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Abstract. Several privacy measures have been proposed in the privacy-
preserving data mining literature. However, privacy measures either as-
sume centralized data source or that no insider is going to try to in-
fer some information. This paper presents distributed privacy measures
that take into account collusion attacks and point level breaches for dis-
tributed data clustering. An analysis of representative distributed data
clustering algorithms show that collusion is an important source of pri-
vacy issues and that the analyzed algorithms exhibit different vulnera-
bilities to collusion groups.

1 Introduction

The goal of Distributed Data Mining (DDM) is to find patterns or models from
a collection of distributed datasets, that is, datasets residing on the nodes of a
communication network, possibly under constraints of limited bandwidth and
data privacy [16]. In DDM, Distributed Data Clustering (DDC) is the problem
of finding groups of similar objects in distributed datasets [4].
Privacy and data ownership play an important role in DDM and in DDC in
particular, a role which calls for a privacy preserving solution [13, 6]. Two main
approaches have emerged to address this problem: secure multiparty computation
and model-based data mining. With the secure multi-party computation (SMC)
approach, all computations are performed by a group of mining parties following
a given protocol and using cryptographic techniques to ensure that only the final
results will be revealed to the participant, e.g. secure sum, secure comparison [5],
secure set union [3]. In the model-based approach, each site computes a partial
local model from the local dataset and all local models are aggregated to produce
a global model, which is shared with the participants.
Each approach proposes a different privacy measure. These privacy measures,
however, either assume that no insider is going to try to infer some sensitive



information, or do not account for particularities of specific data mining tasks.
The privacy definition in SMC considers only threats from the outside and does
not care about how much an inside party can learn from the protocol output.
For example, in a protocol where three parties compute the sum of numbers in a
secure multiparty protocol, e.g. secure sum, the process does not leak any input
information. However, when two parties collude they can subtract its own input
and learn the input of remaining party.
Model-based approaches, on the other hand, define privacy from the perspective
of the whole dataset, and not of single points. For example, in [11] dataset privacy
is based on the average privacy of all points. Some points will, of course, have
privacy level much lower than the average privacy level. Thus, even if a single
point has a very low privacy level, this privacy breach may go unnoticed.
In this paper, we present distributed privacy measures that take into account in-
ference attacks from insiders and are able to detect point-level privacy breaches.
We follow an information theoretic approach and define a set of properties from
which our privacy measures are derived. We also apply the proposed measures
to representative algorithms to demonstrate previous undetected privacy issues.
As main contribution, this paper: (i) introduces the first privacy measures for
DDM in general and DDC in particular with respect to insider and collusion
attacks, and single data point privacy; (ii) re-evaluates the privacy preserva-
tion of representative DDC algorithms with these measures, and reveals that
insider collusion is an important source of privacy breach and (iii) exemplifies
the respective privacy analysis for selected algorithms.

2 Privacy Measures for Distributed Data Clustering

Major threats in a distributed mining session come from malicious insiders.
Therefore, privacy measures should take into account the presence of collusion
groups of malicious peers. Moreover, privacy measures should detect the privacy
level of single data points.
In this paper, we will regard privacy measures as functions which, for a given
distributed data mining algorithm, map a dataset subset and the maximum size
of collusion groups of parties to a real number, and satisfy certain properties.
We will call the value of such a measure a privacy level.
Let L1, . . . , Lp be sites hosting one element of a partition of a dataset D each,
and A be any distributed data mining algorithm running on L1, . . . , Lp. We will
assume that up to p− 1 sites among L1, . . . , Lp are malicious, in that they seek
to infer objects of D, or parts thereof, possibly in collusion groups of at most
c < p members, by either exchanging information or violating the protocol of A,
or both. By privacy measure for A we mean a computable partial function

PRA : (X, c) ∈ 2D × {0, 1, . . . , p− 1} → PRA[c](X) ∈ [0,∞) (1)

which satisfies one or multiple of the following properties:

P1 (collusion) PRA[1](X) ≥ PRA[c](X) when there are at most c malicious
peers colluding, for all c ∈ {1, . . . , p− 1} and for all X ⊆ D;



P2 (point monotonicity) it is non-increasing from singletons to dataset, i.e.,
PRA[c]({x}) ≥ PRA[c](D) for all c ∈ {0, 1, . . . , p− 1}.

Property P1 expresses the decrease of privacy level in scenarios with inference at-
tacks and collusion from malicious parties. Note that c = 1 expresses the absence
of collusion groups of size two or greater. Therefore, parties are semi-honest, i.e.,
they adhere to the protocol of A, but may exploit information gathered dur-
ing execution for inference purposes. When no parties attempt to infer objects,
i.e., are honest, there are no inside threats and c = 0. Property P2 constrains
PRA to behave as a worst-case measure: a greater privacy level than the one
at singletons is not attainable for the dataset. We call this property point-level
awareness.
Throughout this paper, we use the following notation. To indicate explicitly a
privacy measure m in the evaluation of a given algorithm A we use the notation
PRm

A . We indicate the privacy of a given point x, given an algorithm A and
measure m, as PRm

A (x); for a dataset D we use PRm
A (D). For the sake of

simplicity, we omit algorithm, measure, dataset or data point, when they are
implicit in a given context.

2.1 Existing Privacy Measures for DDC

In SMC, privacy is equivalent to having a trusted third party perform the com-
putation and erasing all of the input data after the computation [7]. An SMC
protocol is said to preserve privacy if one can prove that after the computation
no party learns anything but the final results, as it would be the case if there
were a trusted third party in the setting. This notion of privacy is known as the
simulation paradigm [5], and is used to formally define privacy for SMC pro-
tocols. For a discussion on proofs for SMC protocols, the reader may refer to
[9] and [5]. The privacy measure which is used in SMC protocols will be called
private computation, and denoted in this paper as PRPC

A (D).
Model-based approaches work by producing partial local models, which are then
aggregated into a global model [8, 10, 11, 14]. Finally, using the global model
each party computes the mining results. Examples of models include wavelets
coefficients, parametric models, like a mixture of Gaussians, or non-parametric
models, like kernel density estimates.
In the model-based approach the likelihood-based measure is used in the context
of clustering and classification [10]. Let D be a given dataset and fλ(x) be the
probability density function associated with a given probabilistic model λ. The
privacy PRlike

A of data set D given model λ is defined as the reciprocal of the
geometrical mean likelihood of the dataset being generated under model λ and
can be expressed as:

PRlike
A (D) = 2(− 1

|D|
∑
x∈D log fλ(x)) (2)

This measure indicates how likely a sampled data set is to occur given a proba-
bility model [10]. If the likelihood is high, then the privacy is low and vice-versa.



2.2 Limitations of Current Measures

In the presence of collusion groups a secure multiparty protocol (SMC) may fail
[9] because its privacy definition gives only the privacy level from the outsiders’
point of view. Any malicious insiders will receive the correct output, from which
they may try to reconstruct sensitive inputs from other parties.

PRPC
A (D) does not address inference or collusion (¬P1). The private

computation measure was designed to detect leaks from the protocol and not
from outputs. Consider a protocol where three parties compute the set union in
a secure multiparty protocol. The process does not leak any input information,
but when two parties collude they can remove its own input sets and learn the
input set of remaining party. However, privacy computation does not address
this inference attack situation and PRPC

SMCSum[0](x) = PRPC
SMCSum[2](x) when

they should indicate the decrease in privacy in the presence of 2 malicious parties
working in collusion.

PRPC
A (D) is point-level (P2). By definition, if any point x ∈ D, the dataset

of inputs of a given party, is leaked, the protocol is considered not private, i.e.
∀x ∈ D : PRPC

A (x) = 0 → PRPC
A (D) = 0. Therefore, ∀x ∈ D : PRPC

A (x) ≥
PRPC

A (D).

The likelihood-based measure is discussed in the following. Let D = {1, 4, 6, 9},
a dataset, and a mixture of two Gaussian with the first model be centered at
x0 = 1, i.e. it has mean µ1 = 1 with variance σ2

1 = 0.1. The second model models
the three remaining points, i.e., it has mean µ2 = 6.3 and variance σ2

2 = 1.0.
With probability density function of model denoted by f(x), using Eq. (2) we

have: PRlike
A (D) = 2(− 1

|4| (log2(f(1))+log2(f(4))+log2(f(6))+log2(f(9)))) = 13.7326.

PRlike
A (D) does not address inference or collusion (¬P1). If the mix-

ture of local models represents datasets from participants and a malicious in-
sider has access to all local models, it can try to reconstruct other partici-
pants’ datasets. In the above example, the attacker could reconstruct the first
point with high precision with the first model, which is centered at x0 with
small variance. PRlike

A[1](x0) = 2− log2 f(x0) = 0.5013. However, even in this case

PRlike
A[1](D) = 13.7326, i.e. the drop in privacy due to a insider attack (c ≥ 1) is

not reflected in PRlike . Therefore, PRlike
A (D) does not fulfill property P1.

PRlike
A (D) is not point-level (¬P2). When only a few points have a high like-

lihood of being reconstructed with a high precision, PRlike
A (D) measure will still

indicate a high privacy protection. Consider a dataset D above. The geometrical
mean in the privacy measure smoothed out the measure for x0 = 1, masking a
possible privacy breach. Thus,

PRlike
A (x0) = 2− log2 f(x0) = 0.5013 < PRlike

A (D) = 13.7326

Therefore, PRlike
A (D) does not fulfill property P2. Table 1 presents a summary

of all studied privacy measures and their properties.



Reference Approach Collusion (P1) Point-level (P2)

PRPC [5] Simulation no yes

PRlike [10] Probability no no
PRrange (Def. 1) Info. theory yes yes
PRrec (Def. 2) Inference analysis yes yes
PRBK (Def. 3) Info. theory yes yes

Table 1. Summary of privacy measures and properties

3 New Privacy Measures for DDC

In this section, we propose new privacy measures to analyze distributed data
clustering algorithms. We assume that the attackers are members of the mining
group and that they have access to the resulting cluster map and other informa-
tion defined by the mining protocol being analyzed.
Our first measure defines the privacy of a cluster as the size of the interval
between its maximal and minimal values.

Definition 1 (Cluster range measure). Given a dataset D and a cluster
map C = {Ck} ⊆ 2D, whose elements Ck are pairwise disjoint. We define the
cluster privacy of a given point x in a given cluster Ck ∈ C as:

PRrange(x) = max{Ck} −min{Ck}. (3)

Extending to the whole dataset:

PRrange(D) = min{PRrange(x) : x ∈ D}. (4)

As an example, consider a cluster of data points over the dimension “annual
income” ranging from US$ 100 000 to US$ 150 000 reveals the value of each
data point with a maximal error of US$ 50 000 and maximal mean error of US$
25 000 (assuming uniform distribution). Consequently, each point in this cluster
is said to have a privacy level of 50 000 dimension units, US$ in this case.
If a reconstruction method is known, it is possible to measure how close the
reconstructed data gets to the original sensitive data.

Definition 2 (Reconstruction based measure). Let R ⊂ R denote a set of
reconstructed data objects such that each ri ∈ R is a reconstructed version of
xi ∈ D. We define the privacy level, given a reconstruction method, by:

PRrec(xi) =| xi − ri | . (5)

Extending to the whole dataset:

PRrec(D) = min{PRrec(xi) : xi ∈ D, ri ∈ R, 1 ≤ i ≤ N} (6)

where N is the size of the dataset D.



Consider secure k-means algorithm [15]. In this algorithm parties L1 and Lp hold
together the information on the distance d = |x − µi| between a given centroid
µi and other parties data points x. Thus, attackers can use the inverse of the
distance as a reconstruction method to infer data points x. PRrec(x) will denote
the precision of this specific reconstruction method.
A general definition of privacy proposed in the centralized data mining setting
is the bounded knowledge measure [1], which defines privacy as the length of
the interval from which a random variable X is generated. This measure can be
expressed in terms of the entropy of X, as follows.

Definition 3 (Bounded Knowledge). Given a random variable X with prob-
ability density function fX and domain ΩX , the privacy of X given by its bounded
knowledge is:

PRBK(X) = 2h(X) (7)

where h(X) = −
∫
ΩX

fX(x)log2 [fX(x)] dx is the differential entropy.

As an example, consider a random variable X uniformly distributed between 20
and 70, abbreviated X ∼ U(20, 70), has probability density function f(x) = 1

50 ,
for 20 ≤ x ≤ 70 , and 0 otherwise. The entropy of X is h(X) = log2(50).
Thus, the privacy provided by X according to bounded knowledge measure is
PRBK(X) = 2log2(50) = 50. This definition is general enough to be used in
different data mining contexts, e.g. cluster analysis, association rules, etc. [2].
For a given point x ∈ Ci, a cluster in cluster map C induced from D, Xi a
random variable for values of Ci and a probability density function fXi(x), let:

PRBK(x) = PRBK(Xi) = 2h(Xi) (8)

with fXi(x) being zero outside Ci.
In the case of a cluster map, we are interested in the smallest interval size in the
said map4. Therefore,

PRBK(D) = min{PRBK(x)} = min{2h(Xi)}. (9)

The next definition extends each of the previously defined measures to include
collusion groups.

Definition 4. Let A be a distributed data clustering algorithm, D be a dataset,
and measure m ∈ {rec, range,BK}, with collusion groups containing at most c
attackers. We define:

PRm
A[c](D) = min{PRm

A[i](D) : 1 < i ≤ c}. (10)

PRm
A[c](D) represents the minimum privacy level provided to datasetD when the

collusion groups have at most c peers, using any privacy measure m. For example,
PRBK

A[2](D) denotes the privacy level provided by algorithm A to dataset D when
collusion groups are formed with at most 2 malicious peers analyzed with BK
measure.
4 This notion comes from the well-known idea in computer security that defines the

security level of a system as the level of its weakest link.



Properties Analysis of PRm
A[c](D)

Lemma 1 (Collusion). Given an algorithm A, for all dataset D and privacy
measures m ∈ {range,BK, rec}, and c > 1 (presence of non-singleton collusion
groups), if there is a collusion scenario decreasing the privacy level of dataset D,
then PRm

A[1](D) ≥ PRm
A[c](D).

Proof. Let a = PRm
A[1](D) be the privacy level of dataset D with algorithm A

with no collusion (i.e., c = 1), and b = PRm
A[c](D) be the privacy level in a

collusion scenario with c > 1 malicious peers. By definition PRm
A[c](D) is the

smallest privacy level considering all collusion scenarios. Thus, PRm
A[c](D) =

min{a, b}. Therefore, if the collusion group decreases the privacy level of the
c = 1 scenario, then a ≥ min{a, b}. ut

Lemma 2 (Point level privacy). ∀x ∈ D : PRm
A[c](x) ≥ PRm

A[c](D), for all
dataset D and privacy measures m ∈ {range,BK, rec}.

Proof. (Range) Consider a cluster map C from D, with only two clusters Ca
and Cb. Let ra and rb denote ra = max{Ca} −min{Ca} and rb = max{Cb} −
min{Cb}, the cluster range of Ca and Cb respectively. For a given point xa ∈ Ca,
by definition, PRrange(xa) = ra and PRrange(D) = min{ra, rb}. Therefore,
ra ≥ min{ra, rb}
(Rec) Consider a dataset D and a reconstructed set R. Let xa be any given
point in D and ra its reconstructed counterpart in R. By definition, PRrec

A[c](xa)
is |xa − ra| and PRrec

A[c](D) = min{|xi − ri| : xi ∈ D, ri ∈ R, 1 ≤ i ≤ N}.
Therefore, |xa − ra| ≥ min{|xi − ri| : xi ∈ D, ri ∈ R}.
(BK) Consider a cluster map C from D, with only two clusters Ca and Cb. Let
Xa be a random variable modeling a data point xa ∈ Ca, and Xb a random
variable modeling data points xb ∈ Cb. By definition, PRBK

A[c](xa) is 2h(Xa) and

PRBK
A[c](D) = min{2h(Xa), 2h(Xb)}.

Therefore, PRBK
A[c](xa) = 2h(Xa) ≥ min{2h(Xa), 2h(Xb)}. Similarly, we have that

PRBK
A[c](xb) = 2h(Xb) ≥ min{2h(Xa), 2h(Xb)}. ut

We have thus derived three privacy measures, Cluster Range, Reconstruction,
and Bounded Knowledge, that are inspired by different abstractions of privacy,
and satisfy the natural properties of collusion and point-level awareness. In con-
trast, the Private Computation and Likelihood privacy measures fail to capture
at least one of such properties. We will now revisit prominent DDC algorithms
to examine if and how applying the new measures changes their evaluation, as
to the amount of privacy that is guaranteed by each of them.

4 Application to DDC Algorithms

To apply our measures to DDC algorithms, we need to analyze which informa-
tion is available to each party during the mining session, which collusion groups



can be formed and how they can reconstruct information from available informa-
tion (including single malicious attacks). In the following, a few algorithms for
distributed data clustering are briefly reviewed and their privacy properties are
then analyzed in light of our privacy definitions. We selected these algorithms
because they are based on prominent methods for distributed data clustering.

4.1 Secure Multiparty k-Means

Vaidya and Clifton [15] proposed an extension of the classic k-means algorithm
to the distributed setting, using cryptographic protocols to achieve privacy (VC-
kmeans). Data is assumed to be vertically partitioned. The solution is based on
a secure sum protocol to find the closest cluster for any given point. It also uses
secure permutation and secure comparison. VC-kmeans assumes three trusted
parties L1, L2 and Lp. Additionally, let Lj be any other non-trusted party in

the mining group. It was originally evaluated with PRPC as private with three
trusted parties, but no analysis is presented on how much privacy is preserved
under collusion.
Single Insider Attacks. A given party Lj knows only: (i) µj , a share of the
centroid; (ii) dij , the distance from the cluster centroid µi to the view of point
xj ; (iii) and a random vector vj . L1 is the party which starts the protocol and
knows: (i) a partial view of the cluster centroids, µ1; (ii) the cluster assignment
for each data point x; (iii) a random vector v; and (iv) a permutation π of 1 to
k, used to preserve the privacy of information in the SMC protocol. L2 knows
T 2 = π(v2 + d2), the permuted sum of v2 with d2, which is hidden from the
other parties but Lp. Lp knows its share of the centroid µp, and T i = π(vi+di),
i = 1, 3, 4, . . . , p, the permuted sum of vi with di of each party but L2. Moreover,
Lp knows the combined sum of T i from all parties but L2, i.e. Y = T 1+

∑p
i=3 T i.

L1 is the party holding the most important information, which can be used to
reconstruct sensitive data, including the random vector v and the permutation
π. However, without the permuted sum of distances Y i from other parties (i =
1, 3, 4, . . . , p) L1 will not learn anything, because it cannot reconstruct data
points from other parties. Similarly, L2 and Lp will not learn anything from the
information they hold alone.
Let D be a n-dimensional dataset distributed over a network of peers. When
there are only single insider attacks, algorithm VC-kmeans produces a cluster
map of C from D with a privacy level given by:

PRrange
V Ckmeans[1](D) = min{max(Ci)−min(Ci)} (11)

with ∀Ci ∈ C. Any insider attacker working solo can only learn what is dis-
closed by the cluster map itself – namely, that each point ranges in the interval
min, max, for a given cluster. Contrast this information with the result of an
SMC analysis, which only tells us that the protocol is private, but does not
quantify it in terms of original data space units.
Attack with Collusion of Insiders L1 and Lp. Together, L1 and Lp hold infor-
mation on the permuted sum of all parties except for L2. Moreover, they hold



information on the permutation π and the random vector v. Therefore, this
collusion group may compute the vector di using inverse of permutation π:

di = π−1(Y i)− vi (12)

with i = 1, 3, 4, . . . , p. The vector di represents the distance between a given point
x and the cluster centroid i with mean µi, therefore, with the true distance, every
point x can be located with an arbitrary error. Using Eq. (12) as reconstruction
method, we apply PRrec(D).

PRrec
V Ckmeans[2](D) = min{|x− r| : x ∈ D, r ∈ R} ≈ 0 (13)

where D is the original dataset and R is a reconstructed dataset. Original evalu-
ation with PRPC

V Ckmeans(D) does not inform how much privacy is lost with only
one attacker. However, we find in our analysis that a malicious alone can learn
no more than the size of each cluster.

4.2 Distributed Data Clustering with Generative Models

Merugu and Ghosh [10] present an algorithm for distributed clustering and clas-
sification based on generative models approach (DDCGM). Their algorithm out-

puts an approximate model λ̂c of a true global model λc from a predefined fixed
family of models F , e.g. multivariate 10-component Gaussian mixtures. DDCGM
first computes local models λi, from which the average global model λ̄ is gener-
ated by pλ̄(x) =

∑n
i=1 νipλi(x) where pλ(x) is the probability density function

of a given model λ. The algorithm uses λ̄ to find a good approximation λ̂c of
the true (and unknown) global model λc. The model λ̂c is used as cluster map.
Original privacy evaluation was based on PRlike(D), with all models in a mix-
ture, regardless of the possible weakness of any component. The new evaluation
reflects the weakest model in the mixture.
Single Insider Attacks. In the DDCGM scheme, a central entity receives local
generative models and combines them into an average generative model. This
entity knows individual generative model from each party. Arbitrary parties
know only the global model. Since the models represent clusters, we can apply
PRrange(D). Let pλ(x) be a mixture model with k elements. The privacy level
provided by DDCGM using pλ(x) and with no collusion is:

PRrange
DDCGM [1](D) = min{xmax − xmin} (14)

where xmax and xmin are inferior and superior elements at the each cluster,
according to the model pλ(x).
Assuming that each component model λi in the mixture is a Gaussian in a
n dimensional data space with covariance matrix Σi, the entropy is hi(x) =
ln
√

(2πe)n|Σi|, where |Σi| is the determinant of the covariance matrix of the
given model, and consequently, a cluster. Therefore, we can compute:

PRBK
DDCGM [1](D) = min

{
2hi(x)

}
= min

{
2ln
√

(2πe)n|Σi|
}

(15)



Original assessment Single attacks Collusion attacks

VC-kmeans [15] private (3 trusted) min{xmax − xmin} decrease to ≈ 0, c ≥ 2

DDCGM [10] 2

(
− 1

|D|
∑
x∈D log fλ(x)

)
min{2ln

√
(2πe)n|Σi|} same level, c ≥ 1

ITDDC [14] N/A min{xmax − xmin} same level, c ≥ 1
EC-kmeans [12] private (0 trusted) min{xmax − xmin} min{xmax−xmin}, c ≥ 2

Table 2. Summary of privacy preserving distributed data clustering algorithms.

Collusion Attack. Any collusion group must include the central party since there
is little information for arbitrary parties, and collusion attacks reduce to single
aggregator attack. Thus, PRBK

DDCGM [1](D) = PRBK
DDCGM [c](D) with c ≥ 2.

4.3 Information Theoretical Approach to Distributed Clustering

Shen and Li [14] proposed an information theoretical approach to distributed
clustering (ITDDC). They assume a peer-to-peer network where each node solves
a local clustering problem and updates its neighbors. The clustering problem is to
fit a discriminative model to cluster boundaries that maximize the mutual infor-
mation between cluster labels and data points. With low communication, local
clusters are formed based on global information spread through the network.
The algorithm needs several rounds of iterations to converge. When it comes to
privacy, the authors do not investigate how the algorithm would behave under
inference attacks and do not investigate how much privacy this approach does
provide.

Single Insider Attack. Each party in ITDDC knows a set of discriminative mod-
els defining the clusters boundaries of points on data sets and from all its direct
neighbors. We can apply PRrange(Dj) to compute how much privacy is pre-
served at local dataset Dj for a given model. Each party estimates p̂j(k|x), a class
label distribution defined by a local discriminative model (for instance, logistic
regression). The distribution of x in a given cluster is not disclosed. Thus, each
point can only be located in the interval corresponding to its cluster boundaries.
The privacy provided by DDCGM using p̂j(k|x) and with no collusion is:

PRrange
ITDDC[1](D) = min{xmax − xmin} (16)

where xmax and xmin are inferior and superior elements at the each cluster,
according to the boundaries defined by model p̂j(k|x).

Collusion attack. The only information being exchanged among the parties is the
local models. Moreover, there is no special central entity holding extra informa-
tion on data distribution at local datasets. Therefore, even if malicious parties
collude against another party, they cannot improve on the single insider attack.
Therefore, PRrange

ITDDC[c](D) = PRrange
ITDDC[1](D), with c ≥ 1 colluding parties.



4.4 Elliptic Curves for Multiparty k-means

Patel and colleagues [12] present a privacy-preserving distributed k-means al-
gorithm based on elliptic curves (EC-kmeans). They assume no trusted party
and use elliptic curves to achieve low overhead cryptography. No analysis on
inference attack or collusion is presented by the authors.

Single Insider Attack. Each peer knows its own centroids, its own cluster bound-
aries and the encrypted version of the global centroids and the number of points
in a global cluster. Without collusion, a given malicious party does not even
know the boundaries of clusters residing on other parties.

Collusion. The initiator knows the information necessary to decrypt data in the
mining session. Therefore, a collusion group with the initiator and any party
Li can learn about the centroids and number of points in each cluster on the
party Li−1. With the centroids, cluster boundaries of dataset Dj at Lj could be
estimated and PRrange

ECkmeans[2](Dj) = min{xmax − xmin}.

4.5 Discussion

Table 2 presents an overview of the studied algorithms. The analysis above shows
that collusion is indeed a chief source of privacy breach, and that algorithms
can be separated according to their vulnerability to collusion groups and to the
malicious behavior of a site with a special role in the protocol, e.g., a central site,
or an aggregator, or a protocol initiator. VC-kmeans is almost completely not
private if the central site colludes, whereas DDCGM has limited vulnerability to
the central site and not to collusion; ITDDC does not use a central site and only
disclose cluster ranges, irrespective of collusions. EC-kmeans, finally, is secure
and only discloses range information under a collusion attack that involves the
initiator.

5 Conclusions

We presented new privacy measures for distributed data clustering, in order to
overcome the limitations of existing measures. Starting from a set of formal prop-
erties, it was shown that the new measures satisfy the properties and, therefore,
improve over previous ones. The new measures were applied to selected rep-
resentative of privacy-preserving distributed data clustering algorithms. Some
identified benefits from the new measures are the ability to detect the vulner-
abilities of the representative algorithm to collusion in different scenarios and
detect point level privacy breach. In fact, it was shown that collusion is indeed
an important source of privacy breach, and that algorithms can be separated ac-
cording to their vulnerability to collusion groups and to the potential malicious
behavior of a site with a special role in the protocol, e.g., a central site, or an
aggregator, or a protocol initiator.
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