Sequence-based word embeddings for effective
text classification

Bruno Guilherme Gomes!, Fabricio Murai', Olga Goussevskaial',
Ana Paula Couto da Silval

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
{brunoguilherme, murai, olga, ana.coutosilva}@dcc.ufmg.br

Abstract. In this work we present DiVe (Distance-based Vector Embed-
ding), a new word embedding technique based on the Logistic Markov
Embedding (LME). First, we generalize LME to consider different dis-
tance metrics and address existing scalability issues using negative sam-
pling, thus making DiVe scalable for large datasets. In order to evaluate
the quality of word embeddings produced by DiVe, we used them to
train standard machine learning classifiers, with the goal of performing
different Natural Language Processing (NLP) tasks. Our experiments
demonstrated that DiVe is able to outperform existing (more complex)
machine learning approaches, while preserving simplicity and scalability.

Keywords: Word embeedings - Logistic Markov Embedding - NLP.

1 Introduction

Word embedding techniques compute representations of words as vectors in a
continuous space in order to capture some notion of similarity between them.
More precisely, words from a corpus are mapped onto a low-dimensional Eu-
clidean space, while preserving certain similarity properties of the input data.
Learning good word representations has led to breakthroughs in several Natural
Language Processing (NLP) tasks, such as document classification [11], senti-
ment analysis [7], hate speech detection [16], among others.

Embeddings techniques such as Word2Vec [10,11] and Glove [14] gained pop-
ularity for their performance in NLP tasks and for being easy to train. More re-
cently, the generating effective embeddings using deep neural networks became
possible through the larger availability of data and of GPU-based computational
resources. Notable examples of these techniques are BERT [3] and ELMo [15].

Embedding techniques tend to represent related words, such as “check” and
“bank”, as points close to each other in space, as they are trained to reconstruct
the context in which a word appeared. This characteristic is known as semantic
similarity. Although embeddings trained from large corpora containing up to tens
of billions of words are available for download on the Internet, difficulty to find
pre-trained embeddings for less used languages and problems associated with
polysemy (i.e., multiple meanings) can make it beneficial to train embeddings
from data specifically related to the task at hand.

2 Gomes et al.

In this work, we present DiVe (Distance-based Vector Embedding), a new
word embedding technique based on the Logistic Markov Embeddings, a Marko-
vian model [7, chapter 3] originally designed to represent sequences of songs in
a playlist [12]. A drawback of the original model is that it is not possible to
shift from a relatively restricted universe of songs to the much larger universe
of words due to scalability issues related to the computation of the so-called
partition function. In essence, a partition function is a normalization constant
used to ensure that the sum of the probabilities associated with each event of
the sample space is one, given a set of observations. Therefore, each partition
function is a sum over all the words in the vocabulary. As a first contribution,
we use the negative sampling [10] method to approximate the partition function,
making DiVe scalable for large datasets.

Second, we generalize LME to consider other distance metrics. Specifically,
instead of using either the negative Euclidean distance or the cosine similarity, we
investigate the performance of a convex interpolation between the two metrics.
Third, we investigate benefits of using a single vs. a dual point model for DiVe.
In language models, a “center” word is said to be surrounded by a context, even
when the context appears strictly before or after the center word. In the dual
point model, each word has two representations, one for when the word is in
the center and another for when the word is part of the context, whereas in the
single point model, the representation is the same in both cases.

Then, we compare DiVe to 5 word embedding baselines. All techniques are
trained on one of 9 different datasets that together represent 6 different classifica-
tion tasks (hate speech, user review, text polarity, question type, and subjective
vs. objective text). From the embeddings locally generated by each technique,
we trained standard machine learning classifiers to predict labels of the sentences
that compose each of these textual datasets. Also, using the same datasets, we
compare DiVe to two state-of-the-art classification techniques based on deep
learning (DL) that make use of pre-trained embeddings. We show that DiVe
(i) outperforms the five baselines on several datasets and (ii) yields comparable
performance to the two DL methods at a much smaller computational cost.

The rest of this paper is organized as follows. §2 discusses existing work
on word embeddings. In §3, we define the models and algorithms behind DiVe.
84 presents our experimental results. §5 concludes the paper. We provide an
appendix in an external repository' with further details on the analytical model.

2 Related Work

The task of learning word embeddings has received a significant amount of in-
terest in the last years. We discuss three fronts of research related to our work:
Shallow window-based methods: This body of works studies vector repre-
sentations of words. The basis of these techniques lies in the local learning of the
representations of words within the same context window. The authors of [13]

! nttps://github.com/DiVeWord/DiVeWordEmbedding

Sequence-based word embeddings for effective text classification

introduced a model that learns word vector representations using a simple neural
network architecture for language modeling. Word2vec [10] is a more recent tech-
nique, based on a two-layered artificial neural network, trained to reconstruct
linguistic contexts of words. Following a similar approach, FastText [6] presents
an extension of Word2Vec by taking into account information from subwords to
compose the representation of a word. Bayesian Skip-Gram [1] is another word
embedding algorithm, based on a Bayesian neural network.

Statistical estimation of word representation: Statistical models have been
widely used to tackle NLP tasks, such as part-of-speech [2] and sense disam-
biguation [16]. In terms of word representation, primarily, many papers sought
to capture the similarity between words by the probability that they occur in
a sequence [7]. Later, Bayesian models for the semantic representation of words
have also been proposed [8,5]. Recently, following a similar perspective, we can
highlight GloVe [14], which presents an efficient statistical model for grouping
words together with their synonyms and allegories.

Pre-trained deep learning: On this research front there are architectural neu-
ral networks based on seq2seq, LSTM and encode-decode, which can be used in
various tasks, such as machine translation, word embedding, sentiment analy-
sis, and question answering. CoVe [9] is a model based on seq2seq (sequence-
to-sequence) machine translation, whose learned representation considers the
entire input sentence. ELMo [15] is a neural network based on a bi-directional
language model (biLM), in which each word presents a contextualized repre-
sentation. Word vectors are functions learned from the internal states of biLM,
which is pre-trained on a large text corpus. Another technique based on biLM
is BERT [3], which was also shown to perform well in the task of determining if
one sentence follows another.

Finally, we point out the work of Globerson et al. [5] and LME [12], which
are based on an approach similar to ours. One of the general aspects that distin-
guishes our work is how we estimate the partition function and compute distance
in space. In this way, DiVe can be seen as an approximation approach to LME.

3 The DiVe Model

Our goal is to estimate a generative model for continuous word representation
from sentences of words. Let D = {s(V), ..., 5"} be a set of sentences and V be
the vocabulary (set of unique words) that composes sentences s € D. We define
s = (wy,wa, ..., wy) as a sentence containing m words, where each word w € V.
Hence, we want to obtain a language model from D that defines a probability
distribution over sentences (i.e., maps a sentence s to a probability mass Pr(s)).

A natural approach for modeling language is to decompose sentences into
word-to-word transitions, where each word represents a state of a Markov Chain.
The probability of a sentence, comprised by a sequence of adjacent words, is
defined as the product of transition probabilities between consecutive words.

4 Gomes et al.

Using a first order Markov Chain, we can write the probability of sentence s as

k
Pr(s) = [[Pr(wi|wi_1). (1)
i=1

As usual, the conditional probability Pr(w;|w;—1) is defined to be propor-
tional to a function of the embeddings of the words that characterize the current
state w;_1, or context, and the next state w;. In most embedding techniques (for
example, [11,10]), each word w € V has two vector representations, depending
on whether it is used to encode the current or the next state. We refer to this
as the dual point model. In this work, we also investigate a simpler variant of
this model, called the single point model, where each word is represented by the
same vector regardless of whether it is the current or the next state.

3.1 DiVe Single Point Model

In the single point model, we represent each word w € V as a vector X (w) €
R? for some dimension d. We denote by f : R? x R — R some similarity
measure between two word vector representations. To obtain a valid conditional
distribution, we define Pr(w;|w;_1) as the normalized value of some non-linear
transformation o applied to the similarity between w; and w;_1:

o(f(X(w;), X (wi—1)))
Z(wi,1> ’

Pr(wi|wi_1) = for w; € V, (2)
where Z(w;—1) = Y,y o(f(X(wy), X(w;—1))) is the partition function.

In this work we investigate three choices of functions for the non-linearity o:
sigmoid, tanh and exp. In addition, instead of measuring similarity by the angle
between word vectors as usual [10,11,6], we investigate a more flexible way of
measuring similarity based on a linear interpolation between the inner product
and the negative square Euclidean distance.

First, note that we can express the dot product of vectors v and u in terms
of their Euclidean distance ||v — u||? = (v — u) - (v — u) and their norms:

1
lo—ul® =v-vtu-u—=20-u) = v u= (Pl + ul* - llo = ul*). (3)

On one hand, if we compute the similarity between two embeddings using
the RHS of Eq. (3), we are using the dot product as the similarity measure. On
the other hand, if ignore the norms of the embeddings, we recover the negative
Euclidean distance (times the constant 1/2). Rather than choosing between the
dot product or the negative Euclidean distance as the similarity measure f, we
propose the use of a convex combination of both:

P), Xwi-1)) = = 2 X () = X(wiDIP + S| + S 12l (4)

where 0 < a < 1. When « is 0, the similarity measure f is the negative Euclidean
distance, and when « is 1, f is (twice) the inner product between word vectors.

Sequence-based word embeddings for effective text classification

We generalize Eq. (1) to consider the case where the context, in this case ¢;,
of word w; is formed by the j previous words, i.e., w;—1,...,w;—;. This results
in a j-th order Markov Chain and thus, the probability of a sentence becomes

k

k

Z(c;)

i=j
where we set X'(c;) = 3. X(4)/|ci| to be the element-wise average of the
embeddings of words in ¢;. We have also conducted experiments setting X(c;)
to the element-wise maximum, but we obtained slightly inferior results.

We are now ready to define the cost function to be optimized as the negative
likelihood of D given the embeddings X (w) for all w € V:

NLL(D ZZlogPr wile;) = ZZ [log o(f(X(w;), X(c;))) —log Z(c;)].

s€D i=j s€D i=j

3.2 DiVe Dual Point Model

In the previous section, we described the single point model, that represents
each word w € V as a d-dimensional vector X (w). This model has two key
limitations. First, natural choices for a similarity function f between two vectors
are symmetric and, therefore, even if there are several transitions from w; to
w; in the corpus D, and no transitions in the opposite direction, the transition
probabilities estimated by the model will be the same in both directions. Second,
the representation of words can undergo drastic modifications at each stage of
learning, making it more difficult to find good representation of words in space.
To overcome these issues, we also consider a dual point model, where each
word w; is represented as a vector pair (Z(w;), O(w;)). We call Z(w;) the “entry
vector” of word w;, and O(w;) the “exit vector”. The cost function becomes

NLL(D Z Zlog Pr(w;|c;) = Z Z [logo(f(O(w;),Z(c;))) —log Z(c;)] .

s€ED i=j seD i=j

3.3 Estimating the Partition Function

One of the limitations of LME is the cost of computing the partition function
Z(c) exactly for a context ¢ [4]. Since during parameter optimization this com-
putation must be performed several times for each training iteration and at least
once for each different context, the resulting complexity is O(|D||V|). To address
this issue, we resort to negative sampling [11] to approximate the partition func-
tion and estimate model parameters more efficiently. The resulting complexity
is O(|D|k), where k is a constant equal to the number of negative samples drawn
for each word in D. To compensate for highly unbalanced word frequencies, we
adopt the heuristic of sampling a word w in proportion to m‘i)/ * Where Ty is the
word frequency of w in the corpus.

6 Gomes et al.

Using the negative sampling method, the term corresponding to the log of
the partition function in Eqs. (6) and (6) is replaced by a sum over the negative
instances V' that were sampled according to the heuristic described above. In
the single point model, the new cost function is given by

k
NLLy,s(D) = = 3 Y |logo(f(X(wi), X(ci)) = Y loga(—f(X(wy), X(ei)))

s€D i=j vey’

The corresponding equation for the dual point model is analogous.

Finally, we found that the stochastic gradient algorithm finds a good solution
for approximating cost functions for the single and the dual point models. In
order to enable the replication of the results in this paper, all the code used in
this work, including the baselines is available in a public repository?.

4 Experiments and Results

4.1 Experimental Setup

We now conduct an experimental study of DiVe, comparing its performance to
state-of-the-art word embedding techniques on text classification tasks.

We use the performance of models trained for text classification as a proxy
to evaluate the quality of the embeddings obtained by DiVe and by the word
embedding baselines: GloVe, Word2vec, fastText, Bayesian Skip Gram and deep
learning baselines: ELMo and BERT. We use 9 publicly available datasets:

— Customer reviews (CR): A dataset for binary sentiment classification
based on user reviews of 5 products.

— Hate Speech Twitter Annotations (HSTW): A collection of tweets
labeled according to 3 categories: sexism, racism, neutral.

— Polarity of Opinion (PO): This data was extracted from Rotten Tomatoes
webpages, with reviews marked as “fresh” (positive) and “rotten” (negative).

— Question Type Classification (QTS): This dataset contains questions
asked by users, labeled in 6 different categories.

— Subjectivity and objectivity of sentences (SUBJ): A set of sentences
containing at least 10 words and labeled as either “subjective” or “objective”.

— IMDB reviews (IM) and (SIM): Datasets with large (IM) and small
(SIM) number of movie and TV show reviews.

— Yelp reviews (YR): Dataset with sentences from user reviews, about
restaurants and bars, labeled with positive or negative sentiment.

— Amazon reviews (AR): A set of sentences labeled with positive or negative
sentiment, extracted from Amazon product review.

Table 1 lists the vocabulary size of each dataset, many of them used as
benchmarks in prior works [16,8]. We refer to the datasets with < 40K words as
“small”, and as “large” otherwise.

% https://github.com/DiVeWord/DiVeWordEmbedding

Sequence-based word embeddings for effective text classification

Table 1: Datasets used in classification tasks (|V| is the vocabulary size).

acron. description V| # words ‘ acron. description |V| # words

AR User product review 1741 5275 QTS Question Answering 16504 30134
CR User review polarity 5176 33665 SIM Movie and TV Review 2933 7471

HSTW Hate speech detect 23739 155804 | SUBJ Subjectivity and objectivity 20745 121366
IM Movie and TV Review 74337 3124867 YR Food review polarity 1919 5563
PO Sentence polarity 18179 114485

For the word embedding classification task, we consider 8 “shallow” classi-
fiers implemented on scikit-learn®: probabilistic models Logistic Regression (LR),
Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA)
and Naive Bayes (NB); structural models Support Vector Classification (Linear-
SVM) and K-Nearest Neighbors (KNN); the ensemble model Random Forest
(RF); and a Neural Network (NN). Moreover, we used two deep learning tech-
niques as baselines: BERT and ELMo (see our repository for setup details).

The experiment setup is as follows. For each combination of dataset, word
embedding technique and classifier, we use 5-fold cross-validation by learning the
word embeddings on 4 folds in an unsupervised fashion, then training a classifier
using these embeddings and the labels associated with each sentence, and finally
testing on the left-out fold. We then take the performance to be the average
weighted F; score over the 5 folds. For the deep learning baselines, we performed
the 5-fold cross-validation and average weighted F; score for evaluation.

Ideally, we would also use cross-validation to jointly optimize the hyperpa-
rameters. However, due to the computational demands of running experiments
with several large datasets, number of the combinations of embedding techniques
and classifiers and the cost of tuning the deep networks, we used fixed values
for the hyperparameters. For a fair comparison, we fixed the number of dimen-
sions and context size respectively to 400 and 5 to train DiVe, Word2Vec, Glove,
Bayesian Skip Gram and FastText. For BERT and ELMo we did not change the
default network settings to represent text, with 1024 dimensions.

It is clear that the quality of the learning representations plays a major
role in the classification performance. Since our interest here is to evaluate the
embeddings produced by each technique, we argue that not tuning the hyper-
parameters of the classifiers is not a major problem. In fact, this allows us to
better evaluate the robustness of the resulting embeddings.

4.2 Comparison of DiVe’s variants

We compare Dive’s single and dual point models while keeping the dimension
of the embeddings fixed. Note that, in the dual point model, each word is
represented by twice as many numbers as in the single point model. Therefore,
we expect the former model to yield better performance in more complex tasks,
but also to require more training data. We also consider the impact of the choice
of the activation function — sigmoid(), tanh() and exp().

3 http://scikit-learn.org/stable/index.html

8 Gomes et al.

Single Sigma &S Dual Sigma ogo% Single Sigma &SN Dual Sigma x=sa BERT Dive ==
Single Tanh mmmm Dual Tanh —— Single Tanh mmmm Dual Tanh —— ELMo mumm
Single Exp == Dual Exp mmmm Single Exp == Dual Exp smmmm

F1 Score
F1 Score

F NB NN QDA "7 CR PO AR SIM IM SUBJ QTS HSTW YR

(a) YR (small) dataset (b) SUBJ (large) dataset (c) Deep-learning baselines.

Fig. 1: Comparing Dive variants using F1 accuracy.

1.0 1.0
0.8
0.6
L E P R R R R R XXX
0.4
IS SS S EPE BB
9999
00000000000000000000
0.2+ 0-2“0 SIM # CR == QTS
‘0 AR =@= HSTW =@= SUB)
0.0~ 0.0+ YR =h= PO == M
00 02 04 06 0.8 00 02 04 06 0.8

Fig. 2: Impact of DiVe’s hyperparameter « (left: dual-point; right: single-point).

We compared the performance of the six models on each dataset. The results
were very consistent among “small” datasets and among “large” ones. Hence, we
present the results for two representative cases, YR (small) and SUBJ (large).

Figures 1a and 1b show the results for the YR and the SUBJ datasets, respec-
tively. The groups in the x-axis indicate the classifier. And, within each group,
a bar corresponds to one of DiVe’s variants. The height of each bar is the av-
erage F; score and the whiskers represent 95%-confidence intervals. In general,
we observe that the single point model significantly outperforms the dual coun-
terpart on the small dataset, and among the single point variants, the sigmoid
function yields the best results. Conversely, the dual point model significantly
outperforms the single counterpart on the large dataset, but among the dual
point variants, the sigmoid function is still the best choice. For this reason, in
the next experiments we fix the activation function to be the sigmoid(.).

4.3 Analysis of parameter « in similarity function f

The similarity function f, defined in (4), is an interpolation between the negative
Euclidean distance (o« = 0) and the inner product (a = 1). In this section, we use
the experimental setup described in Section 4.1 to investigate the impact of «
on the tasks’ performance. More precisely, we vary « from 0 to 1 in increments
of 0.05 and compute the resulting F; score. As indicated before, we fix the

Sequence-based word embeddings for effective text classification

Word2Vec FastText @zxxg
Glove mmmmm DiVe ——1

Bayesian Skip Gram ===

08 08

F1 Score

F1 Score

k| N o
NB o LR SYM RF NB NN KNN LDA QDA

(a) CR dataset (b) HSTW dataset

LR SVM RF NB NN KNN LDA QDA

(e) SIM dataset

08 08

0.6 06 :

F1 Score

o4 I 04

0.2

0.2

LR SVM RF

\
\
\
N
N
N
N
N
\
\
N
\

0 HINMA|NET N
LR SVYM RF NB NN KNN LDA QDA NB NN KNN LDA QD

(g) SUBJ dataset (h) QTS dataset (i) IM dataset

Fig. 3: Embeddings’ performance on text classification.

activation function f to be the sigmoid(). Figures 2 (left) and 2 (right) compare
results of DiVe Single and Dual models. In both cases we observe a large variation
in terms of F; depending on «. For example, for the QTS dataset, the F; score
has almost 30% variation for the Single Point model, and 10.5% variation for
the Dual Point model, and for PO dataset 12% for Single Point and almost
10% for Dual Point. This shows that « can significantly influence an estimator’s
accuracy, for example, in some datasets the best embedding are obtained when
a = 1 can also lead to very poor results (see IM single point model). On the
other hand, o = 0 is not ideal either (see subj with dual point model). Then,
we believe of setting a = 0.5 yields a good trade-off between performance and
simplicity, and it avoids additional hyper-parameters.

4.4 Performance of classifiers with trained embeddings

Now, we compare the quality of the embeddings obtained with DiVe to Word2Vec,
Glove, Bayesian SkipGram and FastText techniques. The embeddings were trained
on the specific dataset whose sentences we want to classify.

The results for each dataset are shown in Figures 3a-3i. In Figures 3a, 3b
and 3c, we analyze the performance of text classification from user reviews, hate

10 Gomes et al.

speech detection and sentence polarity, respectively. DiVe yields higher F; scores
than the baselines for nearly all classifiers. DiVe’s performance is also less vari-
able across classifiers than the other embedding techniques. In particular, other
embeddings often result in a poor performance when combined with SVM (e.g.,
Fig. 3c), which does not occur with DiVe. Some of these issues with SVM could
be circumvented with appropriate choices of nonlinear kernels, but we emphasize
that the focus of this work is on evaluating the quality of the embeddings.

The small datasets consist of user reviews extracted from popular websites.
The results obtained for them are shown in Figures 3d, 3e and 3f. We observe
that DiVe presented higher F; with almost all classifiers.

In Figures 3g and 3h, we observe once again that DiVe’s performance varies
less across classifiers than that of the other techniques and that SVM can yields
poor results. Figure 3i shows the results for the IM dataset, which consists of
movie and TV show reviews. Overall, Word2Vec and FastText achieved the best
performances. However, with exception of the QDA classifier, DiVe’s embeddings
resulted in very similar Fj scores. On this dataset, all embedding techniques,
except for GloVe, suffered with the SVM issues described above.

4.5 Performance of classifiers with pre-trained embeddings

In this section, we evaluate results of deep techniques ELMo* and BERT®. We
used these baselines as pre-trained embeddings, as recommended in the liter-
ature [15,3]. They were trained on a large dataset and used for classification
tasks. Yet, prediction using either technique is very computationally expensive.
In some cases, several hours of GPU/TPU processing were needed.

We compare the performance of the deep learning techniques with a simple
Logistic Regression classifier trained from DiVe’s embeddings when oo = 0.5. Fig-
ure lc summarizes the results obtained using both techniques on all 9 datasets.
DiVe outperforms ELMo in 4 classification tasks (CR, AR, HSTW and YR) and
BERT in 3 classification tasks (SUBJ, HSTW and YR).

We emphasize that both BERT and ELMo have approximately 100 million
parameters, thus requiring much longer training times than DiVe. For each tech-
nique, the average time of 5 training sessions carried out in each dataset, on a
computer with an Intel Xeon CPU@2.40GHz, 128G of RAM.

In order to put both time requirements and performance into perspective, in
Figure 4, we present scatterplots of these dimensions for each dataset. We state
that one method “dominates” the other on a dataset when it appears above
(better performance) and to the left (smaller training time) of the latter. We
observe that while DiVe often dominates other shallow methods, no other method
— either shallow or deep — dominates DiVe on any of the datasets. Furthermore,
the F'1 score achieved by DiVe is almost always close to that achieved by BERT
and ElMo (except in the PL dataset) and, in some cases, even superior to that
(see YR and HTSW datasets).

4 https://allennlp.org/elmo
® https://github.com/google-research/bert

Sequence-based word embeddings for effective text classification

90
80 5
BERT Dive BERT
80 ELMO 70 ELMO
o " 2
570 J)lVe H
@ » 60 Bso
ram
: 60 BSGram E
'G. 50 Glove
50| GloVe o ctText Word2vec
a0l MWord2Vec a0 ® o FastText
0 50 _ 100 150 ° 50 100 150

Time(s)

(a) SIM dataset

Time(s)

(b) AR dataset

F1 Score

75| bive
BERT

~
=)

ELMO

o
o)

@
=)

.WordZVec
55 %BsGram
%Glove FastText

o 50 100 150
Time(s)

(c) YR dataset

80| %ive

Dive BERT 100 BERT
70 . 50 ELMO SERT
Word2vec ELMO ELMO
o Glove o 80 70 =
S SGram s ive S
Joo & @ 70| Word2vec a
- - = 60 GlgVe
- “ 60 'Blsogream - Qurdzvec
50 50 -astText
FastText JFastText 50| BSGram
0 10 20 30 40 100 200 300 400 500 5 10 15 20
Time(s) Time(s) Tets)
d) SUBJ dataset (e) QTS dataset (f) HSTW dataset
75 i 75
pive ELM%ERT BERT 92.5 BERT
70 : 70 ELMO 0.0
o o o
= 65 = 4
5 E 65 §87.5
-0 FastText - Dive J8s.0 BSGram
w Glove w60 ¢ [o Word2Vec
35| Wword2vec FastText 82.5 Gloye
55 BSGram FastText
50| psGram W e e 80.0| DiVe ELMQ
100 200 300 5 10 . 10
Time(s) Time(s) Time(s)

(i) IM dataset

(g) CR dataset (h) PL dataset

Fig. 4: Scatterplots of training time vs. F1 for all techniques on each dataset.

Finally, we conclude that, even though DiVe is a relatively simpler technique
and easier to train than the state-of-the-art deep learning solutions, it was able
to outperform these more complex techniques.

5 Conclusion

In this work we presented DiVe, a novel word embedding technique based on a
variation of the Markovian statistical model. In order to address the scalabil-
ity problems that arise due to the cost of computing the partition function, we
proposed a sampling approach to approximate the latter. Moreover we evalu-
ated a new way of measuring similarity between word vectors, based on a linear
interpolation between the inner product and the square Euclidean distance func-
tion. Through extensive experiments we demonstrated the efficiency of DiVe on
9 datasets that represent 6 different text classification tasks: hate speech, user
review, text polarity, question type, and subjective and objective text. Finally,
using the obtained embeddings, we trained shallow and deep machine learning
classifiers to predict labels of the sentences that compose each of these textual
datasets. DiVe outperformed existing approaches in several tasks.

11

12 Gomes et al.
References
1. Brazinskas, A., Havrylov, S., Titov, I.: Embedding words as distributions with a

10.

11.

12.

13.

14.

15.

16.

bayesian skip-gram model. In: COLING (2018)

Cheng, J., Druzdzel, M.J.: AIS-BN: an adaptive importance sampling algorithm
for evidential reasoning in large bayesian networks. J. Artif. Intell. Res. 13 (2000)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT (2019)
Figueiredo, F., Ribeiro, B., Almeida, J.M., Faloutsos, C.: Tribeflow: Mining &
predicting user trajectories (2015)

Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-
occurrence data. J. Mach. Learn. Res. 8 (2007)

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: Compressing text classification models. CoRR abs/1612.03651 (2016),
http://arxiv.org/abs/1612.03651

Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
NLP, Computational Linguistics, and Speech Recognition (2009)

Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word
vectors for sentiment analysis. In: The 49th Annual Meeting of the Association for
Computational Linguistics (2011)

. McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: Con-

textualized word vectors. In: Advances in Neural Information Processing Systems
(2017)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoORR abs/1301.3781 (2013)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems (2013)

Moore, J.L., Joachims, T., Turnbull, D.: Taste space versus the world: an embed-
ding analysis of listening habits and geography. In: ISMIR (2014)

Okita, T.: Neural probabilistic language model for system combination. In: COL-
ING (2012)

Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP (2014)

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: NAACL-HLT (2018)
Xia, Y., Cambria, E., Hussain, A., Zhao, H.: Word polarity disambiguation using
bayesian model and opinion-level features. Cogn. Comput. 7(3) (2015)

