
Accelerated Steiner Tree Problem Solving
on GPU with CUDA

Christian Mathieu1 and Matthias Klusch2

1 Saarland University, Computer Science Department, 66123 Saarbruecken, Germany
2 German Research Center for Artificial Intelligence, 66123 Saarbruecken, Germany

Abstract. The Steiner Tree Problem in Graphs (STPG) is an important
NP-hard combinatorial optimization problem arising naturally in many
applications including network routing, social media analysis, power grid
routing and in the context of the semantic web. We present the first
parallel heuristics for the solution of the STPG for GPU with CUDA,
and show that the achieved speedups for different kinds of graphs are
significant compared to one of the fastest serial heuristics STAR.

Keywords: Graphs; Steiner Tree Problem; Parallel Algorithm; GPU; CUDA

1 Introduction

The Steiner Tree Problem in Graphs (STPG) is one of the most important
combinatorial optimization problems in computer science and defined as follows:

Definition 1. Given a weighed graph G(V,E) with node set V , edge set E ⊆
V ×V and a nonnegative weight function w : E → R+, a solution tree S(V ′, E′)
is a connected acyclic graph with node set V ′ ⊆ V and edge set E′ ⊆ E∩(V ′×V ′).
We extend the weight function w to solution trees as w(S) =

∑
e∈E′ w(e). The

Steiner tree problem in graphs (STPG) is as follows: For a given terminal set
Vt ⊆ V ′, find a minimal-cost tree S in G that spans Vt. Minimal cost denotes
that w(S) is minimal among all possible solution trees in G spanning Vt. The
vertices v ∈ Vt. are called terminal nodes, while the remaining vertices v ∈ V ′\Vt
are called non-terminal nodes

The STPG and close variants of it are used in a wide range of applications, in-
cluding wire routing in very-large-scale integration circuits (VLSI) [11], network
routing in wireless networks [20], multicast routing [12] and power distribution
in electric grids [8]. Large graph databases, especially in the context of social
networks or the semantic web, grow ever more important. When close relation-
ships between multiple entities are of interest, the STPG often arises naturally.
Many of these applications deal with very large problem sizes.
However, solving the STPG optimally grows prohibitively expensive with in-
creasing problem size: Deciding the existence of a Steiner tree below a given
cost is one of Karp’s classical 21 NP-complete problems [14]. Thus, the opti-
mization problem given in Definition 1 is NP-hard. In fact, there is essentially

no known algorithm with worst-case time complexity better than exhaustive
search, resulting in exponential runtime complexity. Due to the importance of
the problem, there has been considerable effort into finding both serial [25, 17,
23, 24], distributed [20, 12] and parallel[22] heuristics approximating the optimal
solution while offering far better runtime. On the other hand, there are also
many implementations of other graph algorithms on GPU [10, 16, 26], including
the Rectilinear Steiner Tree Problem [6]. However, to the best of our knowledge,
there are no parallel heuristics for the STPG employing the GPU so far. To this
end, we present the first parallel solution of the STPG for GPU with CUDA,
called STP CUDA [19], based on one of the fastest serial heuristics for the STPG,
called STAR [15]. Our experimental evaluation shows that for different kinds of
graphs, achieved speedup of STP CUDA is significant compared to the reference
implementation of STAR for CPU.
The remainder of this paper is structured as follows: NVIDIA’s CUDA and Kas-
neci et al’s STAR [15] are introduced in Section 2, while our parallel implementa-
tion is described in Section 3. Results of our practical evaluation are presented
in Section 4, before we draw our final conclusions in Section 5.

2 Background

In this section, we briefly introduce CUDA and an approximated STP solver,
called STAR [15], which serves as a basis of our parallel STP solving on GPU
with CUDA, introduced in a subsequent section.

Approximated Solution with STAR. A very fast approximated STP solver
called STAR [15] replaces the exhaustive search for a globally optimal solution
with a subdivision approach that repeatedly recombines partial solutions using
a shortest path heuristic. While unmodified STAR’s worst case runtime is expo-
nential, the authors also introduced the ε-improvement rule which is an early
abort criterion skipping recombinations resulting in minimal improvements, thus
guaranteeing termination in a limited number of iterations.
Using this optimization, STAR has a time complexity of O(1

ε
wmax

wmin
mk(S)) for

improvement threshold ε, query terminal count k, graph node count n, graph
edge count m and largest and smallest edge weight wmax and wmin[15]. S denotes
the time complexity of the chosen search algorithm, which is nlogn + m for
the reference implementation. It has been shown that STAR approximates the
optimal solution to a factor of (1 + ε)(4dlogke+ 4).
During its execution, STAR broadly operates in two phases. It first constructs an
arbitrary tree connecting all terminals using edges of the encompassing graph.
This tree can be thought of as an initial candidate solution. It is found by
performing a breadth-first search from each terminal node until a single node is
reached by all of the searches. The path to the corresponding starting terminal
of each search is then backtracked to build a tree spanning all terminals. This
initial tree is then passed to the second phase, which tries to iteratively improve
it. The key idea is to visualize a tree as a collection of non-branching paths

of degree 2, called loose paths, which are connected to either nodes of degree
≥ 3 or terminal nodes. These crossroads where loose paths meet are called fixed
nodes. This is illustrated in Figure 1(a). Note that removing all intermediate
(non-endpoint) nodes of a loose path from the tree decomposes the tree into two
partitions, both of which are trees as well. Figure 1(b) shows the graph from
Figure 1(a) after removing loose path 3. STAR now attempts to find a better
(lower cost) tree by following the following scheme:

– All loose paths in the currently best solution candidate tree are found

– The loose paths are sorted by descending length

– STAR attempts to replace the longest loose path not yet attempted

– To replace the loose path, it is cut out of the tree, and the shortest path
from any node of the first partition to any node in the second partition is
found. This is a regular multi-source multi-target shortest path search.

– If the two partitions and the shortest path between them form a cheaper
tree than the current best, it is the new current best and STAR repeats these
steps on the newfound tree.

– If the newfound tree is not strictly better, it is discarded and the next loose
path attempted.

– If all loose paths have been attempted but none resulted in an improvement,
then the currently best solution is returned as STAR’s result. Note that this
implies that the tree is a local optimum regarding STAR’s heuristic.

A schematic overview of STAR’s execution is shown in Figure 2. Loose paths,
fixed nodes and their role during tree partitioning are depicted in Figures 1(a)
and 1(b).

A pseudo-code listing of STAR is shown in Algorithm 1. buildInitialTree() de-
notes a first phase not depicted here, which connects all terminal nodes to a
common tree. partition() returns the two partitions that result when removing
all edges and intermediate nodes of loosePath from tree. By ’intermediate node’
we mean all nodes of the path excluding the two end points (see Figure 1). find-
ShortestPath() in Kasneci et al’s reference implementation is a straightforward
bidirectional shortest path search based on Disjkstra’s Algorithm. We will later
replace it with one of two parallel implementations. For further information on
the reference implementation, refer to [15].

Algorithm 1 STAR(graph, terminals)

bestTree := buildInitialTree(graph, terminals)
newTree := improveTree(graph, terminals, bestTree)
while newTree.cost < bestTree.cost do

bestTree := newTree
newTree := improveTree(graph, terminals, bestTree)

end while
return bestTree

Algorithm 2 improveTree(graph, terminals, tree)

loosePaths := getLoosePaths(terminals, tree)
for loosePaths ordered by descending length do

(partitionA, partitionB) := partition(tree, loosePath)
path := findShortestPath(graph, partitionA, partitionB)
newTree := merge(partitionA, path, partitionB)
if newTree.cost < tree.cost then

return newTree
end if

end for
return tree

(a) Loose Paths and Fixed Nodes (b) Partitions after Removal of
Loose Path 3

Fig. 1: Partitioning of Solution Candidate Tree

Parallel processing with CUDA. In a GPU using NVIDIAs Compute Unified
Device Architecture (CUDA), multiple cores are clustered into coherent units
called streaming multiprocessors (SM). CUDA segrates parallely executed code
into enclosed units called kernels. A kernel can be distributed across hundres
of cores, executing tens of thousands of lightweight threads concurrently. To
synchronize this vast amount of threads, a simple barrier synchronization model
is employed. Since groups of 32 threads (called a warp) are executed in true SIMD
fashion on one SM, divergent control flow is to be avoided within a warp to keep
performance high. To keep costly global memory accesses to a minimum, threads
on one SM can use a local memory called shared memory to cooperate with other
threads within the same core (or more precisely: within a block, a logical unit
clustering some threads guaranteed to reside within the same SM). The device is
further capable of joining multiple memory accesses within a contiguous region of
memory, a so called coalesced memory access. These hardware details necessitate
adapted program design avoiding inefficient memory layout and playing to the
strengths of the architecture.

3 Parallel STP CUDA Algorithm

Fig. 2: STAR Overview

Since we found STAR’s runtime on large
graphs to be mostly dominated by the
shortest path heuristic (Figure 6), we re-
placed the serial implementation of Dijk-
stra’s Algorithm [7] with two GPU-based
parallel approaches. CUDA N, the first of
these, follows Martin et al.’s node-parallel
approach closely [18], further employing
an optimization found by Ortega-Arranz
et al. [21].
The basic idea is to unroll DA’s outer loop
partially, processing multiple nodes from
the queue at once. The second approach,
CUDA E, parallelizes Dijkstra’s Algorithm
further, traversing edges in parallel, not
unlike Jia et al.’s algorithm for between-
ness centrality [13]. This effectively un-
rolls DA’s innermost loop as well, which
traverses each processed nodes’ outgoing
edges. The general idea for parallelization
is identical for both approaches:
Dijkstra’s Algorithm keeps track of the
length of the best known shortest path
from any search source node to each
reached node. This distance is called the
tentative distance. During each iteration,
the least tentative distance node (min-

node) among unprocessed (not yet settled) nodes is found. Since Dijkstra’s Algo-
rithm forbids negative weight edges, no node can relax (i.e. update its tentative
distance) a neighboring node to a tentative distance lower than its own. Since
the min-node is by definition the least distance node not yet settled, it must
have already converged to its true shortest path distance, since all other un-
settled nodes have at least the same tentative distance and thus cannot reduce
the min-node’s tentative distance further. But the min-node is not necessarily
unique. Depending on the edge weights in the graph, a potentially large number
of nodes can be equally minimal at a given time. We call such nodes the F -set,
since they are the frontier of nodes about to be settled (See Figure 4). The order
in which nodes in the F -set are processed does not matter, since all nodes in the
F -set have converged to their final state, i.e. there is no interdependence among
these nodes. It is thus possible to expand them concurrently, as long as we take
care to resolve conflicts while updating neighbors.
Ortega-Arranz et al. further showed that this definition of the F -set can be
expanded to certain almost-minimal nodes which must have converged to their
true shortest path distance as well [21]. A node ni is almost minimal if di ≤

dmin +minj(wj,i), where di denotes the tentative distance of node i, minj(wj,i)
denotes the least weight of any incident edge to i and dmin denotes the minimal
tentative distance of any yet unsettled node. In other words, there is no node
yet unsettled that could relax node i.

Fig. 3: Parallel Search Overview

Since this requires either processing
all edge weights of each node in
each iteration, or storing the mini-
mal edge weight for each node, and
since many of our graphs have uni-
form edge weights anyway, we opted
to use Ortega-Arranz’ economical ap-
proach instead. We only relax nodes
in parallel when di ≤ dmin + wmin
where wmin denotes the least weight
of any edge in the graph. This is
more conservative, but not dependent
on the individual node’s edge weights
anymore. For uniform weight graphs,

both approaches are equivalent.

Fig. 4: Frontier Nodes of Search Fringe

To actually exploit this inherent par-
allelism, we proceed as follows: The
graph is stored in GPU memory using
a straightforward adjacency list repre-
sentation. For each node, we store the
offset of its first edge in the edge ar-
rays. For each edge, we store source
node index, target node index and
weight. While storing the source node
index might seem superfluous, it is
very useful for our edge-parallel ap-
proach CUDA E below. We further store
the graphs minimal edge weight. The
graph is initialized once and reused for
subsequent searches and STAR invoca-
tions. Due to this, our algorithms are

most useful for static graphs.

During each search operation, tentative distances, F - and U -sets are initialised
first and stored in form of a flag array. The F flag represents nodes that are
about to be expanded (i.e. in the aforementioned frontier), whereas the U flag
represents unsettled but visited nodes (i.e. potential candidates for the F -set
during the next iteration). We then find the minimal tentative distance among
U -nodes using a slightly modified parallel reduction [9]. We now mark all F -
nodes, i.e. nodes ni where di ≤ dmin + wmin. If this results in no marked node,
the target node(-s) must be unreachable and we abort (all possible paths are
explored). If F -nodes were marked, we retrieve the least distance one. Note that,

since F -nodes are equivalent to nodes Dijkstra’s Algorithm might have settled in
this iteration, we are done if such a target exists. If no target was F -marked, we
settle all F -nodes. To avoid data races, neighboring distance values are updated
using the atomicMin operator. Parallel settling of nodes is where CUDA N differs
the most from CUDA E. The general scheme of the search operation is depicted
graphically in Figure 3 and as pseudo-code in Algorithm 3.

Algorithm 3 findShortestPath(graph, partitionA, partitionB)

wmin := min{w(i, j) | edge (i, j) ∈ graph} # precalculated once
∀ nodes n ∈ graph : d(n) :=∞
∀ nodes s ∈ partitionA : d(s) := 0
dmin :=∞
U := {s | s ∈ partitionA}
F := {}
while true do

dmin := minn∈Ud(n) # parallel reduction[9]
F := {n | (n ∈ U) ∧ (d(n) ≤ dmin + wmin)} # parallel setting of flag array
if |F | = 0 then

return null # no solution exists
end if
tmin := arg mint∈F∩partitionBd(t) # any target about to be settled?
if tminexists then

return constructPath(tmin) # backtrack from target node
end if
settle(U, F, d) # This is where CUDA N and CUDA E differ!

end while

Node-parallel variant CUDA N of STP CUDA. Our node-parallel ap-
proach CUDA N differs from CUDA E in the strategy chosen when settling nodes in
parallel. The idea behind CUDA N is to distribute F -nodes over available cores,
where they are settled in parallel. A single node is always processed by a single
thread. To avoid the overhead of managing queue structures, U and F nodes
are marked in a global flag array. We distribute all graph nodes among avail-
able cores, skipping nodes not in the F -set. Each thread then iterates over all
neighbors of its currently allotted node in series. If successful relaxation seems
possible (we don’t know whether other threads are just relaxing the same node!),
an atomicMin operation is executed to synchronize parallel write access. This
is safe, since neither edge weights nor F -node tentative distances are going to
change, thus no read after write conflicts occur. As mentioned above, the entire
approach is mostly equivalent to [18].

Edge-parallel variant CUDA E of STP CUDA. The node-parallel ap-
proach employed by CUDA N above potentially suffers from poor load balancing
when processing real-world ontologies, which often have a power-law distribution

Algorithm 4 settle N

for all n in parallel do
if n ∈ F then

for each neighbor m do # this is serial
if w(m) > w(n) + w(n,m) then

w(m) := w(n) + w(n,m) # synchronized with atomicMin()
end if

end for
end if

end for

of edge degree. When nodes differ greatly in edge degree, the workload differs
between individual threads as well. Remember: CUDA N has a single thread settle
a single F -flagged node. This thread thus needs to iterate over all outgoing edges
of the node. Differing edge degree results in unequal workload between threads.

Our second approach thus distributes work not on a per-node but on a per-
edge basis. When settling nodes in parallel, all graph edges (belonging to F -set
nodes or not) are distributed among threads. For each edge, the F flag of its
source node is checked. If the F -flag is not set, the edge is skipped, otherwise
the target node’s distance is updated. This effectively parallelises the settling of
each single node. While this incurs significant overhead due to repeated access
to source nodes as well as processing of unneeded edges, it offers much more fine
grained load balancing, thus utilizing available processors more efficiently. As
above, conflicts are resolved using the hardware-supported atomicMin operator.
Thread safety follows from the same argumentation as with CUDA N above.

Algorithm 5 settle E

for all edges (n,m) in parallel do # rollout of inner loop of settle N
if n ∈ F then

if w(m) > w(n) + w(n,m) then
w(m) := w(n) + w(n,m) # synchronized with atomicMin()

end if
end if

end for

4 Evaluation

Setting. All experiments below were executed using an Intel R© Xeon R© W5590
3.33GHz CPU with 32GB of DDR3-1333 main memory. The GPU-based com-
ponents were executed using a Fermi-based Nvidia R© GeForce R© GTX590 card
in standard memory configuration (i.e. 1536MB of GDDR5 memory per GPU).

While this card is a dual gpu card, only one GPU was employed during our tests.
We compare the performance of three variants of STAR:

reference The purely CPU-based reference implementation, as defined by Kas-
neci et al.[15]. This implementation runs entirely host-sided and employs a
straightforward serial implementation of Dijkstra’s Algorithm[7] when search-
ing for shortest paths.

cuda n An implementation which performs the shortest path search node-parallel
on GPU, i.e. distributing graph nodes among available threads. The imple-
mentation follows [21] closely.

cuda e An implementation which performs the shortest path search edge-parallel
on GPU, i.e. distributing graph edges among available threads, not unlike
Jia et al.’s algorithm for betweenness centrality[13].

Both cuda n and cuda e perform the remaining components of STAR single-
threaded on host side. To evaluate the performance of both parallel implemen-
tations as well as reference, we use object-relational queries in several large
real-world ontologies. Test cases for each ontology were generated as follows:

– Each sample is a single object-relational query, defined by the set of terminal
nodes and the ontology graph.

– The solution to a query is the resultant Steiner tree connecting the terminal
nodes along edges of the ontology graph.

– Since query terminal count k affects runtime heavily, samples are generated
for multiple values of k.

– k is set to increasing powers of two (starting with two), until main memory
prohibits further increase (elaborated below).

– For each choice of k, 10 samples are generated.
– The query terminals of a given sample are chosen uniformly at random

among all nodes of the ontology graph. If this results in an unsolvable in-
stance (i.e. terminals are in disconnected components of the overall graph),
the sample is discarded and a new sample generated until a valid sample is
found.

– The evaluated algorithms all execute the same samples. The sample set is
global, not per algorithm.

– The samples are executed by increasing k. Once at least one algorithm ex-
ceeds main memory during execution of a sample, all preceding samples of
this k are discarded and no larger values of k are attempted. This is to ensure
sample count is uniform among k, making runtime variance comparable.

– The protocolled performance metrics are wallclock runtime spent during
execution and wallclock runtime spent during search. The former is defined
as the time elapsed between issue of query until the resultant Steiner tree is
returned. The latter is defined as the sum total of time spent inside shortest
path searches during the former.

– We evaluate our parallel implementations regarding their speedup over ref-
erence as well as against each other. We define speedup of implementation i
over implementation j as

tj
ti

, where ti and tj denote the measured runtime.
If both implementations have equal runtime, this results in a speedup of 1.

– Time spent for creation of the ontology graph structure in memory does not
affect runtime metrics. The graph is generated only once for each ontology
and is considered part of the problem input. This includes both the graph
representation in main memory as well as in GPU memory.

Ontology |N | |E| mean edge degree edge degree variance

OpenGalen 1.8M 8.7M 4.69 337k
IMDb 4.6M 29.8M 6.45 743
GeoSpecies 389k 4.1M 10.74 81k
Jamendo 484k 2M 4.32 48k

Table 1: Ontologies used for Runtime Testing

The ontologies chosen were (cf. Table 1):

OpenGalen An open source medical terminology, in development since 1990.
The comparitively low edge count and high edge degree variance made it an
interesting test case, since it introduced high branch divergence and poor
load balancing for cuda n. We used the OWL 2.0 based download of the
entire GALEN ontology version 8, including Common Reference Model as
well as all available extensions. [4]

IMDb The international movie database, a large database containing informa-
tion about movies, television programs and video games. We built our test
set using the plain text data files supplied by IMDb. We restricted the test
set to the complete set of movies, actors, actresses, directors, producers and
edges between those, as of 14th April 2014. The larger edge count and far
lower edge degree variance provided an interesting contrast to OpenGalen
above, since both favor the node parallel implementation cuda n over the
edge parallel cuda e. [2]

GeoSpecies An ontology containing information about select plant and animal
species, including their taxonomic relation and distribution area. Its lower
edge and node count make it interesting to close the gap to the substantially
smaller SteinLib test cases we will introduce below. [1]

Jamendo An ontology containing information about royalty free music tracks,
records and the corresponding artists. It has about half the edge count of
GeoSpecies and a comparable edge degree variance, further closing the gap
to larger SteinLib test cases. [3]

For further information about the chosen ontologies, refer to Table 1. We further
used SteinLib [5] test suites B, C, D and E to evaluate our implementation for
high terminal count queries on small graphs. Since these queries are suboptimal
for the parallelization approach chosen, they promise further insights into use
cases where using our approach is not feasible. Figure 5(a) gives an overview
how the SteinLib test cases and the ontology test cases compare in graph size
and query terminal count. Note that both x and y-axis have been inverted to
keep consistency with Figure 5(b), 5(c) and 5(d), which had to be rotated to

avoid occlusion of high-k values.

Results. Parallelizing the search operation of STAR promises substantial speedups
when dealing with large graphs, especially at low query terminal counts. Fig-
ure 5(b) shows the speedup of CUDA N over REFERENCE, while Figure 5(c) shows
the same information for our edge-parallel approach CUDA E. Both approaches
achieved a total runtime speedup over reference of over two orders of magnitude
for the larger ontology based test cases and smaller terminal counts.

While the edge-parallel approach incurs overheads due to repeated calculations
and additional edges it needs to iterate over, it still outperforms the node-parallel
approach consistently, presumably due to better load balancing. This advantage
is most pronounced for ontologies with high edge degree variance. Figure 5(d)
shows the speedup of CUDA E over CUDA N. Note the prominent ridge for Open-
Galen, an ontology with high edge degree variance, while speedup for the rather
uniform IMDb is much more subtle.

For smaller graphs or queries with very high terminal count, the relative per-
formance of both our parallel implementations suffers compared to the serial
reference implementation. This has multiple reasons (cf. Figure 2). STAR needs
to perform a tree split and merge each time a loose path is processed. For high
terminal counts, a large number of shortest path searches needs to be conducted,
while the effort for each individual search often even sinks. A higher terminal
count often results in a larger, more branched solution tree, thus reducing the
average distance between tree nodes, resulting in earlier search termination. A
smaller graph size on the other hand reduces the overall amount of nodes the
search needs to process, resulting in lower search overhead as well. In both cases,
the benefit of parallelizing the search is reduced due to the lowered contribution
of search to total runtime. For sufficiently short searches, the CPU even outper-
forms the GPU. We verified these assumptions with synthetic power-law graphs
generated according to the Barabasi-Albert model (initial graph size 3, connec-
tion factor 2). Figure 6 shows the time spent creating the initial tree, performing
searches, and performing tree splits/merges for graphs of increasing node count.

Figure 6(a) shows results for a query terminal count of 4. The dominant factor
contributing to runtime is clearly the time in shortest path searches, followed
by the initial tree construction, which is a search as well. Effort for tree splits
and merges is largely independent of graph size. This is unsurprising, since the
size of the candidate solution tree is largely uneffected by graph size. In these
graphs, the amount of nodes reachable along a path grows exponentially with
path hop count (i.e. number of edges traversed). Contrast this with Figure 6(b),
which shows the results for queries with terminal count 128. The contribution
of tree splits and merges increases significantly and now dominates time spent
searching. This is not due to an increase in runtime per split/merge, but due
to a higher amount of searches performed in total. The search effort for each
individual search even decreases compared to the lower terminal count case, thus
reducing opportunity for parallelism and runtime contribution of search itself.
Since each kernel invocation on GPU adds a small constant runtime overhead

and since both GPU-based approaches iterate over all graph nodes (for CUDA N)
or edges (for CUDA E) each search step, a sufficiently high terminal count results
in poor performance compared to the serial reference implementation, especially
when graph sizes are very small.
On our test platform, the break-even point where both parallel implementations
consistently outperform the serial reference implementation is at about 104 graph
edges, as long as query terminal counts don’t exceed 10. For graphs with edge
count higher than about 105, query terminal counts up to 103 still favored the
parallel implementations. This of course is heavily dependent on implementa-
tion, input graphs and hardware, but the results still show that parallelizing
STAR’s search heuristic promises substantial speedups for STPG instances in
large graphs with moderate to small terminal counts.

(a) Testcase Legend (b) Speedup CUDA N over REFERENCE

(c) Speedup CUDA E over REFERENCE (d) Speedup CUDA E over CUDA N

Fig. 5: Speedups

5 Conclusions

While serial STAR itself is already a very fast heuristic for the Steiner tree problem
in graphs, its runtime for queries with low terminal counts on large graphs is
heavily dominated by its search heuristic. Parallelizing this search heuristic offers
substantial speedups using affordable consumer graphics hardware. We evaluated

(a) k = 4 (b) k = 128

Fig. 6: STAR Component Scaling

both the viability of a standard node-parallel search approach and an edge-
parallel improvement thereupon, and found both to be highly viable as long
as graph sizes are large and query sizes are small enough. The edge-parallel
approach promises much more robust performance when graphs with high edge
degree variance are encountered. In our tests, both parallel implementations
required graphs larger than about 104 edges to play to their strengths, limiting
their feasibility on high-k problem instances in smaller graphs. Due to its more
stable performance and consistently higher speedup, the edge parallel approach
seems preferable to the node-parallel one.

Acknowledgement. This work was supported by the German ministry for ed-
ucation and research (BMBF) in the project INVERSIV under contract number
01IW14004.

References

1. http://lod.geospecies.org/

2. http://www.imdb.com/

3. https://www.jamendo.com/

4. http://www.opengalen.org/

5. http://steinlib.zib.de

6. Chow, W.K., Li, L., Young, E.F.Y., Sham, C.W.: Obstacle-avoiding rectilinear
Steiner tree construction in sequential and parallel approach. Integr. VLSI 47(1),
105–114 (Jan 2014)

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

8. Duan, G., Yu, Y.: Power distribution system optimization by an algorithm for
capacitated Steiner tree problems with complex-flows and arbitrary cost functions.
Electrical Power & Energy Systems 25(7), pp. 515 – 523 (2003)

9. Harris, M.: Optimizing parallel reduction in CUDA.
http://docs.nvidia.com/cuda/samples/6 Advanced/reduction/doc/reduction.pdf
(2007)

10. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: Proc. of 16th ACM Symposium on Principles and
Practice of Parallel Programming, New York, NY, USA, 267–276, ACM (2011)

11. Ihler, E., Reich, G., Widmayer, P.: Class Steiner trees and VLSI-design. Discrete
Applied Mathematics 90(1-3), 173 – 194 (1999)

12. Jia, X., Wang, L.: A group multicast routing algorithm by using multiple minimum
Steiner trees. Computer Communications 20(9), 750 – 758 (1997)

13. Jia, Y., Lu, V., Hoberock, J., Garland, M., Hart, J.: Edge v. node parallelism
for graph centrality metrics. In: GPU Computing Gems Jade Edition, 1st edition,
chap. 2, 15–30, Morgan Kaufmann, USA (2011)

14. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, 85–103 (1972)

15. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR:
Steiner-tree approximation in relationship graphs. In: Proc. of IEEE International
Conference on Data Engineering, Washington DC, USA, 868–879, IEEE (2009)

16. Katz, G.J., Kider, Jr, J.T.: All-pairs shortest-paths for large graphs on the GPU.
In: Proc. of 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware. Eurographics Association, Switzerland, 47–55, ACM (2008)

17. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta
Informatica 15(2), pp. 141–145 (1981)

18. Mart́ın, P.J., Torres, R., Gavilanes, A.: CUDA solutions for the SSSP problem.
In: Proc. of 9th International Conference on Computational Science ICCS: Part I,
904–913, Springer, (2009)

19. Mathieu, C.: On approximated Steiner tree problem solving with CUDA. Bachelor
thesis, Saarland University, Computer Science Department, Saarbruecken, Ger-
many (2014)

20. Muhammad, R.: Distributed Steiner tree algorithm and its application in ad hoc
wireless networks. In: Proc. of International Conference on Wireless Networks,
173–178 (2006)

21. Ortega-Arranz, H., Torres, Y., Llanos, D., Gonzalez-Escribano, A.: A new GPU-
based approach to the shortest path problem. In: Proc. of International Conference
on High Performance Computing and Simulation, 505–511 (2013)

22. Park, J.S., Ro, W., Lee, H., Park, N.: Parallel algorithms for Steiner tree problem.
In: Proc. of 3rd International Conference on Convergence and Hybrid Information
Technology (ICCIT), vol. 1, 453–455 (2008)

23. Rayward-Smith, V.J.: The computation of nearly minimal Steiner trees in graphs.
Mathematical Education in Science and Technology 14(1), 15–23 (1983)

24. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proc. of 11th Annual ACM-SIAM Symposium on Discrete Algorithms SODA, 770–
779, Society for Industrial and Applied Mathematics, USA (2000)

25. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem
in graphs. Mathematica Japonica 24, 573–577 (1980)

26. Zhong, J., He, B.: Medusa: Simplified graph processing on GPUs. IEEE Trans.
Parallel Distributed Systems 25(6), 1543–1552 (2014)

