment of COR}Cause. The
presence of linguistically complex constructs in the biomedical domain makes
extraction of CE relation a more challenging task than in generic domains [23].

In this paper, we address a relatively novel problem: the identification of
cause-effect relationships and their arguments in the biomedical domain for
Leukemia. Leukemia is a group of cancers that begins in the bone marrow and
results in high number of abnormal white blood cells (WBC), called leukemia
cells. Leukemia is the most frequent type of cancer in children. In 2015, Leukemia
was detected in 2.3 million people and resulted in 353, 500 deaths; the average
five-year survival rate is 57% in the USA.4 The exact causes for Leukemia are
unknown, although some risk factors are known, including family history, smok-
ing, and exposure to ionizing radiation or chemicals such as benzene. Table 1
shows some example sentences about Leukemia in which CE relation mentions,
viz., Cause (C), Effect (E), and Causal-Cue (CC) are present. Note that some-
times the CE relation mention does not include a causative verb, but a causal
cue phrase, such as due to, because, hence, therefore.

The CE relations in leukemia are at widely different abstraction levels - from
genetic, molecular, cellular, organ level, tissue level to patient-level as an entity.
In the corpus, we can discern a finer structure to the CE relations, apart from
the two standard arguments, cause and effect. For example, CE relations seem
have associated with them additional optional information, such as evidence
(see Table 1 (2)), or a control condition i.e., a condition under which the causal
relation holds (see Table 1 (3)). In the biomedical domain, a cause is often an
agent (such as an organism, drug, compound), an event, an action or a condition.
An event is any change in the physical state or property of one or more named
entity instances. A condition is broadly any property or state of one or more
named entity instances, which is sustained over reasonably long periods. An
effect is often an event or a condition.

In this paper, we conceptualize that in a causal sentence, cause temporally
precedes the effect. Long Short Term Memory (LSTM) network is a deep neural
network having recurrent connections between the layers. It is tailored to process
the text having a temporal order of words. Therefore the temporal order of
CE relations can be captured well by the Long Short Term Memory network,
which makes it a potential technique for the identification of CE relations in
the biomedical domain. We present a CE relation identification system for the

4 https://en.wikipedia.org/wiki/Leukemia
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(1) [Human T-cell leukemia virus type 1 (HTLV-1)]C [causes]CC a highly lethal [blood
cancer]E or a chronic debilitating [disease of the spinal cord]E .
(1) The [co-expression of p96 (ABL/BCR)]C [enhanced]CC the [kinase activity]E and
as a consequence, the [transformation potential of p185 (BCR/ABL)]E .
(3) While survival rates for ALL have improved, [central nervous system (CNS)
relapse]C remains a significant [cause]CC of [treatment failure]E and [treatment-
related morbidity]E .
(2) Using both [pharmacologic and genetic assays]E , we show here that [inactivation
of RIP1/RIP3]C [resulted]CC in [reduction of SOCS1 protein levels]E and [partial
differentiation of AML cells]E .
(3) [Bone mass acquisition]E may be [compromised]CC in survivors of childhood acute
lymphocytic leukemia due to various factors, including [adiposity]C .
(6) [cCMP-AM]C did not [induce]CC [apoptosis in K-562 cells, a human chronic
myelogenous leukemia cell line,]E [due to]CC [rapid export via multidrug resistance-
associated proteins]C .

Table 1. Examples of CE relations in leukemia.

biomedical domain with the focus on Leukemia. First the system is formalized
as a binary classification system with two classes, viz., CE-Relation, Not-CE-
Relation. Next the sentences which are identified as CE Relation tag are used
for the extraction of CE Relations arguments using a rule based system. Figure
1 shows the architecture of the proposed system. Stage-1 is the neural binary
classification model, which identifies whether a sentence has CE relation or not.
Stage-2 performs extraction of CE relation constructs using a rule based system.

Though deep neural networks require a massive amount of labeled datasets
for classification, the tagged data requirement is overcome by getting focused
embeddings of words trained on a large unlabeled corpus specific to Leukemia.
We compare our LSTM-based model with Multi-layer Perceptron (MLP) and
Support Vector Machine (SVM) for CE relation identification using three types
of word embeddings, viz., GloVe, PubMed, and target-specific where the target
is Leukemia. Results (5) show that LSTM with target-specific embeddings out-
performed all other reported models. Furthermore, we show that an ensemble
of LSTM models trained using GloVe and target-specific embeddings gives a
significant improvement (∼ 3%) over the individual models.

The major contributions of the paper are as follows.

– We generate 2, 01, 066 embeddings specific to Leukemia using 60, 000 re-
search papers on Leukemia from PubMed. We show the effectiveness of these
focused (target-specific) embeddings over pre-trained embeddings for CE re-
lation identification task.

– An ensemble of LSTMs trained using GloVe and target-specific embeddings
produces an accuracy of 83.78%, which is significantly greater over the in-
dividual models for the CE relation identification task.

– We generate a knowledge-base of 277478 CE relation mentions from the
dataset of 60, 000 documents.
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Fig. 1. Flowchart of the proposed system

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the preparation of training data and the semantic embeddings
used in the paper. Section 4 provides the experimental setup. Section 5 shows
the results and Section 6 concludes the paper.

2 Related Work

CE relation identification, in general, has been and continues to be well studied
in the literature. Much of the work has attempted to discover CE relationships
in the text by focusing on lexical and semantic constructs.

Kaplan et al., [11] wrote hand-coded rules considering causal scenario may
vary from context to context. Joskowicz et al., [10] prepared a dedicated knowledge-
base to build a causal analyzer for a Navy ship. Their objective was to under-
stand a short narrative message about the Navy ship’s equipment using CE
relation. However, knowledge-based systems have low generalizability. In addi-
tion, building and maintaining a knowledge-based system is expensive for the
targeted domain itself. Many researchers have used linguistic patterns to identify
CE relations in the text without using any knowledge-base [7, 12]. A few works
used grammatical patterns to identify CE relations [8, 22, 13]. There are very few
instances of combining grammatical patterns with machine learning to extract
semantic relations, such as cause-effect [6, 3]. In another work, cue phrases (cause
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triggering construct) with their probability were used to extract other lexical ar-
guments of cause-effect relation [3]. Do [6] developed a minimally supervised
approach based on focused distributional similarity and discourse connectives.

None of the work discussed so far has considered the complications of the
biomedical domain. However, due to domain-specific vocabulary and constructs,
conventional CE relation extraction methods are not suitable in the biomedi-
cal domain. Mihuailua et al., [16] defined an annotation scheme for enriching
biomedical domain corpora with causality relations. Their scheme was used to
annotate 851 causal relations to form BioCause, a collection of 19 open-access
full-text biomedical journal articles. Mihuailua et al., [15] created several base-
lines and experimented with and compare various parameter settings for three
algorithms, i.e., Conditional Random Fields (CRF), Support Vector Machines
(SVM) and Random Forests (RF) for causality detection in the biomedical do-
main. They also evaluated the impact of lexical, syntactic, and semantic features
on each of the algorithms, and showed that semantics improves the performance
in all cases. Sharma et al., [23] proposed an approach that deploys the linguistic
cue indicating CE constructs and PMI between dependency relations for identi-
fication of CE relation in a sentence.

Knowledge-based and pattern-based approaches have severe coverage issues.
They can only consider those instances for which knowledge or pattern can
be derived by observing the training data. This paper presents a deep-neural-
network-based supervised approach, that is, LSTM for CE relation identifica-
tion with target-specific word embeddings as input. The use of target-specific
semantic embeddings of words facilitates capturing complex CE relations while
reducing the need for excessive labeled data requirements.

3 Training Data and Embeddings

Leukemia is a highly researched disease in the biomedical domain, having more
than 3, 02, 926 scientific documents on PubMed and more than 3, 09, 492 on
Nature. As CE relations can be expressed using various semantic constructs,
we use distributed representation of a sentence capturing various characteristics
of the text in terms of embeddings and then use them for training classification
models. The training dataset and the embeddings used in the paper are described
below.

3.1 Training Data

We extracted a set of 2500 sentences from Leukemia-related papers in PubMed
and labeled them for the training of models. Two competent annotators were
consulted to assign binary labels: CE Relation (1) and Not CE Relation (0).
The Cohens k between the annotators is 0.97 [2]. We used majority voting to
determine the actual label. Section 5 reports the 5-fold cross-validation accuracy
on this dataset.
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3.2 Generic GloVe Embeddings

The Global Vector model [21] referred to as GloVe combines word2vec with
the ideas drawn from matrix factorization methods, such as LSA [5]. We used
pre-trained GloVe word embeddings of size 300. We refer to them as generic
embeddings as they are trained on the Wikipedia 2014 dataset.5

3.3 Target-specific Word Embeddings

To obtain target-specific word embeddings where the target (focus) is Leukemia,
we parsed and downloaded 60, 000 abstracts containing the term Leukemia from
PubMed using the Entrez package of Biopython. The corpus has 5, 12, 061 sen-
tences and 1, 22, 29, 561 words. Embeddings of size 300 are learned from the cor-
pus using the word2vec package [17]. Default parameters were used to train the
model. The same dataset of 60, 000 documents is used to prepare the knowledge-
base containing CE relation arguments.

3.4 Domain-specific PubMed Embeddings

This is a set of pre-trained embeddings in the biomedical domain. The embed-
dings are trained on abstracts from PubMed without focusing on any particular
disease.6 Essentially, these semantic embeddings are trained using a domain-
specific corpus, that is, the biomedical domain, but not specifically dedicated to
the target for which classifier has to be trained, unlike our target-specific word
embeddings.

Embeddings Vocab-Size Words-Found

Generic-GloVe 400000 4995
Domain-specific 1999860 6323
Target-specific 201066 6678
Training Data 6740 6740

Table 2. Statistics for the Word Embeddings

In addition to the above-described embeddings, we have observed the perfor-
mance of LSTM with embeddings learned from the training dataset by LSTM’s
embeddings layer. Table 2 shows the statistics related to the embeddings used in
this paper. Column 3 of Table 2 presents the number of words from the training
dataset (Section 3.1) whose embeddings are found in the embeddings set.

5 Download : https://nlp.stanford.edu/projects/glove/.
6 Available for download: http://evexdb.org/pmresources/vec-space-models/.
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4 Experimental Setup

This paper hypothesizes that the temporal order between cause-expression and
effect-expression can be captured well by the Long Short Term Memory (LSTM)
network. While Support Vector Machine (SVM) [15] and Multilayer Perceptron
(MLP) are not tailored to process the sequential structure of words, hence not
much suitable for CE relation identification. CE relation is a contextual prop-
erty; LSTM generates hidden features representing the context. Hence it is a
favorable architecture for CE relation identification. Lilleberg et al., [14] val-
idated that word embeddings bring extra semantic features that help in text
classification. Therefore, the use of independently trained semantic embeddings
of words in place of words overcomes the labeled data requirement of LSTM.
We provide a comparison among LSTM, SVM, and MLP using three types of
semantic embeddings, viz., GloVe, PubMed, and target-specific where the target
is Leukemia.

To train an SVM based classifier, we have used the publicly available Python-
based Scikit-learn package [20]. Though results are reported with linear kernels
due to their superior performance, we experimented with other polynomial ker-
nels. Yin and Jin, [24] speculated that the sum of word embeddings is meaningful
and can represent the document. For example, the sum of word embeddings of
Germany and capital is close to the embedding of Berlin [18]. We adhered to
the same convention to produce embeddings of sentences to train SVM-based
classifiers with embeddings (Equation 1).

Sentence (S) is having ti token with vi embedding:

S(t1 : v1; t2 : v2; ...; tn : vn),

vi is an m dimension vector:

vi = (vi1, vi2, ..., vim),

Sentence embedding S of m dimension:

S = (

n∑
i=1

vi1,

n∑
i=1

vi2, ...,

n∑
i=1

vim) (1)

To implement MLP and LSTM, we used Keras functional API. The embed-
ding layer of the LSTM network is initialized with the size of the embeddings.
The middle layer is an LSTM layer, which is initialized with 256 activation units.
The output layer is a dense layer having sigmoid as the activation function. MLP
has the same settings, except the middle layer is a dense layer with 256 activation
units.

Knowledge-base Generation: The instances classified as CE relation by
our system become the input to a rule-based system for extraction of CE relation
mentions. We use the rule-based system proposed by Sharma et al., [23] for
this purpose. It is specifically trained in an unsupervised manner to extract
CE relation mentions from the bio-medical text. It is based on the principle
that a known causal verb can be used to extract CE arguments, and known CE



Identifying Causality in the Biomedical Domain 9

t-value P-value

LSTM-GloVe vs SVM-BoW 1.88 0.04

LSTM-Target-specific vs SVM-
BoW

2.18 0.0

Ensemble vs SVM-BoW 5.39 0.00

Ensemble vs LSTM-Generic-GloVe 5.19 0.00

Ensemble vs LSTM-Target-specific 4.08 0.00

Table 3. t-test (α = 0.05) results for the systems having significant difference in
accuracy.

arguments can be used to discover unknown causative verbs (hence co-discovery).
Point-wise mutual information (PMI) is used to measure the level of (linguistic)
associations between a causative verb and its argument.

5 Results

We implemented 12 Systems to validate our hypothesis extensively. Figure 2
shows the 5-fold cross-validation accuracy concerning each system. BoW is the
Bag-of-words model with SVM. Train-MLP and Train-LSTM are models
trained on embeddings obtained from training data only with MLP and LSTM
settings, respectively. Out of the remaining nine, three systems employ SVM,
three use MLP, and three use LSTM, where each system in the collections
individually trained using PubMed (Section 3.4), GloVe (Section 3.2), and
target-specific embeddings (Section 3.3), respectively.

Fig. 2. 5-fold cross-validation accuracy in % for CE relation identification.
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Mihuailua et al., [15] used Bag-of-words with SVM for causality identifica-
tion. Figure 2 shows that SVM-BoW produces a 5-fold cross-validation accuracy
of 77.2%. On the other hand, the performance of SVM with PubMed, GloVe, and
target-specific embeddings is not significantly different from that of SVM-BoW.
SVM is not able to incorporate the additional semantic information and contex-
tual information provided by embeddings. The difference in the vocabulary of
diseases (eg., Leukemia and Glioma have many dedicated words) makes PubMed
embeddings (Section 3.4) inadequate for finding CE relations in Leukemia. On
the other hand, LSTM with GloVe outperforms SVM-BoW by a significant mar-
gin. These generic word embeddings bring in additional favorable information
that is not available in the training data. On the other hand, target-specific
embeddings that are obtained from the data focusing on the targeted disease
(Leukemia) performed the best with LSTM.

The performance of LSTM-Train is inferior to that of SVM-BoW as the data
is not sufficiently large for LSTM. Use of pre-trained embeddings viz., generic-
GloVe, and target-specific embeddings reduce the labeled data requirement of
LSTM. On the other hand, the performance of MLP is not significantly different
from SVM. Both the algorithms are unable to capture the context formed by
the sequence of words. CE relation has a long term dependency, cause, effect
and causality cue mentions can be any words apart in the sentence. Long Short
Term Memory (LSTM) network solves this problem by using gates to control
the memorizing process [9].

Ensemble: We observed that an ensemble of LSTM models trained using
generic GloVe and target-specific embeddings produced an accuracy of 83.78%,
which is significantly greater than the accuracy delivered by the individual classi-
fier for CE relation identification. The classification probability value assigned by
the individual classifier is averaged to obtain the ensemble classification proba-
bility. If the averaged probability is more than 0.5 for any instance, it is classified
as having CE relation (1), else not having CE relation (0). Essentially, both the
systems bring in complementary information as their embeddings are trained
on two completely different corpora; the first is generic (Wikipedia) corpus, an-
other is Leukemia (target) corpus. Table 3 shows the t-test results for pairs of
systems where the first system performs significantly better than the second sys-
tem. LSTM with generic-GloVe and target-specific embeddings are observed to
be significantly better than any other system, including SVM-BoW as per t-test.
LSTM-Golve and LSTM-Target-specific models’ ensemble reported a significant
improvement over individual models as per t-test.

Table 4 presents the statistics related to the knowledge-base obtained from
the instances classified as CE relation by our LSTM-based ensemble system.
CE relation mentions which are forming the knowledge-base are identified using
using the approach proposed by Sharma et al., [23].
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footnotesize

CECue CECause CEEffect

98778 87235 91465
Table 4. Statistics of Knowledge-base

6 Conclusion

Cause-Effect (CE) relation in a scientific text is an instance of knowledge re-
quired to be identified to answer causal questions. In this paper, we present
that the long-term dependency between cause and effect expressions in a sen-
tence can be captured well by the LSTM network for CE relation identification.
The use of target-specific embeddings, which are learned from a corpus focused
on the targeted disease, overcomes the labeled data requirement of LSTM. In
addition, embeddings learned from a generic corpus (Wikipedia), i.e., GloVe
provides complementary information to the model. Results show that LSTM
with target-specific embeddings and GloVe produce 80.5% and 79.5% accuracy,
respectively, which is significantly better than models trained using Support Vec-
tor Machine and Multilayer Perceptron. Furthermore, an ensemble of the LSTM
models trained using GloVe and target-specific embeddings produced an accu-
racy of 83.7%, which is significantly greater than the accuracy delivered by the
individual classifier for CE relation identification. Furthermore, our CE relation
classification system’s results generate a knowledge-base of 277478 CE relation
mentions using a rule-based approach.
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15. MIHĂILĂ, C., Ananiadou, S.: Recognising discourse causality triggers in the
biomedical domain. Journal of bioinformatics and computational biology 11(06),
1343008 (2013)
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