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ABSTRACT
We present the first system, called ICM-Wind, for semantics-
empowered fluid condition monitoring (FCM) in wind tur-
bines. It monitors the condition of fluids in the wind tur-
bine gearbox, recognizes actual and the onset of failures
of FCM sensors and components installed on the gearbox,
and provides knowledge-based failure diagnosis support to
non-experts. For this purpose, the ICM-Wind system per-
forms semantic sensor data analysis by applying semantic
technologies for interpreting the state of turbine parts and
answering questions related to their maintenance. Domain
knowledge is encoded in OWL2 and with SPIN rules. Fault
detection and diagnosis queries are answered by use of the
semantic reasoners Fact++, STAR, TopSPIN rule engine,
and SwiftOWLIM store. The system prototype was success-
fully tested in cooperation with the HYDAC Filter Systems
GmbH based on given selected samples of a two-year record-
ing of FCM multi-sensor and operational data for two wind
turbines of a regional on-shore wind farm operated by the
ABO Wind AG.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation-
Semantic Networks

General Terms
Algorithms

Keywords
Condition monitoring of wind turbines, semantic sensor data,
semantic reasoning

1. INTRODUCTION
Today, the major strategy of operators of on-shore or off-
shore wind farms to avoid the very costly and catastrophic
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failures or breakdowns of a wind turbine is to maintain its
critical components based on their actual condition, rather
than by a fixed scheduled, preventive replacement or mere
reactive maintenance. Condition-based on-site or remote
maintenance requires condition monitoring (CM) which en-
compasses continuous data collection, fault recognition and
fault diagnosis [10]. The conventional wind turbine drive
train consists of a rotor, mainshaft and bearing, gearbox
with main turbine gear, and power generator, all mounted
on a common bedplate in the turbine nascell on top of a
turbine tower. Within the complex wind turbine system,
the main gear which transfers the rotation from the rotor to
the generator is a critical component. To ensure its reliable
operation, the condition of the gear is determined by current
condition monitoring (CM) systems through the continuous
monitoring of its vibrations or the quality of lubricating flu-
ids to recognize the onset of wear and faults of the gear
based on complex sensor and signal processing [15, 5, 9]. In
many wind turbines, a specific fluid condition monitoring
(FCM) system is integrated with the gearbox which filters
the oil continuously and cools it at higher operating tem-
peratures to ensure consistent lubrication of the gear and
prevent fast degradation of the oil. Such FCM systems are
in particular equipped with multiple, networked sensors for
monitoring various relevant physical and fluid parameters
like gear speed, temperature, pressure, metallic and particle
contamination of the lube oil.
However, current approaches to fluid condition monitoring
of wind turbines still require a human engineer with exten-
sive domain expertise to manually interpret the highly com-
plex interdependencies between measured sensor and opera-
tional data and various system conditions for failure recog-
nition and diagnosis. The main challenge of intelligent FCM
is to predict the remaining oil filter lifetime, to identify sen-
sor and operational data patterns that indicate the onset
of failures, and to provide knowledge-based failure diagno-
sis support to non-experts. This goes far beyond currently
available FCM systems which only perform fault detection
mainly based on multi-variate statistical sensor data analysis
[17]. On the other hand, only few approaches to intelligent
CM exist which employ means of AI like neural networks [1,
11], causal graphs and model-based reasoning [14], agents
[12] and semantic reasoning [7] for fault detection and di-
agnosis, though none are available for intelligent FCM of
wind turbines yet. Thus we developed the first system for
intelligent FCM of wind turbines, named ICM-Wind, which
uses in particular semantic technologies in order to address



the aforementioned challenges. The ICM-Wind system inte-
grates a specific FCM subsystem for wind turbine gearboxes
developed by our customer HYDAC Filter Systems GmbH
with new components for off-line statistical and semantic
analysis of sensor and operational data in order to answer
certain types of queries related to failure detection and di-
agnosis, and system information. The semantic modelling
of the FCM domain in a specific domain ontology in OWL2
under OWL-Horst semantics, the SPIN rules for sensor fault
detection, as well as the identification of important types of
FCM-related analysis queries to be answered by the system
in practice have been achieved in close collaboration with
engineers and domain experts of HYDAC [4].
In this paper, we focus on the semantic analysis component
of the ICM-Wind system which exploits the TopSPIN rules
engine, the SwiftOWLIM store, and the semantic reasoners
Fact++ and STAR [8], either individually or in combina-
tion, in order to answer given FCM-related analysis queries
off-line as required. The experimental performance evalu-
ation of this component for given samples from a two-year
recorded FCM and operational data volume for two GE-
1.5sl wind turbines of an on-shore wind farm operated by
the ABO Wind AG [19] revealed that the results and av-
erage response times of its semantic query processing are
reasonable. The ICM-Wind system is considered by HY-
DAC GmbH as innovative for their FCM product portfolio
[20] and useful for its targeted application in practice.
The remainder of the paper is structured as follows. After
an overview of the overall system architecture and its com-
ponents in section 2, we describe the specific ICM-Wind do-
main ontology according to which the measured FCM sensor
data is semantically encoded in Section 3. The FCM-related
query processing by the semantic analysis component and its
experimental performance evaluation are presented in sec-
tions 4 and 5. We dicuss related work in section 6 before we
then conclude the paper.

2. ICM-WIND SYSTEM ARCHITECTURE
Requirements and architecture. The main ICM-Wind
system requirements which were given to us by our customer
HYDAC are as follows: The system bases on the HYDAC
FCM system integrated with a wind turbine gearbox and is
able to (a) predict the condition, especially the remaining
useful operating time of its oil filter, (b) detect the onset of
faults of sensors and the main turbine gear in the gearbox,
and (c) provide knowledge-based support for fault diagno-
sis to the engineer. In particular, our customer required
that the system is able to correctly answer a given set of
different types of informal, high-level FCM-related analysis
queries (cf. Sect. 4) over given 1-/3-/5-/7-day recordings of
FCM sensor and operational data of a wind turbine gear-
box. Further, it was required that the analysis results are
provided not in real-time during the data recordings but off-
line within a maximum of three hours for a 7-day recording
in practice.
These requirements are satisfied by our ICM-Wind system
which component-based architecture (cf. Figure 1) is shortly
described in the following. In this paper, we focus on the
system component for semantic sensor data analysis, and re-
fer the interested reader for more details on the other system
components to [4].
HYDAC FCM system. The HYDAC fluid condition
monitoring subsystem of the ICM-Wind system is integrated

Figure 1: Components of the ICM-Wind system.

with a wind turbine gearbox. It consists of the oil filter, oil
sump, oil pump, oil cooling loop with thermo-bypass valve
of the gearbox, and the special set of 11 wired FCM sen-
sors for monitoring physical parameters (absolute and dif-
ferential pressure at the oil filter, temperature at different
points in the oil loop, and rotational speed of the gear) and
fluid, i.e. lube oil, condition parameters (dielectric constant,
metallic and particle contamination). The collected multi-
sensor data are preprocessed and stored in CSV files by the
HYDAC-FCM system from which it is accessible by both
the statistical and the semantic data analysis component
via REST service operations but not yet via OGC sensor
web standards [18].
Statistical analysis component. This component ba-
sically applies Linear Discriminant Analysis (LDA) to all
recorded sensor and turbine operational data as well as sec-
ondary features like the increase and variation of measured
differential pressure. It computes, in particular, a distinct
trend of subsequent oil filter changes which also reflects the
aging of the overall wind turbine gear in order to eventu-
ally classify the actual oil filter condition (new, medium,
advanced aging), and to display deviations from the trend
which indicate potentially harmful conditions of the turbine
gear.
Semantic analysis component. This component per-
forms the semantic sensor data encoding and analysis (cf.
Figure 2). The sensor data provided by the HYDAC FCM
system is RDF-encoded according to a specific domain on-
tology in OWL2 under OWL-Horst semantics [13] and the
actual FCM system configuration data. This is followed by
the evaluation of fault conditions of sensors with a set of
SPIN rules (cf. Section 3).
The RDF-encoded and fault condition evaluated sensor data
set is then transfered to the semantic data reasoning envi-
ronment (SDRE) which consists of a query processor and
functional plug-in modules for semantic query answering and
reasoning. In its current version, the SDRE incorporates
the non-commercial in-memory version of the RDF triple
store SwiftOWLIM, and the semantic reasoners Fact++ and
STAR [8]. The SwiftOWLIM store and the reasoner Fact++
are used to answer SPARQL, SPARQL-DL, respectively, DL
queries over the domain ontology with a materialized fact
base which each of these module creates internally from the
given semantic sensor data set. The STAR reasoner cre-
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Figure 2: Architecture of the semantic analysis com-
ponent.

ates an internal RDF graph representation of the ontology
with a non-materialized fact base it then utilizes to answer
RDF object-relational queries. Users of the system can enter
different types of queries for fault detection, diagnosis and
information by instantiating the respective query templates
which are provided by the user interface. The query proces-
sor of the SDRE then processes these queries with either one
or multiple of the SDRE modules in combination depending
on the considered query type (cf. Section 4).
Hybrid analysis component. This system component
is concerned with two types of queries whose answering re-
quires the combined functionality of the statistical and se-
mantic data analysis components. For example, the answer-
ing of the user query ”What is the actual condition of oil
filter OF4?” requires the semantic analysis component to
check the result of the respective LDA analysis from the
statistical component. If this result is not available in the
fact base yet, the hybrid component automatically calls the
statistical component to produce it, and then the semantic
component to update its fact base and re-run the query pro-
cessing. In turn, if the LDA analysis result of the statistical
component for oil aging shows a faulty sensor signal for oil
temperature (STemp), the hybrid component indicates this
to the user and proposes the use of alternative sensors with a
semantically equivalent parameter for the analysis. That is,
it calls the semantic component to answer the query ”Which
property P measured by which sensor can be used instead
of the property STemp?” and, in case of a positive result,
then triggers a re-run of the LDA analysis by the statistical
component with the sensor data for P instead of STemp.

3. DOMAIN MODELING AND SEMANTIC
DATA ENCODING

We modeled the FCM domain for wind turbines in a specific
domain ontology called ICM-Wind ontology in close collab-
oration with engineers and domain experts of our customer
HYDAC. In the following we provide an overview of this
ontology, its extension with fault detection rules, and the
semantic encoding of sensor data according to this ontology.

ICM-Wind Ontology: Overview. The ICM-Wind on-
tology represents knowledge about the wind turbine domain

in general and the FCM domain in particular. For this pur-
pose, it aligns appropriate concepts and properties defined
in the standard W3C-SSN ontology [3] for semantic sensor
networks with specific ones we defined in compliance with
(a) the ISO-13374 standard [6] for condition monitoring of
machines, and (b) the given specification of the HYDAC
FCM system for wind turbine gearboxes. Parts of the ICM-
Wind ontology related to the wind turbine, FCM subsystem,
sensors, and faults are shown in figures 3 and 4.

Figure 3: Part of ICM-Wind ontology representing
FCM, sensor and fault concepts.

Figure 4: Part of ICM-Wind ontology representing
wind turbine and HYDAC sensor concepts.

The static conceptual domain knowledge was modeled jointly
with domain experts from HYDAC and specified in the stan-
dard ontology language OWL2, more concrete, in the fully
RDFS compatible OWL-Horst fragment of OWL2 [13] (a.k.a.
OWL-Tiny) which was expressive enough for our modeling
of the considered domain. This OWL fragment is efficiently
implemented in the RDF triple store SwiftOWLIM as well
as supported by the reasoners Fact++ and STAR of the
semantic analysis component. In its initial version, the con-
cept base (TBox) of the ICM-Wind ontology consists of 111
concepts, 28 relations (properties) and 4 XSD data types
(float, string, bool, dateTime) in total, and is provided by
the semantic analysis component to its RDF-encoder mod-
ule for the semantic encoding of sensor data as well as to its
TopSPIN rule engine and SDRE modules for further seman-
tic data analysis (cf. Sect 4).

Fault detection rules. The ICM-Wind ontology is ex-
tended with a set of 24 SPARQL-SPIN rules for the de-



tection of (a) functional faults of sensors, and (b) property
value-based failure conditions of the wind turbine system.
In particular, each fault detection rule is uniquely associated
with a sensor, component or property class as an extension
of its definition in the ontology. Sensor fault detection rules
determine for each property observed by the specific sensor
whether its measured data are within a ISO standard-based
value range, hence indicate whether the sensor is malfunc-
tioning or not. The second type of rules is checking whether
the measured property values within the specified ranges are
tolerable or critical with regard to the monitored condition
of the wind turbine gearbox. In our case, the respective
limits of FCM-related sensor parameter values for certain
failure conditions were given to us by the domain experts
from HYDAC. Though SPARQL-SPIN is not a standard, we
choose it for reasons of customization of user-defined math-
ematical functions which can be employed to specify failure
conditions in SPARQL queries which goes beyond the ex-
pressivity of SPARQL and cannot be evaluated by any of
the SDRE modules but the TopSPIN rule engine for a pre-
detection of faults (cf. Sect 4.2). A simple example of the
semantic representation of a contamination sensor with its
assigned set of SPARQL-SPIN rules for sensor and prop-
erty value-based system fault detection is shown in figure 5
(denoted in an abstracted form).

Sensor 
_Fault 

Sensor Observed 
Property 

Operating Value  
Range 

CS_1000 CS_Flow 30 -  300 ml/min 

ISO_16 0 - 25 counts 

ISO_6 0 - 25 counts 

ISO_4 0 - 25 counts 

HLB HLB_DK 0 - 100 % S 

HLB_S -30 - +30 % 

HLB_Temp 0 - 100 °C 

Wind turbine system fault detection rule:  

IF ( ISO_4.hasValue < 20  &&  ISO_4.hasValue > 0 )  

THEN  CONSTRUCT {  
sysflt = InstanceOf(Medium_ISO4_System_Contamination), 
sysflt.faultCondition = ISO_4.hasValue   
sysflt.faultLevel = “ALARM”}  
 
Plus rule for (High_ISO4_System_Contamination)  

Component TBV state detection rule: 

IF  ( HLB_Temp.hasValue > 55  &&  HLB_Temp.hasValue < 100 ) 

THEN  CONSTRUCT{  tbv = InstanceOf(Thermo_Bypass_Valve), 
                                     tbv.hasStatus = “Closed”}  
 
Plus rule for (tbv.hasStatus = “Opened”) 

Sensor CS_1000 fault detection rule:  

IF ( ISO_4.hasValue < 0   &&  ISO_4.hasValue > 25 )  

THEN  CONSTRUCT { senflt = InstanceOf(Sensor_Fault), 
    senflt.faultySensor = CS_1000, 
    senflt.faultCondition = ISO_4.hasValue 
    senflt.faultLevel = “ALARM”} HLB HLB_Temp 

observes 

Fault System 
_Fault 

Component 
_Fault 

Medium_ISO4_ 
Contamination 

High_ISO4_ 
Contamination 

Part of Ontology 

Figure 5: Fault and state detection rule examples

Semantic encoding of sensor data. The semantics of
measured sensor data is encoded in compliance with con-
cepts, relations and data types defined in the ICM-Wind
ontology. For this purpose, the recorded raw sensor data is
cleaned, processed and formatted in a tabular CSV format
by the HYDAC FCM system which then transfers the CSV
sensor data to the RDF-encoder module for its semantic en-
coding. Each observation record for each sensor in this data
set is transformed by the RDF-encoder to a corresponding
set of assertional RDF statements on property values of an
object of the respective sensor concept defined in the domain
ontology. For this purpose, the labels of sensors and mea-
sured properties as well as data types in the CSV data set are
uniquely mapped to the corresponding names of concepts in
the ontology. This yields the RDF-encoded semantic sensor
data set for the given sensor data recording which is then
transfered by the RDF-encoder to the TopSPIN rule engine
for its pre-detection of faults, and further on to the SDRE
for answering the given set of analysis queries for system
information, fault detection and diagnosis.

4. SEMANTIC DATA ANALYSIS
The ICM-Wind system can answer selected types of FCM
related analysis queries in the wind turbine domain which
were considered important by the engineers at HYDAC Fil-
ter Systems GmbH in practice. In this paper, we focus on
the processing of only few but representative examples of
these given queries for system information, fault detection
and diagnosis by the semantic data analysis component (cf.
figure 2) of the ICM-Wind system.

4.1 System Information
The semantic analysis component of the ICM-Wind system
utilizes the SDRE modules to provide information about the
quantity, position and functionality of, as well as the seman-
tic relations between components and sensors of the wind
turbine according to the domain ontology. For this purpose,
the system provides the user with a set of specific query
templates for entering a query. Depending on the selected
type of query template the query processor rewrites the user
query as a query in either SPARQL, or SPARQL-DL, DL, or
STAR-Q which then is answered by SwiftOWLIM, Fact++,
or STAR, respectively. For example, the informal user query
”What sensor types can measure air temperature?” is rewrit-
ten as a SPARQL-DL query as follows:

SELECT ? sen
WHERE{ SubClassOf (? sen , Sensor ) .
PropertyValue (? sen , measuresProperty , ?prop ) .
SubClassOf (? prop , Temperature ) .
PropertyValue (? sen , hasFeatureOfInteres t , Air )

and answered by the SDRE with its Fact++ module over
the materialized fact base of the domain ontology. Another
example is the query ”Which sensor is most specifically sim-
ilar to the oil temperature sensor?” which is rewritten as a
SPARQL-DL query as follows:

SELECT ? spec
WHERE DirectSubClassOf (? spec , wto : OilTempSens )

and, again, answered by the SDRE with Fact++ through its
efficient classifying of the query concept (in the WHERE-
clause) into the ontology and returning the set of direct log-
ically subsumed concepts. Besides, the query ”Which types
of sensor property measurements refer to oil temperature?”
is answered with Fact++ by its returning of the proper-
ties {MCSTemp, HLBTemp} which it determined as to be
semantically equivalent with the query concept. Similarly,
queries like ”Which sensors measure oil temperature and oil
contamination with metallic particles of size larger than 300
micronmeter?” can be answered by the SDRE as well.
Likewise, the system can determine expensive sensor redun-
dancy in a designed FCM system which is modeled in the
given concept base by answering the respective DL queries
for subsumption-based semantic equivalence (or overlapping)
of sensor concepts with the semantic reasoner Fact++.
Finally, information queries which are concerned with the
discovery of semantic relation between components and/or
sensors are answered by the SDRE with its STAR reasoner.
For example, the user query ”How are the sensors CSM and
SpeedSensor related?” is rewritten by the query processor as
the STAR query STAR({CSM, SpeedSensor}). The answer
to the user by the query processor is a textual statement that
describes the (set) of shortest property paths between both
sensor objects in the domain ontology. In fact, the STAR
reasoner of the SDRE computes an approximated solution



of the corresponding NP-complete Steiner-Tree problem [8]
based on an internal graph representation of the ontology
with a non-materialized fact base.

4.2 Semantic-Based Fault Detection
The semantic-based detection of faults of sensors and moni-
tored system components is performed in two phases: First,
the TopSPIN rule engine determines sensor faults, compo-
nent states, and certain system failure conditions based on
the non-materialized RDF-encoded sensor data set. Second,
this pre-detection of faults yields a respectively extended se-
mantic sensor data set which finally serves the SDRE as a
basis for its answering of fault detection queries given by the
user.
Pre-detection of faults and states off-line. As men-
tioned above, the SPARQL-SPIN rules for sensor and sys-
tem fault detection are included in the sensor concept defi-
nitions of the ontology, and are evaluated by the TopSPIN
rule engine against the semantic sensor data set provided by
the RDF-encoder. Whenever a sensor fault detection rule is
firing, that is the failure condition specified in the WHERE-
part (or rule body) of the instantiated SPARQL query is
satisfied, the CONSTRUCT-part (or rule head) adds a new
RDF-encoded object of type Sensor Fault to the data set.
This sensor fault object (cf. fig. 3) describes the name of
the malfunctioning sensor, the level and time of occurrence
of the fault. Likewise, a detection rule for some system fault
which is associated with one or multiple physical properties
measured by one sensor is adding RDF-encoded information
about property value-based system failure conditions to the
sensor data set whenever this rule evaluates to true. Fi-
nally, rules for the detection of states of components like the
thermo-bypass valve of the FCM system are adding RDF-
encoded information on the state of the component such as
whether the valve is opened or closed. Such state informa-
tion is not included in the original sensor data. There are no
component fault detection rules evaluated against the sensor
data set in this pre-detection phase. In any case, the evalu-
ation of these three types of detection rules does not require
implicit knowledge to be inferred from the semantic sensor
data set, hence the data set does not need to be material-
ized in prior. The RDF-encoded results of this pre-detection
phase are added to the original semantic sensor data, and
then passed on to the SDRE for further analysis.
Fault detection query answering with the SDRE.
Representative example of fault detection queries are ”Is the
thermo-bypass valve faulty?”, ”Is the oil filter of the FCM
system clogged?”, and ”What are the components of the FCM
system with critical faults?”. The query processor utilizes
the SDRE modules SwiftOWLIM and STAR but not Fact++
for answering these queries, and, in contrast to the pre-
detection phase, requires the inference of implicit knowledge
from the extended semantic sensor data set by SwiftOWLIM.
For example, the state of the thermo bypass valve (TBV)
of the oil cooling mechanism of the turbine gearbox is not
directly measured by the FCM system, hence is not explic-
itly encoded in the semantic sensor data set by the RDF-
encoder. Therefore the only way to determine its condi-
tion is to compare the oil temperatures before and after the
cooler which are measured by some sensors: The TBV is
malfunctioning if the temperature difference is greater than
10 degree Celsius, and the TBV is closed. Thus, the first
fault detection query above is answered by the query pro-

cessor by combining the results of its sequential processing of
SPARQL and STAR queries: It finds those sensors which are
positioned before and after the cooler by evaluating STAR
queries ({?sensor1, Cooler, ?sensor2}) for all sensor objects
in the materialized fact base of SwiftOWLIM with SPARQL.
The result of the STAR reasoner are the statements ”HLB
hasPosition [connection1] connectedTo Cooler” and ”ETS
hasPosition [connection2] connectedFrom Cooler” which is
interpreted by the query processor as the sensors HLB and
ETS being positioned before, respectively, after the cooler.
It uses these two sensor objects as binding arguments of
the call of a SPARQL query which determines whether the
difference of the temperatures which are measured by these
sensors as their properties (HLBTemp, Tin) exceeds the given
limit within what time periods.
The fact that both temperatures are indeed oil tempera-
tures was infered from the ontology during materialization
of the fact base by SwiftOWLIM. Information about the
TBV state which is required to check in the SPARQL query
whether the TBV is closed during the respective time pe-
riods is already present in the non-materialized fact base,
that is the extended sensor data set SwiftOWLIM received
from the TopSPIN rule engine.
Finally, the CONSTRUCT-part of the SPARQL query is
adding a new TBV object of the component fault concept
along with the fault information as its properties to the
fact base. Please note that the query processor uses result
caching to avoid redundant query evaluations.

4.3 Semantic-Based Fault Diagnosis
In general, fault diagnosis aims at finding the reasons of fault
occurrence. The semantic analysis component of the ICM-
Wind system focuses on the answering of diagnosis queries
which are concerned with (a) providing information about
detected faults, as well as (b) the determination of relations
between sensor, component and system faults which were
detected within the same time period. For example, the
user-given diagnosis query ”Why and when did the TBV fault
occur?” (cf. Sect 4.2) is rewritten by the query processor
as a SPARQL query to be evaluated by SwiftOWLIM. As
a result the condition under (critical temperature difference
and closed TBV) and the time periods within which the fault
occurred is returned to the user. Note that this information
was added in the fault detection phase into the fact base.
As for an example of the second type of diagnosis queries,
consider the user query ”How are the faults of the contamina-
tion sensor MCS and the oil pump which are detected within
the same period related?” In this case, the query processor
first issues a SPARQL query to SwiftOWLIM to obtain a
list of pairs of those sensor and component fault objects for
the given MCS and oil pump which values for their time
occurrence property are within the same time period. For
each of these pairs the STAR reasoner is called to evaluate
the STAR query STAR({?mcs-flt, ?oilpump-flt}) in order to
determine the semantic relation between the fault objects.
This yields a set of textual statements each of which describ-
ing the shortest property paths between the considered fault
objects in the undirected RDF graph of the ontology with
(non-materialized) fact base. For example, the computed
path (mcs_flt1 faultySensor mcs)
→ (mcs1 rdf:type MCS_1000)
→ [MCS_1000 hasConnection Oil_Pump_To_Oil_Filter]
→ [Oil_Pump_To_Oil_Filter connectedFrom Oil_Pump]



→ (oilpump1 rdf:type Oil_Pump)
→ (oilpump_flt1 faultyComponent oilpump1)
is compared by the query processor with a set of generic
path patterns like

∃X,Y,C : (X hasPosition Y, Y connectedFrom C)

each of which is associated with a natural text template to
be instantiated with the respective path elements. In the
example, the overall answer to the user is ”The faulty sen-
sor mcs1 is positioned after the faulty component oilpump1:
The sensor fault mcs_flt1 does not affect the component
fault oilpump_flt1, that occured within time period 05-12-

2011:21:13, 05-12-2011:21:18.”The time period informa-
tion was taken by the query processor from the result of the
SPARQL query evaluation before.

5. EVALUATION
The semantic data analysis component of the ICM-Wind
system has been evaluated for its performance in terms of
average query response times for different FCM related anal-
ysis queries on given sets of 1-/3-/5-/7-day recordings of sen-
sor data. The component is implemented as a client-server
Java web application using Google web toolkit.

5.1 Evaluation Setting
The evaluation experiments were performed on a mass-market
notebook with following configuration: Intel(R)Core(TM)
i7-2600K CPU@3.40 GHz with 16.0 GB RAM, JDK 1.7 with
14 GB Max JVM Heap Space, and Windows 7 Enterprise
Service Pack 1 OS. The SDRE in its current version con-
sists of the SwiftOWLIM (owlim-lite 5.3) triple store, the DL
reasoner FaCT++ 1.6, and a recent revision of the STAR
reasoner, while the OWL-API 3.4 is used for interaction be-
tween the triple store and the DL reasoner.
Test data set. The test data for our performance tests are
two-year recorded and pre-processed FCM multi-sensor and
operational data volumes for two GE-1.5sl wind turbines
of an on-shore wind farm operated by the ABO Wind AG
which were provided to us in CSV format by FCM experts
of HYDAC Filter Systems GmbH. The fault detection was
tested over increasing sizes of data recordings within one
week selected by the experts from the overall test data set
with recording periods of one day (1440 observations), three
days (4320 observations), five days (7200 observations), and
seven days (10080 observations). The given weekly test data
set reflected, for example, a thermo-bypass valve fault and
an oil filter blockage occurred on the third, respectively,
fifth day which were correctly detected and diagnosed by
the analysis component.
Performance measures. The performance of the semantic
encoding process was evaluated in terms of the total encod-
ing time which is the sum of time needed to (a) RDF-encode
the raw sensor data and (b) to generate the extension of this
data set by the TopSPIN rule engine during the fault pre-
detection phase. The SDRE data loading time is concerned
with measuring the time needed by its modules to be ready
for query answering whenever the SDRE is provided with
a new semantic sensor data set; this loading time includes
the time needed by (a) the triple store to materialize the
data set, (b) the DL reasoner Fact++ to prepare the same
and its internal pre-computations, and (c) the STAR rea-
soner to generate its internal graph representation of the
non-materialized data set. We measured the query response
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Figure 6: Encoding and loading times for FCM ob-
servation data of different sizes.

times of the SDRE for different types of analysis queries over
different sizes of test data volumes.
Test queries. From the exhaustive list of FCM-related
analysis queries given by the expert a few representative
user queries for system information, fault detection, and
fault diagnosis to be performed by the analysis component
with different kinds of semantic query answering and rea-
soning (SPARQL, SPARQL-DL, STAR, DL) were selected
for preliminary performance evaluation: Q1. ”Are there any
redundant sensors in the FCM system of the turbine gear-
box? If yes, list them.”: SysInfo, (DL); Q2. ”Which sensors
measure oil temperature and oil contamination with metal-
lic particles of size larger than 300 micronmeter?”: SysInfo,
(SPARQL-DL); Q3. ”What faults are present in the tur-
bine gearbox and which of these are critical?”, Fault de-
tection, (SPARQL); Q4. ”Is the oil filter of the turbine
gearbox clogged?”, Fault detection, (SPARQL); Q5. ”Is
the wind turbine component thermo-bypass valve faulty?”,
Fault detection, (STAR, SPARQL) (cf. Sec. 4.2); Q6.
”How are all the different sensor and component faults oc-
curring within same time period related?”, Fault diagnosis,
(SPARQL, STAR) (cf. Sec. 4.3)

5.2 Evaluation Results
Semantic data encoding and loading. The number of
triples generated by the RDF-encoder plus the TopSPIN rule
engine for fault and component state pre-detection in the
semantic sensor data sets, as well as the sizes of the materi-
alization of these data sets in the triple store SwiftOWLIM
are as follows:

Period 1 day 3 days 5 days 7 days
Encoding 185861 557381 928901 1300421
Rules 12692 40037 82073 128111
Material. 373044 1118718 1881619 2648509
Total 571.597 1.716.136 2.892.593 4.077.041

For subsequent observation periods within one week, the size
of the materialized sensor data set increases with a factor of
about 2.9 on average. Figure 6 shows the times needed for
(a) semantic encoding (yellow bar), and (b) pre-detection of
faults and component states with SPIN rules (green bar),
for different sizes of sensor data volumes.
The times needed by the SDRE to load such extended se-
mantic sensor data sets for semantic query answering are
shown in the figure 6 as well. Please note that this in-
cludes the loading times for all three of its functional mod-



ules SwiftOWLIM, Fact++, and STAR. The increase of the
loading time in relation to the increasing size of the seman-
tic sensor data set is due to the data set extension by the
SPIN rule engine during the pre-detection phase. The to-
tal time for encoding, pre-detection and loading the sensor
data recorded for one fulll week (4M triples) to about one
hour, which was accepted by our customer. The internal pre-
computations performed by the Fact++ reasoner while load-
ing the sensor data set are concerned with class assertions,
class hierarchy, data property assertions, object property as-
sertions, object property hierarchy and consistency checks.
Query response times. The response times for the test
queries mentioned above were measured (in seconds) after
loading of the respective semantic sensor data set was com-
plete.

Period 1 Day 3 Days 5 Days 7 Days
Q1 0.001 0.01 0.021 0.03
Q2 0.017 0.016 0.032 0.016
Q3 0.327 0.937 1.667 2.495
Q4 0 0.875 1.334 1.76
Q5 9.71 58.378 122.428 189.442
Q6 3.17 2834.201 5553.004 8415.513

The queries Q1 and Q2 are evaluated within less than a
second and only against the concept base (TBox) of the
domain ontology which never changed during the testing.
The FCM system of HYDAC has no fully functional redun-
dant sensors which the analysis component correctly checked
(Q1). Query Q3 makes extensive use of the UNION key-
word to capture alternative structures, which explains the
significant increase of response time for increasing data sizes.
For queries Q4 and Q5, the large increase is due to the in-
sertion of detected component faults to the triple store by
the CONSTRUCT-part of the respective SPARQL queries,
though one could factor the time of the materialization out
which is triggered by this addition of triples. Adding new ex-
plicit triples monotonically extends the infered closure dur-
ing materialization and hence increases the overall response
time. For query Q5, we see a jump in response time start-
ing from the data file for 3 days which included the fault
of the thermo-bypass valve. The contribution of the STAR
relational query response time to the overall query response
time is minimal; STAR relational queries are evaluated over
a fixed graph which is initialized at loading time and very
small in comparison to the whole ontology. Even though
the underlying problem is characterized as the Steiner tree
problem, which is known to be NP-hard, additional tests
showed that the response time for STAR queries was neg-
ligible in our experiments (STAR provides a polynomial-
time algorithm to find approximated results). However, the
SPARQL query part (not the STAR query part) of Q5 still
can be optimized because its response time increases even
though the TBV component faults occurred in the 3-day ob-
servation period (at day 3) and remains the same for five and
seven days. The most complex test query Q6 is concerned
with finding the semantic relations between all sensor and
component faults which occurred at the same time. That
yielded a x1000 query processing time increase for the test
data from day 3 on, since on this day the first faults were
documented in the data set. For example, there was one
(TBV) component fault lasting from day 3 to day 7 which
was detected by SwiftOWLIM by processing the SPARQL
query of user query Q5 for every observation per minute in

the data set. As a result 55616 triples were added in total to
the fact base with the SPARQL CONSTRUCT-part of Q5
which was executed before Q6. Similarly, the oil filter block-
age (component) fault just on day 5 caused the addition of
549 triples for the respective component fault type.
We conclude that our proposed system can handle 7 days of
observed multi-sensor data of wind turbines while maintain-
ing a reasonable runtime for semantic analysis. This is also
considered as feasible time span and response time by FCM
experts and thus meets their requirements regarding such a
system. In general, the given set of analysis queries might
also be answered with a combination of other traditional
database and information system technologies. However, es-
pecially the semantic inference of implicit knowledge in the
RDF-encoded sensor data and the determination of seman-
tic relations between a given set of sensors and components
based on the recorded sensor data are crucial for the ICM-
Wind application. For this purpose, semantic technologies
are a first-class candidate to adopt. Besides, none of the cur-
rently available FCM systems in the domain which employ
other technologies (cf. Sect. 6) is supporting the engineer in
terms of answering the customer-defined set of FCM-related
fault detection and diagnosis queries as shown for simple
examples above.

6. RELATED WORK
In general, our work on the ICM-Wind system for intelligent
FCM of wind turbines is most related to work on intelligent
CM and semantic sensor networks. Alternatively, some re-
cent approaches to low-cost condition monitoring of wind
turbine gears are only monitoring the output power and ro-
tational speed without even using any FCM sensors [16] to
reduce additional maintenance costs caused by, for example,
defective sensors.
However, to the best of our knowledge, there is currently no
approach for FCM of wind turbines available which makes
use of semantic technologies for this purpose. As mentioned
above, current FCM systems in the domain focus on fault
detection based on multi-variate statistical analysis of sen-
sor data [17]. There are a few approaches to intelligent CM
which employ neural networks [1, 11], intelligent agents for
distributed data interpretation [12] and semantic reasoning
[7] for fault detection and diagnosis, but none are avail-
able for intelligent FCM of wind turbines yet. One notable
and prominent example is the commercial TIGER system
for gas-turbine condition monitoring [14] which uses fuzzy
causal graphs to describe models of normal behavior of tur-
bine components and model-based reasoning to detect and
diagnose abnormal behavior (faults). In particular, it diag-
noses a faulty component through tracing backward in its
causal graph to measured parameters and returns the sub-
components on the resulting paths as potential influences
which are assumed to be at the origin of the component’s
misbehavior. This is to some extent similar to the type of
fault diagnosis performed by the ICM-Wind system with the
semantic object-relational reasoner STAR. Recently, [7] pro-
posed to use semantic technologies in support of condition
monitoring and maintenance of machinery in general. In
particular, an upper level ontology for CM in OWL and an
abstract system architecture for semantic query answering
with SPARQL and rule reasoning with Jena is described.
Though the architecture is, in principle, similar to the se-
mantic analysis component of our ICM-Wind system, the



proposal has neither been implemented nor used for any
CM or FCM application yet. A large body of work on se-
mantic sensor networks (SSN) is related with respect to the
modeling of sensor data with ontologies and the querying of
semantically encoded data for a given application. For ex-
ample, recently [2] proposes an approach to ontology-based
sensor data and metadata querying in large-scale sensor net-
work using the GSN middleware and SPARQLstream. The
semantic sensor data analysis performed by the ICM-Wind
system differs from this and, to the best of our knowledge,
other work in the SSN area mainly in the following aspects:
The semantic analysis (a) relies on a new, specific domain
ontology for FCM of wind turbines, (b) combines different
kinds of semantic reasoning where appropriate to answer the
FCM-related queries for fault detection and diagnosis given
by our customer, and (c) is combined with the statistical
LDA analysis when required.

7. CONCLUSION
This paper presented the first system, called ICM-Wind, for
semantics-empowered fluid condition monitoring (FCM) in
wind turbines, with particular focus on its application of
semantic technologies. We showed how the semantic analy-
sis component exploits different means of semantic reasoning
and query answering either individually or in combination in
order to answer a given set of types of FCM-related analysis
queries as required and with reasonable response times. The
prototyped system was successfully tested by the HYDAC
Filter Systems GmbH based on selected FCM multi-sensor
and operational data for two wind turbines. Ongoing work is
concerned with the integration of a component for semantic
sensor data stream reasoning and an extension of the hybrid
analysis component for FCM-related query answering.
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