
FCE4BPMN: On-demand QoS-based Optimised
Process Model Execution in the Cloud

Luca Mazzola∗, Patrick Kapahnke∗, Philipp Waibel†, Christoph Hochreiner†, and Matthias Klusch∗
∗DFKI - German Research Center for Artificial Intelligence

Saarland Informatics Campus D3.2, Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
Email: {Luca.Mazzola, Patrick.Kapahnke, Matthias.Klusch}@dfki.de

†Distributed Systems Group, TU Wien, Austria
Email: {p.waibel, c.hochreiner}@infosys.tuwien.ac.at

Abstract—One of the most important requirements for the
manufacturing industry is the scalable and fault tolerant real-
ization of their business processes. While there are already several
propositions towards elastic process execution on cloud resources,
compensation for faulty tasks often remains a manual task. In
this paper, we present FCE4BPMN, which realizes a cloud-
based execution environment, which can compensate business
model executions exceptions on-demand. These compensations
are performed just-in-time and ad-hoc, based on a seman-
tically annotated BPMN model. Besides basic compensations,
the optimization component is also capable of optimizing the
overall process execution based on different QoS criteria. We,
therefore, provide an extension to the BPMN standard as well
as an execution environment to run business processes on cloud
resources. Finally, we validate our approach based on a set of
requirements originating from the manufacturing domain.

Index Terms— BPMN; XaaS; SemSOA; Industry 4.0; processes
scalable cloud-based execution; QoS optimised process models;
fault compensation re-planning; CREMA

I. INTRODUCTION

One of the existing issues for the practical usage of process
models representation as a business engagement tool is the
lack of a unified language and approach. Despite the existence
of two widely adopted standard for process models (BPMN)
and executable plans (WS-BPEL), no general agreement on
the transformation and mapping amongst them is known. This
is also due to the different approaches of the two languages:
process-oriented the first, message/interface oriented the sec-
ond one. Furthermore, the distinction between the process
model and their instances at runtime is hard to map with
an enterprise business process defined purely in term of the
implementing services. For these reasons, we decided to rely
only on the BPMN v2.0 as a base for our work, and we
extended it to support the lacking aspects of service imple-
mentation and variable bindings and assignments. This also
has three practical advantages: on one side, it simplifies the
interpretation of the executable process service plans for the
process designer, in respect of a BPEL-based representation.
Secondly, it supports the case when the process designer would
like to indicate models that are partially already implemented,
meaning one or more tasks are manually preassigned with
a specific service. On the last side, using extended BPMN
for both process models and execution information allows for

quicker reimplementation at runtime, in case a selected service
is not usable (e.g: it is failing or has become unavailable).

Besides the challenges originating from the plethora of
different process description and process execution plans, most
approaches lack the ability to update process model execution
plans at runtime. Current approaches require users to bind all
the possible alternative for each service already before the start
of the business process model execution, which is cumbersome
for long running processes. In this case, it may be desirable
to select suitable services on demand, to select the most
appropriate one, which may differ according to the process
model executed so far or the current service usages. This
need for binding every alternative service already at startup,
to maintain the flexibility during the process model execution,
may result in unnecessary costs and flexibility lack. With an
on demand leasing approach, as the one we are advocating
for, the user delays the service selection process to a later
point in time and is not required to pay for unused services,
maintaining the full flexibility for exception compensation.

Additionally to the lack of flexibility during the process
model execution, current process model execution engines also
lack the possibility of reconfiguration whenever a service is
not available. Though most process description languages and
process engines support the notation of exception handling, to
the best of our knowledge none of them provides the possibil-
ity to replace a faulty or unavailable service on demand. Due
to the fixed service binding before the service execution, it is
required to restart the whole process model execution with a
newly selected service, in case of exception. This restart results
in unnecessary costs, because some of the process steps need
to be repeated, even if they have been correctly completed.
Furthermore, in the manufacturing domain that we are taking
as context, such a restart of the process execution can have
heavy effects on the outcome. This is particularly relevant
whenever one or more of the already executed services are
not idempotent (i.e: cannot be repeated without affecting the
final outcome in an unplanned way) and the semi-worked part
already in the process can become unusable for the completion
or a new process execution.

Here it is desirable to employ an on-demand fault compen-
sation mechanism, which selects a new suitable service and

continues the process model execution with minimal overhead.
In the rest of the paper we will introduce FCE4BPMN

(Flexible Cloud Execution of QoS-based Optimised Process
Model for BPMN) by presenting a motivation scenario in
section II, then we will go into the related work in Section
III. The fourth section describes the approach of our solution
and all the involved components of our infrastructure, whether
Section V presents an initial experimental evaluation. Eventu-
ally, the conclusions are sketched in Section VI, followed by
the acknowledgments to the partners of the CREMA1 project.
All the supporting materials for this paper (XSDs, examples
of BPMN process model and process service plan, ontologies
used) can be downloaded from the FCE4BPMN project on
Sourceforge2.

II. MOTIVATIONAL SCENARIO

We are going to motivate the need for a flexible process
model execution based on a simplified production process from
the manufacturing domain [1].

The process is a very simple manufacturing one: starting
from some semi-finished parts (two half non-symmetric shells
and a metallic clip) it produces a key-holder.

It is composed, as shown in Fig. 1, by six sequential
steps, with a parallel and an exclusive gateway to regulate the
workflow. The model is realized by the following activities:

• Activate the conveyor belt, in charge of moving the
working section along the production areas.

• Load the first half of the keychain body, and parallely,
load the second half body of the keychain.

• Execute a plastic welding, generating the complete body
from the two parts.

• Adding the metallic clip, through a punching mechanism.
• Checking the correctness of the assembling, through

automatic finger touches.
• If not correct, separate the piece for manual inspection;

otherwise, unload the semi-finished piece, to pass it to the
next step in the full production (e.g., coloring) pipeline.

Every task is realizable by one or more existing services
inside the architecture, which are then executable to achieve
the expected manufacturing output, also thanks to the accom-
paining variable bindings. Despite the extreme simplicity of
the process model, some aspects can already present potential
issues in the execution of this process.

Requirements

Based on the challenges described in the introduction and
the motivation scenario, we have identified several require-
ments, which need to be addressed by our system design:

a) Service Selection: Our system design must be capable
of automatically selecting concrete services for each process
task based on a set of preferences provided by the process
designer.

1CREMA is an EU-H2020 RIA project and the acronym stands for
Cloud-based Rapid Elastic MAnufacturing and its website is http://www.
crema-project.eu

2https://sourceforge.net/projects/fce4bpmn/

b) Late Binding: Although the concrete services are
selected, before the process is executed, the binding of the
service needs to be conducted in an on-demand manner. This
allows a cost efficient process enactment, i.e., services are only
obtained when they are needed.

c) On-demand Update of the PSP: In the case of an error,
i.e., service failure, it is required to update the process service
plan (PSP) on demand, to provide a feasible contingency plan
to continue the process execution instead of restarting the
whole process again.

d) Abstraction of different kinds of services: To interact
with different kinds of services, e.g. software-base services or
human interactions, it is required to define a common standard
to easily integrate services for the process execution.

e) Integration of PSP into BPMN: Although the BPMN
and the PSP cover different tasks in term of business processes
enactment, it is required to combine them into one common
format to ease the handling for the user as well as the business
process execution engines.

III. RELATED WORK

The context of this work is multifaceted. In this section
we explore the state of the art in the domain, in particular
with respect to the Service Oriented Architecture (SOA) and
it semantic variant used for service matching and composition;
Everything as a Service (XaaS) approach; the elastic execution
of process in the cloud; aspects of fault tolerance in business
processes execution; and eventually, the deployment of Con-
tainer based software as supporting solution for the enactment
of heterogeneous services.

The key idea of semantic web services (in short: semantic
services) is to enable service-based applications or intelli-
gent agents to automatically understand what the services
are doing by encoding their functional and non-functional
service semantics not only in a standardized machine-readable
but machine-understandable way [2]. That is achieved by
describing the semantics of web service interface elements
by annotating them in particular with references to concepts
and rules which are formally defined in a shared ontology
such as in W3C standard ontology language OWL2 or RDFS.
These well-founded formal semantic annotations can then be
exploited by applications and agents with appropriate formal
reasoning techniques to perform, for example, automated
service composition planning and high-precision service dis-
covery.

Everything as a Service (XaaS) [3] is a concept common
into the cloud computing infrastructure and denotes an ap-
proach where every resource is seen as a service, and the
search, selection, and invocation is bound to well-defined
public interfaces. Another fundamental element of XaaS is
the abstraction between the concrete instantiation of the ser-
vice and its (semantic) description, supporting in this way a
complete decoupling of the model from the service-based plan
implementing it.

Following the paradigm of Semantic Service-Oriented Ar-
chitectures (SemSOA), manufacturing process models are

Fig. 1. Exemplary Business Process from the Manufacturing Domain

automatically implemented with semantic services by the
application of appropriate techniques for semantic service
discovery, selection, and composition planning.

Although the services are an established concept in com-
puter science, the recent trend towards micro-services has
triggered several innovations. One of these innovations are
container based deployment techniques [4] such as Docker3,
rkt4 or LXC5. These containers can be regarded as lightweight
VMs that allow service developers to bundle all dependencies
within one container and do not require any further con-
figuration upon deployment. In the beginning, this approach
was only considered for the micro-service domain [5], but
soon they have also been applied to other domains, such
as the integration of legacy services [6] or in our scenario
for integrating heterogeneous services into business processes.
Furthermore, containers have a better startup performance and
a lower resource footprint than established virtual machines
(VMs) [7], which makes them an obvious choice for an on-
demand process execution environment.

To the best of our knowledge, relatively little research has
been done in the field of elastic process execution [8].

ViePEP (Vienna Platform for Elastic Processes) is an
eBPMS (elastic Business Process Management System) that
combines the functionality of a traditional process engine with
a cloud controller [9], [10]. By doing this, the platform is
capable of using cloud resources, in the case of ViePEP VMs,
to execute software based processes and the corresponding
process tasks on them. Moreover, ViePEP optimizes the en-
actment of the services on the available cloud resources in a
cost-efficient way without violating predefined Service Level
Agreements (SLAs) [11]. Similar to our work, ViePEP uses
software-based services as representative execution entities for
the process tasks. However, in comparison to our approach,
ViePEP does not provide an automatic service selection, as it
is provided by our approach. Therefore, it can not provide the
functionality described in this work, e.g., automatic service
matching and composition or process optimization during the
runtime in a failure case. Another difference to our proposed
approach is the execution of the service on VMs instead of
Containers. Despite those differences, ViePEP comes closest
to our work.

3https://www.docker.com
4https://coreos.com/rkt/
5https://linuxcontainers.org/

Another work that uses cloud-based computational re-
sources, in the form of VMs, in an on-demand fashion to
execute process tasks is presented by Juhnke et al. [12]. Their
approach is using a BPEL-based process representation. As
already described, by relying on BPMN v2.0 we can simplify
the interpretation of the executable process service plans.

Similar to ViePEP the works of Wei and Blake [13], Bessai
et al. [14] and Cai et al. [15] are using VMs to enact business
processes, respectively the process tasks of them, on cloud
resources. However, also those approaches are not providing
an automatic service selection, which leads again to a lack of
flexibility during the process execution, especially in the case
of a required reconfiguration if a service is not available.

IV. THE APPROACH

Our proposal is based on a series of component envisioned
and partially developed in the context of a Research and Inno-
vation Action project for cloud-based fault tolerant enhanced
manufacturing process execution [1].

The starting point was the envisioning of some BPMN 2.0
extensions, to allow the models to represent the required aspect
for representing and executing functionally and QoS optimal
process service plans.

Then we needed a repository for the semantically annotated
services, to allow our plan composer and optimizer to access
all of them. For this, we designed a reduced format of OWL-
S description in JSON format, that we called ServDTO. This
is the service description stored in a NoSQL database. The
description can represent a service (with its concrete grounding
as a docker image) or simply the semantic annotation, to speed
up the process model composition by pointing at it for very
standard and/or repetitive tasks.

Fig. 2 graphically describes the major interactions and all
the components of the proposed infrastructure. As a brief
summary of the interaction, the component in charge of the
plan optimal composition (ODERU) interprets the enhanced
BPMN model (PM), to extract the semantic annotations for
each task, and, based on the content of the service repository,
computes a complete process service plan (grounding services
and variable bindings and assignments), that can be executed
by the runtime environment (PRU). PRU, for a task to be exe-
cuted, extract the relevant service, and through the grounding
information offered by the service registry, ask the service

Fig. 2. The full infrastructure for the proposed solution, together with the principal interaction, in case of no exception.

Fig. 3. The interaction in case of a service failure: the re-optimization step (8) and the execution resume (10) with the updated PSP.

leasing and realizing (OSL) to deploy and execute it into the
cloud infrastructure, returning the result of this execution.

If this operation is correctly terminated for each service, the
runtime environment could notify of this positive outcome (as
in the Fig. 2). Conversely, if there is a failure reported back
from OSL for a service deployment and/or execution (Fig.
3), PRU asks the optimization component to compute a new
plan for the failed or not terminated task, taking into account
also the current leasibility of the services. Once terminated
this step, ODERU returns to PRU the new PSP and the
runtime environment can resume the execution, using the new
service(s), till the complete model is correctly executed. In the
example of Fig. 3, the service S

′
substituted the failing service

(S) in implementing the task T .

Eventually, each one of these components is presented
in a further section, that gives the details and advancement

provided by this solution, with respect to the state of the art.

A. BPMN extensions

Semantic is taking an increasingly important role in enhanc-
ing the expressive capabilities of standard BPMN, such as in
the work of [16] and [17]. On the same flow, we decided
to use semantics to design our extension for services and
task annotations. Equally, on the system side, the addition of
semantics to BPMS to enhance business modeling standards
is not a novel trend [18]. Conversely, some other work (e.g.
[19]) was devoted to defining completely alternative reference
architectures and frameworks for native modeling of semantic
business processes.

In this section we present the extensions we designed to the
BPMN v2.0 standard [20], based on the semantic annotation
supported by our ontology CDM-Core [21] and its extensions.

Fig. 4. XSD for the “Service Semantic Annotation”.

Fig. 4 and Fig. 5 graphically present the schema for these
extensions, to allow a model to bring the required information
for the execution of the process inside our infrastructure. The
first one (Fig. 4) includes the semantic annotation encoding
of the IOPE (Inputs/Outputs/Preconditions/Effects) annotation
[22] to be added to the task, in order to allow the service
selection and composition to take place automatically.

As can be noted from the Listing 1 and Fig. 4, each
component of the annotation is composed by a tuple where
every element addresses one field of the semantic annotation.
Whether for Inputs and Outputs, the inner structure is an array
of semantic elements (basically composed of a name and a
semantic concept in the given ontology), the Preconditions and
Effects can be more complex, as they can host (in alternative
to a single semantic statement, into an element) a complex
PDDL expression [23]. The PDDL expression can recursively
contain another one, allowing complex logical expression to
be represented. In the current examples, due to computational
reasons, we developed P/E including only elements or one
level limited PDDL expression (composed of a logical union
of basic statements), but the tool is not structurally limited in
this respect.

Regarding the extension for the process metadata, it can
be explored into Listing 2 and Fig. 5. It is divided into two
parts: the optimization and the implementation. The first one
is devoted to all the aspects related to the formulation and the
results of the non-functional constrained optimization problem
for the ODERU plan optimization. In particular, into the results
the extension allows to store the computed values of the
dimensions (such as the variable assignments) to achieve the
reported value of the objective function(s).

Conversely, in the implementation part are reported the
services assignments to the model tasks, in term of grounded
(“concrete”) service. To maintain the linkage to the SemSOA,
the pointer to the OWL-S description is also reported. To
complete the information required for enacting the service in
the bindings sub-part, each input variable of every single used

service is bound to either the environment (such as one of
“variable assignments” indicated by the optimal solution) or
to the output of a previous service in the process plan.

With this set of information, all the required aspects of the
process model implementation in term of the service-based
plan becomes possible directly inside the BPMN language.
Fig. 6 shows the process model of our Motivational Scenario
from Sect. II in a graphical BPMN editor.

B. Process Service Plan composition

The first component of the infrastructure is ODERU
(Optimization tool for DEsign and RUn-time), that is in charge
of compose an executable functionally optimal service plan for
a given process model.

This means that ODERU applies current technologies for
optimal semantic selection of alternative services [24] on
the functional side for annotated process tasks. The service
selection is based on an exact or one step subclass plug-
in match [25], to conserve the properties of the original
process model. On the non-functional side, it offers support
for computing exact and approximated solutions of the user
given (non-)linear multi-objective COP.

The innovativeness of ODERU resides in its combined func-
tional (semantic) and non-functional (QoS-aware) composition
workflow of optimal process service plans, whether state of
the art approaches for QoS-aware service composition [26],
[27], [28] and semantic (process) service composition [29],
[30], [31] exists in isolation. To support full enactment of
the computed process service plan, ODERU also provides a
possible data flow binding and the optimal service variable
assignments. This functionality is provided both at design-time
(when the process designer defines the model) and at run-time
(when the process is executed by the runtime environment).

Another novel feature of ODERU will be its employment
of RDF stream processing to react to service changes (non-
functional QoS-based aspects) reported by the service registry,
for example for triggering a new optimization, when a process
service plan can be affected by the identified change in the
stream.

C. Runtime environment

The PRU (Process RUntime Environment) is responsible for
the execution of a process service plan, which was created by
the ODERU. As a foundation, the PRU is a process engine that
executes process tasks according to the order that is defined
in the process, more precisely defined in the process service
plan. In our approach, this process engine is furthermore
capable of using the concept of flexible service selection for
the execution of the process tasks. This requires an extension
of the standard parsing and deployment functionality of a
process engine. While standard BPMN process engines only
consider the standard service definitions, a process engine for
our approach has to consider also the additional PSP section
shown in Fig. 5. In Fig. 7 the UI of the PRU is shown. This UI
can be used to start the enactment of processes, to monitor the
status of running executions, and to stop running executions.

Fig. 5. XSD for the “Process Metadata”.

Fig. 6. BPMN Graphical Editor showing the ”Produce Keyholder” process
and on the right side possible grounded services for the ”Punch” task.

Fig. 7. Screenshot of the PRU showing a process called ”Produce Keyholder”
that has one running execution instance.

Moreover, the PRU is capable of pause running process
executions, request process optimizations via the ODERU
and continue the execution of the paused process with the
updated process service plan from the ODERU, if an exception
occurs. For example, such an exception can happen during the
execution of a service, e.g., a breakdown of the hardware of
a manufacturing machine, or an unavailability of a service. In

the following, we discuss first the successful execution of a
process (Fig. 2) and then the failure case (Fig. 3).

At the beginning of a process execution, the PRU receives
the process from the ODERU (step 2 in Fig. 2). This process
is then parsed, and all required information about the process
tasks, the execution order, and the services is collected. Be-
sides the standard parsing of the process defined in BPMN 2.0,
our additional PSP section has to be considered. Therefore,
during the parsing of the PM section, when a service definition
is reached, the corresponding service definition in the PSP
section (as depicted in Fig. 5) has to be mapped to the
service. As described in Section IV-A this element defines
for each service if it is an abstract service, i.e., without
an executable software, or a concrete service, i.e., with an
executable software. If it is a concrete service the defined
marketplaceServiceID, i.e., the ID that is used to identify
the concrete service implementation, and its corresponding
variable bindings has to be stored. If it is an abstract service,
an optimization of the process is requested via the ODERU to
receive a concrete service that implements the defined abstract
service.

Afterward, the execution of the process starts (step 3 in
Fig. 2). For this, the PRU loads the first process task, according
to the order defined by the model, depicted by T in Fig. 2. In
the case of the presented motivational scenario, this would be
the ”Start Conveyor Belt” service. For each service execution,
depicted by S in Fig. 2, the PRU requests the execution of the
service via the OSL (step 4). This request to the OSL contains
all required information, i.e., which service to execute and
the required input parameters, to execute the service. After
the request is sent, the PRU waits for a response from the
OSL, i.e., if the service execution was successful or not, if
the execution ordering is sequentially, or starts an execution
of a second service if the model defines a parallel execution
of the services. For example, in our motivation scenario, the

services ”Load Part A” and ”Load Part B” are executed in
parallel. After the PRU receives a response from the OSL (step
7) the next service is executed according to the model. After
all process tasks have finished, the execution of the process is
completed, and a responsible operator is informed about this
fact.

However, if the service execution fails the OSL informs
the PRU about the exception (step 7 in Fig. 3). When the
PRU receives such a failure message the execution of the
process is paused, and the current execution state is persisted.
Subsequently, an optimization of the process, via the ODERU
component, is triggered (step 8). This request contains all
information about the occurred exception as well as all in-
formation about the already executed services of the current
process execution, inform of a process execution log. After
the optimization is done, the ODERU informs the PRU about
the optimized process (step 10). The PRU then continues the
paused process, beginning with the process task that contained
the failed service. In Fig. 3 the new service is depicted by S’.
The continued execution then requests the execution of S’ via
the OSL, which then executes it and returns the result back
to the PRU (step 11 - 13). Again, after all process tasks are
completed, the execution of the process is done and an operator
is informed.

D. Service lease and release

The OSL (On-demand Service Leasing and Releasing com-
ponent) is responsible for the enactment of services on-
demand on cloud resources to execute business processes. In
the manufacturing domain, the kinds of services range from
traditional software services, e.g., analysis of values, over real
world services, e.g., welding parts, to human-based services,
e.g., load or unload parts. To combine these services, we have
designed Proxy Service Wrappers, which provide a uniform
representation of different kinds of services, so that they can
be used by processes.

Proxy Service Wrapper: The basic foundation of a Proxy
Service Wrapper (PSW) is a set of requirements, which need
to be implemented by services to be integrated. The first
requirement is that each service exhibits two different end-
points. The first endpoint is the Availability endpoint, which
checks the availability of the actual service. While it is trivial
to identify the availability of software services because they
have no external dependencies and can be easily replicated,
it is harder to evaluate the availability of real world services,
e.g. welding robots, or humans. Real world services, may be
already occupied for other process enactments or the machine
can also be broken. The same applies for human-based services
because the human service can be either occupied or is not
available, e.g., during breaks.

The second endpoint is the Start endpoint, which accepts
input parameters in the form of a JSON object and starts the
execution of a service. This endpoint can be only executed if
the service is available which is ensured by a preceding call
to the availability endpoint. As soon as the start endpoint is
triggered, the PSW starts the operation for a software-based

service, triggers a real world interaction, e.g., starts a welding
process, or signals a human that he can start working on a
specific task.

The second requirement is, that the service needs to register
to an endpoint of the OSL to report when the service has
finished its execution, e.g., a software calculation or a welding
operation is finished or a human indicated that the operation
is done, or whenever an error occurred, so that the OSL can
inform the PRU to start the compensation mechanism.

The last requirement is that all services need to be rep-
resented within a common container format to ease the de-
ployment on cloud resources. For our system design, we
have chosen the Docker Image format due to its widespread
distribution and the ability to package all kinds of external
resources within the image.

Given these three requirements, our system design is capa-
ble to easily integrate all kinds of services from the manufac-
turing domain.

OSL System Design: The main task of the OSL is to
instantiate services, which are represented by PSWs, on cloud
resources. Therefore it needs to be capable of obtaining both
the PSW images as well as cloud resources to run the services
on these cloud resources. Furthermore, it needs to run these
PSWs to run the actual services, interact with the endpoints of
the PSW to handle all interactions and communicate with both
the ODERU and the PRU to realize the process enactment.

In Fig. 8 the UI of the OSL is shown. This UI can be used
to monitor the status of deployed and running PSWs and to
stop their execution.

Fig. 8. Screenshot of the OSL showing a deployed and running PSW called
”Punching Machine”, which is used in the ”Produce Keyholder” process.

OSL Interaction: First, we are going the sketch the order of
events for a successful service execution. At the beginning, the
OSL receives a realization requests (step 4 in Fig. 2). Based
on the realization request, the OSL obtains the PSW image
from the service repository and obtains the cloud resources to
run the service. After these preliminary steps are finished, the
PSW is deployed on the cloud resources (step 5 in Fig. 2). This
deployment not only contains the instantiation of the PSW but
also an availability check (which we assume in this scenario
as available) and starts the execution of the service. As soon as
the service is finished, the service notifies the OSL (step 6 in
Fig. 2), which in turn also notifies the PRU (step 7 in Fig. 2)

of a successful service execution. After the PRU is notified,
the OSL un-deploys the PSW to release the cloud resources
again.

In the case of a service execution failure, the first steps are
the same as for the successful scenario (step 4 and 5 in Fig. 3).
The differences begin, when the actual service execution fails,
e.g., the real world machines breaks down. In this case, the
PSW detects the machine failure and reports a service failure
to the OSL (step 6 in Fig. 3) who propagates this failure to
the PRU (step 7 in Fig. 3) for further handling and un-deploys
the PSW of the faulty service. This further handling is then
conducted by the ODERU and the result of the handling is a
new service selection, which is forwarded to the OSL by the
PRU (step 11 in Fig. 3). This time, a different service has been
selected, which executes the service without any failure. As
soon as the service finishes its execution, the PSW reports this
to the OSL, which continues its operation in the same manner
as for the successful scenario and waits for new realization
requests of the PRU.

V. REQUIREMENTS VALIDATION

As a proof of concept, in the simple scenario of Fig. 1,
we hypothesize that the task ”Puncher” was grounded to an
automatic robot arm, implementing the service of punching
the clip. We also imagine that during the execution of the
plan the robot arm becomes suddenly unavailable. Thanks
to our infrastructure, a human operator can substitute the
original robot arm, by engaging in the punching activity. Under
the assumption that the operator is described with enough
precision as a service, ODERU can match it automatically to
the task “Puncher”, once the original plan fails. For a better
analysis, we go through the requirements defined in Sect. II
and explore how the infrastructure tackles and solves them.

a) Service Selection: Given the IOPE semantic annota-
tions of task and service, FCE4BPMN can match and select
automatically grounded services to compose a valid PSP,
including the variable bindings and assignments.

b) Late Binding: Once the prepared PSP has to be
executed in the PRU, a late just-in-time service grounding
enactment through the functionalities of the component OSL
is performed.

c) On-demand Update of the PSP: As demonstrated
by the scenario, the update of the process service plan as
consequence of a service enactment failure is performed auto-
matically. This implements a need-based contingency planning
that allows execution to be continued, minimizing (to the
level of a single task) the possible negative effects of non-
idempotent failed service execution.

d) Abstraction of different kinds of services: This is due
to the SOA approach, as the separation between the grounding
level and the (semantic) description of services supports this
abstraction on its essential form. Our solution extends it as
proposes an intermediate level of an executable wrapper, used
to unify the offered functions (in term of REST interfaces)
regardless of the practical implementation details.

e) Integration of PSP into BPMN: Despite the existence
of specific languages for the service plan execution (such as
the Business Process Execution Language BPEL [32]) and
many approached to (semi-)automatically translate BPMN into
BPEL models (such as the BPMN2BPEL6 google project), the
added values of merging into the process modeling language
the execution aspects are twofold. On one side, it allows
maintaining in a single place the full set of model and
grounding-related information. On the other side, it supports
the separation of the model from the instance level, managed
only at runtime. The instantiating environment PRU is then
allowed to decide based on the values of variables (including
also environment related ones, if needed) the actual path
followed on gateways, not requiring the identification of the
process instance before the service grounding identification for
task assignment.

As it can be noted, our infrastructure FCE4BPMN respects
all the identified requirements. Obviously, many and different
requirements can emerge from other use cases, and we will
work towards the identification and coverage of them in our
future work.

Despite the presented added values, we are aware of some
limitations our approach intrinsically presents. The most rel-
evant one relates to the expressive capabilities of the opti-
mization component (ODERU) and its approach for smart
process plans creation. For the service plan a smarter QoS-
based optimization [33] is currently under analysis. It will
also consider the inter-living of functional and non-functional
aspects, to improve the created PSP. Another aspect focuses
on the support of generic QoS measures, as defined by ser-
vices annotations. This will allow the coverage of dimensions
specific to the context, such as in case of addition of a new
scenario in other manufacturing domains.

VI. CONCLUSION

In this paper, we presented an approach for process service
plan execution in the cloud called FCE4BPMN. It supports
scalability thanks to the semSOA approach and the usage of
cloud resources in the service enactment.

The infrastructure was described in details, explaining the
role and interactions amongst the designed components, also
using a motivational scenario as support to present some
requirements and explore how our approach tackle them.

On the top of the single parts described, the most important
contribution of this work is the combination of the following
aspects:

• some well-formed extensions of the BPMN standard,
for encoding all the execution related aspects (i.e., se-
mantically enhanced annotation of tasks, services-based
implementation, variable bindings and assignments, QoS
constraints for optimization, a result of a non-functional
optimization).

• a new approach for functional composition, non-
functional (QoS based) optimization and execution of

6https://code.google.com/archive/p/bpmn2bpel/

process models, using the defined extensions of BPMN
language.

• a runtime environment able to execute the ”enhanced”
BPMN-encoded service plans, and react to unexpected
failure by providing a process execution log used for the
re-optimization.

• a lease and release mechanism supporting the deployment
of Docker images into the cloud for elastic scaling, based
on process requirements.

On the top of the testing with some simple manufacturing-
based examples, we provided an example scenario that demon-
strated the coverage of the elicited requirements.

ACKNOWLEDGMENT

This work was partially financed by the European Commis-
sion H2020 RIA project called CREMA, under the agreement
637066. The authors would like to thank all the project
partners for the comments and contributions to the ideas
behind the realized solutions.

REFERENCES

[1] S. Schulte, P. Hoenisch, C. Hochreiner, S. Dustdar, M. Klusch, and
D. Schuller, “Towards process support for cloud manufacturing,” in
18th International Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 2014, pp. 142–149.

[2] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE
intelligent systems, vol. 16, no. 2, pp. 46–53, 2001.

[3] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu,
“Everything as a service (xaas) on the cloud: origins, current and future
trends,” in IEEE 8th International Conference on Cloud Computing
(CLOUD). IEEE, 2015, pp. 621–628.

[4] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[5] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
2015.

[6] A. Slominski, V. Muthusamy, and R. Khalaf, “Building a multi-tenant
cloud service from legacy code with docker containers,” in 2015 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2015,
pp. 394–396.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in 2015
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2015, pp. 171–172.

[8] S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch, “Elastic
business process management: state of the art and open challenges
for bpm in the cloud,” Future Generation Computer Systems (FGCS),
vol. 46, pp. 36–50, 2015.

[9] S. Schulte, P. Hoenisch, S. Venugopal, and S. Dustdar, “Introducing
the Vienna Platform for Elastic Processes,” in Performance Assessment
and Auditing in Service Computing Workshop at 10th International
Conference on Service Oriented Computing, ser. LNCS, vol. 7759, 2013,
pp. 179–190.

[10] P. Hoenisch, C. Hochreiner, D. Schuller, S. Schulte, J. Mendling, and
S. Dustdar, “Cost-Efficient Scheduling of Elastic Processes in Hybrid
Clouds,” in 8th International Conference on Cloud Computing, 2015,
pp. 17–24.

[11] P. Hoenisch, D. Schuller, S. Schulte, C. Hochreiner, and S. Dustdar,
“Optimization of complex elastic processes,” Transactions on Services
Computing, vol. 9, no. 5, pp. 700–713, 2016.

[12] E. Juhnke, T. Dörnemann, D. Bock, and B. Freisleben, “Multi-objective
Scheduling of BPEL Workflows in Geographically Distributed Clouds,”
in 4th International Conference on Cloud Computing, 2011, pp. 412–
419.

[13] Y. Wei and M. B. Blake, “Proactive virtualized resource management
for service workflows in the cloud,” Computing, vol. 96, no. 7, pp. 1–16,
2014.

[14] K. Bessai, S. Youcef, A. Oulamara, and C. Godart, “Bi-criteria strategies
for business processes scheduling in cloud environments with fairness
metrics,” in 7th International Conference on Research Challenges in
Information Science, 2013, pp. 1–10.

[15] Z. Cai, X. Li, and J. N. Gupta, “Critical Path-Based Iterative Heuristic
for Workflow Scheduling in Utility and Cloud Computing,” in 11th
International Conference on Service Oriented Computing, ser. LNCS,
vol. 8274, 2013, pp. 207–221.

[16] W. Abramowicz, A. Filipowska, M. Kaczmarek, and T. Kaczmarek,
“Semantically enhanced business process modeling notation,” in Se-
mantic Technologies for Business and Information Systems Engineering:
Concepts and Applications. IGI Global, 2012, pp. 259–275.

[17] D. Karastoyanova, T. van Lessen, F. Leymann, Z. Ma, J. Nitzche,
and B. Wetzstein, “Semantic business process management: Applying
ontologies in bpm,” in Handbook of Research on Business Process
Modeling. IGI Global, 2009, pp. 299–317.

[18] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel, “Se-
mantic business process management: A vision towards using semantic
web services for business process management,” in IEEE International
Conference on e-Business Engineering (ICEBE) 2005. IEEE, 2005, pp.
535–540.

[19] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov, “A bpmn based
semantic business process modelling environment,” in Proceedings of
the Workshop on Semantic Business Process and Product Lifecycle
Management (SBPM-2007), vol. 251, 2007, pp. 1613–0073.

[20] T. Allweyer, BPMN 2.0: introduction to the standard for business
process modeling. BoD–Books on Demand, 2016.

[21] L. Mazzola, P. Kapahnke, M. Vujic, and M. Klusch, “Cdm-core: A man-
ufacturing domain ontology in owl2 for production and maintenance,”
in Proceedings of the 8th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management - Vol-
ume 2: KEOD,, 2016, pp. 136–143.

[22] J. Cardoso, “Discovering semantic web services with and without a
common ontology commitment,” in IEEE Services Computing Work-
shops(SCW’06). IEEE, 2006, pp. 183–190.

[23] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl-the planning domain definition lan-
guage,” 1998.

[24] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein,
“Semantic web service search: a brief survey,” KI-Künstliche Intelligenz,
vol. 30, no. 2, pp. 139–147, 2016.

[25] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An
integrated semantic web service discovery and composition framework,”
IEEE Transactions on Services Computing, vol. 9, no. 4, pp. 537–550,
2016.

[26] A. Strunk, “Qos-aware service composition: A survey,” in 2010 IEEE
8th European Conference on Web Services (ECOWS). IEEE, 2010, pp.
67–74.

[27] D. Schuller, A. Polyvyanyy, L. Garcı́a-Bañuelos, and S. Schulte, “Opti-
mization of complex qos-aware service compositions,” in International
Conference on Service-Oriented Computing. Springer, 2011, pp. 452–
466.

[28] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “Qos-
aware dynamic composition of web services using numerical temporal
planning,” IEEE Transactions on Services Computing, vol. 7, no. 1, pp.
18–31, 2014.

[29] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An
integrated semantic web service discovery and composition framework,”
IEEE Transactions on Services Computing, vol. 9, no. 4, pp. 537–550,
2016.

[30] M. Klusch and A. Gerber, “Fast composition planning of owl-s services
and application,” in ECOWS’06. 4th European Conference on Web
Services, 2006. IEEE, 2006, pp. 181–190.

[31] M. Born, J. Hoffmann, T. Kaczmarek, M. Kowalkiewicz, I. Markovic,
J. Scicluna, I. Weber, and X. Zhou, “Semantic annotation and com-
position of business processes with maestro for bpmn,” in European
Semantic Web Conference. Springer, 2008, pp. 772–776.

[32] OASIS. (2007) Web services business process execution language
version 2.0. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

[33] F. Baligand, N. Rivierre, and T. Ledoux, “A declarative approach for
qos-aware web service compositions,” in International Conference on
Service-Oriented Computing. Springer, 2007, pp. 422–428.

Listing 1. Snipplet of BPMN v2.0 extension for IOPE
semantic annotation of a task. In green the semantic concepts
and properties used for the element defintions.
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.

org/spec/BPMN/20100524/MODEL" xmlns:bpmndi=
"http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:di="http://www.omg.org/spec/DD
/20100524/DI" xmlns:dc="http://www.omg.org/
spec/DD/20100524/DC" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xmlns:
camunda="http://camunda.org/schema/1.0/bpmn
" xmlns:crema="http://crema.project.eu" id=
"Definitions_1" targetNamespace="http://
bpmn.io/schema/bpmn">

<bpmn:process id="Process_1" isExecutable="
true">

<bpmn:startEvent id="StartEvent_1">
<bpmn:outgoing>SequenceFlow_0jwbjxh</bpmn

:outgoing>
</bpmn:startEvent>
...
<bpmn:sequenceFlow id="SequenceFlow_0byzekd

" sourceRef="ExclusiveGateway_0ezz2gb"
targetRef="ServiceTask_00qwy4n" />

<bpmn:serviceTask id="ServiceTask_1m1ppqz"
name="Puncher" camunda:type="external"
camunda:topic="CremaServiceExecution">

<bpmn:extensionElements>
<crema:annotations>
<crema:inputs>

<crema:input>
<crema:element name=Be1> http://

www.crema-project.eu/ExtensionA.owl#Belt</
crema:element>

</crema:input>
<crema:input>
<crema:element name=Ke1> http://

www.owl-ontologies.com/mason.owl#Kernel</
crema:element>

</crema:input>
<crema:input>
<crema:element name=Cl1> http://

www.crema-project.eu/ExtensionA.owl#Clip</
crema:element>

</crema:input>
</crema:inputs>
<crema:outputs>

<crema:output>
<crema:element name=Se1> http://

www.owl-ontologies.com/mason.owl#Semi-
finished_part</crema:element>

</crema:output>
</crema:outputs>
<crema:preconditions>

<crema:element>(http://www.crema-
project.eu/ExtensionA.owl#isLoaded Ke1 Be1
)</crema:element>

</crema:preconditions>
<crema:effects>

<crema:expr type="and">
<crema:element>(http://www.crema

-project.eu/ExtensionA.owl#
isNotLoaded Ke1 Be1)</crema:
element>

<crema:element>(http://www.crema
-project.eu/ExtensionA.owl#
isLoaded Se1 Be1)</crema:
element>

</crema:expr>
</crema:effects>

</crema:annotations>
</bpmn:extensionElements>
<bpmn:incoming>SequenceFlow_0mav5lz</bpmn

:incoming>
<bpmn:outgoing>SequenceFlow_1xn4g3t</bpmn

:outgoing>
</bpmn:serviceTask>
...
<bpmn:sequenceFlow id="SequenceFlow_1kedmbi

" sourceRef="ServiceTask_095jjui"
targetRef="ExclusiveGateway_0vvoawp" />

<bpmn:endEvent id="EndEvent_078m1ci">
<bpmn:incoming>SequenceFlow_1l44fq6</bpmn

:incoming>
</bpmn:endEvent>

</bpmn:process>
</bpmn:definitions>

Listing 2. Snipplet of BPMN v2.0 extension for IOPE semantic annotation of a task.
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/

MODEL" xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:camunda="http://camunda.org/schema/1.0/bpmn" xmlns:crema="
http://crema.project.eu" xmlns:dc="http://www.omg.org/spec/DD
/20100524/DC" xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="
Definitions_1" targetNamespace="http://bpmn.io/schema/bpmn">

<bpmn:process id="Process_1" isExecutable="true">
<bpmn:extensionElements>

<crema:metadata>
<crema:optimization>

<crema:formulation>...</crema:formulation>
<crema:results>...</crema:results>

</crema:optimization>
<crema:implementation>

...
<crema:service implements="ServiceTask_033mvdo" seq="

1">
<crema:abstractService>

<crema:marketplaceServiceID> 04917d1c-fd7a-4f36
-9d87-e77c7106dfcb</crema:marketplaceServiceID>

</crema:abstractService>
<crema:concreteService origin="optimisation">

<crema:marketplaceServiceID> f7817549-db5e-437c
-9077-370ce86302e5</crema:
marketplaceServiceID>

<crema:owlsDescription> http://127.0.0.1:80/
oderu/Service/f7817549-db5e-437c-9077-370
ce86302e5.owl</crema:owlsDescription>

<crema:bindings>
<crema:binding>

<crema:origin>
<crema:env />

</crema:origin>
<crema:target>

<crema:variable name="Be1" service="
f7817549-db5e-437c-9077-370ce86302e5" />

</crema:target>
</crema:binding>
<crema:binding>

<crema:origin>
<crema:variable name="Se1" service="

308e5b62-a20e-4bfa-9931-7bd021ba3df8" />
</crema:origin>
<crema:target>

<crema:variable name="Se1" service="
f7817549-db5e-437c-9077-370ce86302e5" />

</crema:target>
</crema:binding>

</crema:bindings>
</crema:concreteService>

</crema:service>
...
<crema:service implements="ServiceTask_1ilmwjh" seq="

1">
<crema:abstractService>

<crema:marketplaceServiceID />
</crema:abstractService>
<crema:concreteService origin="designer">

<crema:marketplaceServiceID> f324fb92-9b1b-4af9
-a920-6078a66f2759</crema:
marketplaceServiceID>

<crema:owlsDescription> http://127.0.0.1:80/
oderu/Service/f324fb92-9b1b-4af9-a920-6078
a66f2759.owl</crema:owlsDescription>

<crema:bindings>
<crema:binding>

<crema:origin>
<crema:env />

</crema:origin>
<crema:target>

<crema:variable name="Be1" service="
f324fb92-9b1b-4af9-a920-6078a66f2759" />

</crema:target>
</crema:binding>

</crema:bindings>
</crema:concreteService>

</crema:service>
...

</crema:implementation>
</crema:metadata>

</bpmn:extensionElements>
...

</bpmn:process>
...

</bpmn:definitions>

