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Designing self-interested autonomous software agents that can negotiate rationally

in stable coalitions can dramatically benefit end users. Rational agents are usually

required to form beneficial coalitions in open, distributed, and heterogeneous environ-

ments, including scenarios in which dynamically occurring events might interfere

with the coalition proceses. Dynamic coalition for-
mation (DCF) methods promise to be particularly
well suited for applications of ubiquitous and mobile
computing, including mobile commerce in wireless
environments.

In mobile-commerce settings, for example, per-
sonalized information agents, each representing a
potential business partner, might dynamically form
temporary profit-oriented coalitions to enhance a
customer’s purchasing and negotiating strategies in
multiple electronic marketplaces. This vision for the
common Internet user isn’t far from being realized,
especially with recent advances in wireless comput-
ing and communication appliances.1–3

Static formation of stable coalitions
We categorize coalition formation into two

approaches: utility-based and complementary-based.
These two models divide the actors into those that
follow the principle of bellum omnium contra omnes
as it is largely favored, for example, by game theory,
and those that rely on the collaborative use of com-
plementary individual skills to enhance the power of
each agent to accomplish its goals.4,5 Until now, most
classic methods for forming stable coalitions among
rational agents follow the utility-based approach and
rely on derived concepts from cooperative game the-
ory, economics, and operations research. Utilitarian
coalition formation covers two main activities: gen-
erating coalition structures and distributing gained
benefit among the participants of each coalition.6,7

We define a cooperative game as a set A of agents
in which each subset of A is called a coalition and a

characteristic function v assigns each coalition C in
A its maximum gain. (We offer an introduction to
cooperative game theory here, but other sources pro-
vide a more in-depth explanation.8,9) The value v(C)
does not depend on the actions of agents outside the
coalition. Any coalition C forms by a binding agree-
ment on the distribution of its coalition value v(C)
among its members.

The solution of a cooperative game with side pay-
ments is a coalition configuration, which consists of
a partition S of A, the coalition structure, and an n-
dimensional payoff distribution vector in which com-
ponents are computed by a utility function u. The
payoff distribution assigns each agent in A its utility
u(a) out of the value v(C)  of the coalition C in a given
coalition structure S. The number or size of coali-
tions formed using a coalition formation method is
often restricted to ensure, for example, polynomial
complexity of the formation process.

In coalition configurations with so-called pareto-
optimal payoff distributions, no agent is better off in
any other valid payoff distribution for the given game
and coalition structure. A coalition configuration
(S, u) is stable if no agent has an incentive to leave
its coalition in S due to its assigned payoff u(a).
Different characteristics and stability criterion define
different solution spaces for cooperative games.
Rational agents involved in a cooperative game
(A, v) negotiate a stable payment configuration (S,
u) as a solution that uses an appropriate coalition
algorithm (CA). Each agent can execute the CA
locally. Negotiation according to the CA is com-
pletely decentralized. The CA provides a stable coali-
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tion configuration for any cooperative game
at any time.

A coalition formation environment for a
given set of agents A is the set of assumptions
and constraints that are valid for any kind of
coalition-forming activity between agents in
A, including propositions on the task-related
functionality of each individual agent in A,
including its set of tasks, goals, actions, and
methods to compute the individual utilities
of task-related productions. The set of
assumptions also includes valid methods for
computing the values of coalitions and valid
methods for determining coalition configu-
rations, including methods for searching
coalition structures.

In a given coalition formation environ-
ment, the agents agree on what kind of stable
coalitions will be negotiated and what par-
ticular CA will be used for the negotiation.
Different agents can compute their utilities
of task execution and corresponding pro-
ductions differently. However, most work on
coalition formation relies on coalition for-
mation environments in which all agents are
homogeneous. 

A coalition formation environment is super-
additive or subadditive, depending on the type
of all cooperative games it allows. In subad-
ditive games, at least one pair of potential
coalitions is not better off by merging into one.
We define a coalition formation model by both
the considered coalition formation environ-
ment and a given CA for this environment. 

Stable and static coalitions
The meaning of coalition stability depends

on the considered discipline and application
domain. Many (if not most) of the coalition
formation algorithms rely on chosen game
theory concepts for stable payoff division
within coalitions according to, for example,
the Shapley value, the core, the bargaining
set, or the kernel.8 All traditional approaches
to coalition formation remain static in the
sense that they do not allow for any type of
interference with the running coalition for-
mation process. In addition, known results
for superadditive coalition formation envi-
ronments must be transported into general or
subadditive environments to gain practical
relevance for the development and applica-
tion of DCF algorithms to real-world open
environments.

Core-stable coalitions
One approach10 to form stable coalition

configurations consists of the following two

steps: searching for a coalition structure in a
corresponding coalition structure graph for
the given game (A,v) and then computing its
payoff according to the stability concept of
the core. We define the core of a game with
respect to a given coalition structure as the
set of coalition configurations that don’t nec-
essarily have unique payoff distributions.
Only coalition structures that maximize the
social welfare—the sum of all coalition val-
ues of coalitions in the considered struc-
ture—are core-stable.

However, searching for an optimal coali-
tion structure (given a set A of agents) among
the exponential number of |A||A|/2 possible
coalition structures is computationally diffi-
cult, because we have to try at least 2|A|–1

coalition structures.10,11 Another well-known
problem with core-stable configurations is
that the core might be empty for certain coop-
erative games, and is exponentially difficult
to compute. Because of these problems,
using the core-stable coalition is quite unpop-
ular. In fact, we aren’t aware of any CA for
computing core-stable coalition configura-
tions in DCF environments.

Shapley-value-stable coalitions
Any payoff division scheme according to

the Shapley value provides an agent with the
added value that it brings to the given coali-
tion structure, averaged over all possible join-
ing orders. That makes the Shapley value
exponentially hard to compute. Algorithms
for forming stable coalitions that rely on the
stability concept of the Shapley value, and a
variation of it, the bilateral Shapley value12

applied to arbitrary cooperative games, are
proposed elsewhere.13 Computing a proposed
payoff division according to the bilateral
Shapley value with equal or proportional his-

tory-based share among coalition members
is efficient and rational for superadditive
games. Because this does not necessarily hold
for subadditive games, these algorithms are
not suitable for DCF.

Kernel-stable coalitions
The kernel of a cooperative game is the set

of kernel-stable configurations (S, u) in which
all coalitions in S are in equilibrium. Coali-
tion C is in such an equilibrium if each pair
of agents in C is in equilibrium—that is, if
any pair of agents in C is balanced so that
none of both agents can outweigh the other in
(S, u) by having the option to get a better
payoff. Each agent has to compare its sur-
plus with those of other agents.

A game’s kernel is exponentially hard to
compute unless a constant limits the coali-
tion’s size. The kernel appears to be attrac-
tive because it is unique for any three-agent
game, it assigns symmetric agents of some
coalition in a given coalition structure for
equal payoff, and it is locally Pareto-optimal.
Polynomial CAs for polynomial kernel-sta-
ble coalition configurations have been devel-
oped and applied to the domain of coopera-
tive information agents.14,15

Fuzzy cooperative games
Negotiation during the coalition-forming

process might be uncertain. Such uncertain-
ties could be caused by the possibility of
nondeterministic events that hamper the
negotiation process and produce incomplete
information. Agents might have uncertain
knowledge about the share of coalition
income in which they intend to participate
or on the degree of their membership in one
or multiple coalitions. An agent might deter-
mine the degree of its membership to poten-
tial coalitions by individually leveled com-
mitments to other agents or bargains that
indicate the degree of collaboration that 
the agents desire. The first case might imply
the formation of fuzzy-valued coalitions,
whereas the second case might induce the
formation of fuzzy coalitions, which might
partially overlap.

A fuzzy cooperative game16 consists of a
set of agents, a fuzzy characteristic function
v, and the membership function m of the fuzzy
quantities v(C) that might be interpreted as
expectation of the common coalition profit
that is to be distributed among its members.
That is, the worth v(C) of a fuzzy-valued coali-
tion C is a fuzzy set of its possible real-valued
coalitional profits. This set of fuzzy quantity
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v(C) has at least one modal value determined
by the membership function m. If, for a given
fuzzy cooperative game, the coalition value
v(C) is equal to one modal value of C for all
possible coalitions C, it is equivalent to a
(deterministic) cooperative game.

Stochastic cooperative games
Another class of cooperative games arises

from cooperative decision-making problems
in stochastic environments. A game with sto-
chastic payoffs17 is defined by a set of agents,
a set of possible actions coalitions might take,
and a function assigning to each action of a
coalition a real-valued stochastic variable
with finite expectation, representing the payoff
to a coalition when this particular action is
taken. Thus, in contrast to a deterministic
cooperative game, the payoffs can be random
variables, and the actions a coalition can
choose from are explicitly modeled, because
the payoffs are not uniquely determined.

Developing DCF Schemes
We define the DCF research domain as the

set of cooperation methods, schemes, and
enabling technologies designed to cope with
the problem of dynamically building benefi-
cial coalitions among agents in open, dis-
tributed, and heterogeneous environments.
The DCF problem must be solved in any col-
laboration environment and scenario in
which agents enter or leave coalition forma-
tion processes and in which the set of tasks
that individual agents must accomplish
change dynamically. Cooperation scenarios
inducing uncertain, time-limited, context-
based utilities and coalition values can exac-
erbate the DCF problem.

One challenge is to get agents to react to
different kinds of changes in real time with-
out having to restart the complete negotiation
process. Doing so requires agents to handle
uncertain environment knowledge through
appropriate adaptation mechanisms. Another
research challenge concerns the transforma-
tion of the traditional game-theory criterion
of coalition stability to these dynamic envi-
ronments. It hardly makes sense for an agent
to determine stable coalitions according to,
for example, the Shapley value or the kernel
in a frequently changing environment.

Basic research must clarify which kinds
of dynamic settings, and to what extent avail-
able algorithms for the static formation of
stable coalitions, should be adopted. In par-
ticular, the developed methods must let
agents deliberately restart their coalition

negotiations at any time depending on the
environmental changes. There is a trade-off
between the efficiency of DCF and the qual-
ity of computed stable coalition configura-
tions. Though this trade-off seems intuitively
clear, it must be investigated further.

The development of DCF schemes might
benefit from adopting appropriate methods
for quantitative or qualitative decision-mak-
ing that is based on partial, uncertain, and ten-
tative information. Reasonable solutions for
fuzzy and stochastic cooperative games might
be adopted for cooperation schemes that let
agents deal with different uncertainty types.
Such uncertainties might be induced in DCF
environments by, for example, network faults,
changes of trust, or the receipt of vague or

even incomplete data during task execution.
There are no CAs for fuzzy or stochastic

coalitions available to date. Developing such
CAs for DCF environments appears to be
even more challenging. To our knowledge,
no such work is available to date. Other rel-
evant work for developing cooperation
schemes for dynamic environments include,
for example, utility-based schemes for
dynamically reorganizing organizational
structures and exception-tolerant reasoning
and multicriteria decision-making.

Social-reasoning mechanisms are essen-
tial building blocks suitable to situations in
which agents might dynamically enter or
leave the society without any global control.
Advances in social reasoning have a clear
impact on developing DCF schemes. Social-
reasoning mechanisms are often based on the
notion of social dependence or aim at repu-
tation and trust management. To acquire and
use dependence knowledge on the consid-
ered agent society, each agent must explic-
itly represent some properties of the other

agents, exploit this representation and opti-
mize its behavior according to the evolution
of the society, and monitor and revise its rep-
resentation to avoid inconsistencies.

Reputation management aims at avoiding
interaction with undesirable participants and
might complement other security technolo-
gies for authentication and authorization.
Mechanisms for building, propagating, mea-
suring, and maintaining reputation and trust
are useful to apply to settings for coalition for-
mation among self-interested agents in e-com-
merce applications in which trusted third par-
ties are required but not available. Merging
several individual trust matrices, which are
commonly used as a means to assess trust rela-
tionships among agents, requires further
research. In general, mechanisms that let
agents react on frequent changes of reputation
ratings and assessment of trustworthiness of
potential coalition partners are rare. Rational
agents might face many potentially beneficial
choices related to the timing of events that
might occur during the individual decision
process and the negotiation with other poten-
tial coalition partners. The preliminary results
and experiences reported in relevant work
might help design more complex methods for
customer coalition formation in real time.

A simulation-based scheme
We designed the DCF-S scheme to help

agents react to changes in their set of goals
and in the agent society. We can instantiate
the DCF-S scheme using different compu-
tational methods and negotiation proto-
cols. Each instantiation yields a particular
DCF-S-based CA. The development, imple-
mentation, and experimental evaluation of
such DCF-S algorithms is part of our ongo-
ing research efforts.

Environment
For our research, we assume a coalition for-

mation environment in which agents continu-
ously receive a set of goals from their users or
other agents. Furthermore, any agent can
freely enter or leave the society at any time.
Each agent must use appropriate mechanisms
to cope with the uncertainties and gradually
adapt its decision-making techniques to
changes in the environment. We assume that
each agent is equipped with an appropriate
learning component for this purpose.

We also assume an additional set of special
agents, called world-utility agents. Any WUA
might receive, compile, and maintain infor-
mation about each of its registered agents.
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This information includes statements on an
individual agent’s problem-solving capability
and the evaluation of its quality of service by
other agents. Such evaluation might concern
an agent’s reliability and trustworthiness and
affect its cooperation with other agents. These
evaluation records are safe against possible
manipulation and are securely distributed to
and updated by the networked WUAs. How-
ever, each agent in the considered agent soci-
ety is free to request its nearest WUA to obtain
information on its environment.

We define a goal-oriented cooperative game
(A, v)|G as a cooperative game with respect to
a given goal G. Such a game is determined by
a given set A of agents and a real-valued func-
tion v assigning each coalition C its total
expected outcome with respect to the accom-

plishment of the goal G. In particular, com-
puting the individual utility of the set of pro-
ductions of coalition members in C is restricted
to the set of productions related to G.

We can represent any coalition to the out-
side world with an appropriate coalition-
leading agent (CLA). We consider each
coalition to be one entity or agent. Because
we can consider one agent to be a single-
agent coalition, we can use the terms “agent”
and “coalition” interchangeably. Initially, the
set of all possible, nonempty coalitions is the
set of single-agent coalitions. Each agent is
a CLA of a stable coalition for accomplish-
ing one of its goals as a solution of the cor-
responding game. Any CLA is supposed to
act on behalf of the members of its coalition,
including negotiating and controlling the dis-

tribution of resources and payoffs among the
coalition members according to the coalition
contract. This structure is similar to the struc-
ture of holonic multiagent systems. 

DCF-S scheme
In the DCF-S scheme, each CLA concur-

rently simulates, selects, and negotiates
coalitions, each of which is able to accom-
plish one of its goals with an acceptable ratio
between estimated risk of failure and indi-
vidual profit. Figure 1 outlines the scheme in
pseudocode, and the “DCF-S Scheme Func-
tions, Numbers, and Sets” sidebar defines the
necessary concepts. We can summarize the
main steps of the DCF-S scheme executed
by each CLA as follows: preparation, simu-
lation, negotiation, and evaluation.
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The local knowledge base of an agent a consists of GS(a),
the set of goals the agent must accomplish. Interleaved goals
are aggregated by a into one goal. The list CL|G (BestCL|G) con-
tains the candidates with which agent a might coalesce to
accomplish a goal G in GS(a). The list ACL|G of agent informa-
tion records contains information about agent a on the capa-
bilities of other agents a’ with respect to G. Each record stores
a finite-dimensional vector of real-valued attributes of an
agent a’ with respect to its estimated value of contribution to
the accomplishment of goal G in GS(a). Goal-related attributes
of agent a’ concern, for example, the estimated amount of its
available resources, costs, quality, and efficiency with respect
to goal G.

Other attributes of a’ concern its reliability and trustworthi-
ness in cooperation. The attributes include the following: 

• The real value crv(a’, ACL|G, C) in [0,1] denotes the risk of
agent a to cooperate with agent a’ in coalition C for goal G
in GS(a) with respect to the information on a’ in the list
ACL|G.

• The real value crl(a’, C) denotes the worst acceptable risk of
agent a to cooperate with agent a’ in coalition C. 

• The real value rrl(a’ C) in [0,1] denotes the worst acceptable
risk of agent a to remove agent a’ from valid coalition C the
agent a is leading. This risk value might be computed with
respect to the implied payment of trust penalty tp(a’, a) and
the penalty payment limit ppl(a).

• The real value tp(a’, a) is the trust penalty to be paid by a to
a’ in case a breaks a coalition agreement with a’.

• The real value ppl(a) denotes the upper limit of penalty
payments by agent a.

In addition, we define the following values, sets, and functions:

• The integer value MaxSim denotes the maximum number
of steps for each simulation round.

• CC|G is the set of candidates for forming a coalition with
respect to goal G. These candidates come from the current
set CS of valid coalitions and determined by the function
Match.

• Match(CS, G, ACL|G) determines the set of agents in the 
set CS of all trusted agents (individual agents and valid
coalitions which are actually known to agent a), each of

which is capable of contributing to the accomplishment of
goal G. The capability-based matching determines to what
degree the agents’ capability descriptions in ACL|G match
the description of the goal G.

• Request(ACL|G, WUA) and Update_Agt_Information (ACL|G,
RecentAC) concern the request of the nearest world-utility
agent for information to (periodically) update the list
ACL|G. The update relies, in particular, on an appropriate
learning mechanism to approximate incomplete or vague
information.

• SelectAgt_MinRisk_MaxValue(CC, HC|G, ACL|G) returns an
agent a’ from the set CC of agents with estimated minimum
risk of cooperation in, and maximum value of contribution
to, the (simulated) joint coalition HC ∪ {a’} with respect to
goal G regarding the attributes of a’ stored in the agent
information list ACL|G. Only agents a’ are selected which
payoff in HC ∪ {a’} is individual rational.

• SelectAgt_MaxRisk_MaxValue(HC|G, ACL|G) returns an
agent a’ from the coalition HC|G with estimated maximum
risk of cooperation in, and maximum value of, the coalition
C\{a’} regarding the information on a’ in ACL|G.

• Events(BestCL|G) returns the set of events that have occurred,
influencing the coalition’s formation, which consists of all
agents in the list BestCL|G. 

• Value(CL|G) determines the value v(C) of the coalition C,
which consists of all agents in the list CL|G. 

• BilateralNegotiation(a, a’, Value(BestCL|G), C ∪ {a’}) returns
true if the bilateral multi-attribute negotiation of agent a
with agent a’ on a joint coalition C ∪ {a’} with respect to its
value is successful; otherwise, it returns false. 

• Evaluate(ACL|G) updates the agent information list ACL|G
according to the local evaluation of the recent negotiation
processes of the agent and returns the updated list ACL|G.
This evaluation gives input to the agent’s internal learning
mechanism for adapting to changes in its environment.

• StopNegotiation(BestCL|G) stops all running negotiation
processes with all agents in BestCL|G on a coalition for the
goal G and updates the list CL|G by keeping those agents
with which the agent has already successfully negotiated.

• RedundancyCheck(BestCL|G) returns a nonredundant list
BestCL|G.

DCF-S Scheme Functions, Numbers, and Sets



In the preparation phase, the CLA deter-
mines the set of goals to be accomplished in
cooperation with other agents and periodi-
cally updates its knowledge of the environ-
ment. The local knowledge base includes
information on the partially known problem-
solving capabilities of other agents as well
as individual evaluations of past collabora-
tions with these agents. To obtain this infor-
mation, the CLA might request its nearest
WUA. Because this environment knowledge
might be incomplete or vague, the agent uses
appropriate learning mechanisms for approx-

imating the needed information. 
In the simulation phase, the CLA simu-

lates the formation of coalitions, each of
which might be able to accomplish a given
goal with an acceptable ratio between the
estimated individual profit and risk of form-
ing the coalition.

In the negotiation phase, the CLA negoti-
ates all coalitions it has determined in the
previous simulation step. The CLA negoti-
ates each goal-oriented coalition bilaterally
with each potential member of the coalition.
The complete set of negotiation sequences

can be performed concurrently. The result of
a successful negotiation is a binding agree-
ment between agents on the constraints and
attributes of their cooperation in the new
coalition.

In the case that one bilateral negotiation
fails or an event changing the value or struc-
ture of the considered coalition is detected,
the negotiation process for that coalition is
immediately halted. The CLA then evaluates
the negotiation process for this coalition and
restarts the simulation of potential coalitions
for the particular goal. For the restart, it keeps
those agents in its coalitions with which it
has already successfully negotiated and con-
siders the current situation of the environ-
ment. This way, the CLA might avoid a com-
plete restart, thereby avoiding possible
penalty payments for removing agents from
valid coalitions and a corresponding decrease
of its reliability. 

In the evaluation phase, the CLA evalu-
ates its recent negotiations and reports these
evaluations to the nearest WUA for distribu-
tion. Concurrently, it controls the distribu-
tion of payoffs and resources to members of
the newly formed coalitions according to the
successfully negotiated contracts.

Discussion of the scheme
In the DCF-S scheme, each agent simu-

lates, selects, and negotiates coalitions, each
of which is able to accomplish one of its goals
with an acceptable ratio between estimated
risk of failure and individual profit. In other
words, the agents strive to solve a set of sin-
gle goal-oriented cooperative games (A, v)|G
by forming potentially overlapping coalitions
with stable payoff distributions. Each of
these goal-oriented cooperative games might
change at any time subject to different kinds
of nondeterministically occurring events such
as agents leaving or entering the society. Each
detected change can induce new cooperative
games for the agents to solve.

According to the DCF-S scheme, each
CLA reacts to these changes through a par-
tial rather than complete restart. The agent
tries to keep those agents in the affected coali-
tions with which it has already successfully
reached a coalition agreement. However, the
DCF-S scheme does not guarantee in general
an optimal solution to these games. Rather,
the agents continuously approximate the best
solutions given their current knowledge of the
dynamic environment. A different, but simi-
larly opportunistic and high-risk DCF scheme,
has been proposed elsewhere.11
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Figure 1. The DCF-S scheme in pseudocode. Each coalition-leading agent a executes the
steps illustrated here, where C|G is a valid coalition led by a for one of its goals G in
GS(a).

for each G in GS(a) do concurrently until external termination
{ halt:= false; 
while not halt do
{

Preparation
CC|G = ∅; CL|G, LastCL|G,BestCL|G := null; op:=’’; z,penalties:=0;

if periodic(date, ACL|G) then
{RecentAC := Request(ACL|G, WUA); ACL|G := Update_Agt_Information(ACL|G, RecentAC);}
CC|G := Match(CS, G, ACL|G); HC|G:=C|G;

Simulation
for z:= 1 to MaxSim do
{ op := Random({noop, add_agent, remove_agent}); LastCL|G:= CL|G;

if op = add_agent then
{ agt:= Select_Agt_MinRisk_MaxValue(CC|G, HC|G, ACL|G);

if crv(agt, ACL|G, HC|G) ≤ crl(agt, HC|G) then{CL|G:= CL|G + (agt, add); HC|G:=HC|G∪{agt};}}
else 
if op = remove_agent then
{ agt:= Select_Agt_MaxRisk_MaxValue(HC|G, ACL|G); 
if crv(agt, ACL|G, HC|G) > rrl(agt, HC|G) then { CL|G := CL|G + (agt, remove); HC|G:= HC|G\{agt}; penalties:= 

penalties + tp(agt, a)}
}

}
if Value(CL|G) > Value(LastCL|G) then BestCL|G:= RedundancyCheck(CL|G);
if Value(BestCL|G) >> v(C|G) && penalties < ppl(a) && Events(BestCL|G) =∅ then halt:= true;

} 

Negotiation
for each (a’, op) in BestCL|G do concurrently
{ try

if op = add then {if BilateralNegotiation(a, a’, Value(BestCL|G), C|G∪{a’}) then C|G:= C|G ∪ {a’} }
else { C|G:= C|G \ {a’}; penalty_payment( tp(a’, a), a’); }

catch(event: if Events(BestCL|G) <>∅ then { StopNegotiation(BestCL|G); Goto (Evaluation)} );
}

Evaluation
EvalRes:=Evaluate(ACL|G); [if desired the Send(EvalRes,WUA);]; 
}



The DCF-S scheme assumes the existence
of a set of networked WUAs, which each
agent in the society is free to contact for
obtaining needed information on the environ-
ment. In addition, the update of local knowl-
edge by an agent is assumed to use results
from a continuous adaptation process to
approximate the needed information on its
environment. That might improve the quality
of its decision-making independent from the
WUAs, and thereby reduce the overall com-
plexity in computation and communication.

The complexity of any DCF-S based CA
as an instantiation of the DCF-S scheme
largely depends on the complexity of the
implemented methods that the designer
chooses for capability-based matching,
learning, selection, and negotiation. For
example, for low-complexity computation of
stable payoff distribution in superadditive
environments, we propose adopting the dis-
tribution according to the bilateral Shapley
value with equal or proportional share among
coalition members.15

A pplication-specific instantiations of
the DCF-S scheme lead to the devel-

opment of different DCF-S-based CAs. For
this purpose, relevant approaches and theo-
retical work stemming from different disci-
plines are available, including work on tem-
poral social reasoning, machine learning, and
fuzzy and stochastic cooperative games.

DCF algorithms promise to be particularly
well suited for applications of ubiquitous and
mobile computing, including mobile com-
merce in wireless network environments.
However, further basic research is needed to
investigate the potential of the new research
field of DCF, which remains in its infancy.
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