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Numerical Solutions to Nash–Cournot Equilibria in
Coupled Constraint Electricity Markets

Javier Contreras, Member, IEEE, Matthias Klusch, and Jacek B. Krawczyk

Abstract—A numerical method based on a relaxation algorithm
and the Nikaido–Isoda function is presented for the calculation of
Nash–Cournot equilibria in electricity markets. Nash equilibrium
is attained through a relaxation procedure applied to an objective
function, the Nikaido–Isoda function, which is derived from the ex-
isting profit maximization functions calculated by the generating
companies. We also show how to use the relaxation algorithm to
compute, and enforce, a coupled constraint equilibrium, which oc-
curs if regulatory, generation, and distribution (and more) restric-
tions are placed on the companies and entire markets. Moreover,
we use the relaxation algorithm to compute players’ payoffs under
several player configurations. This is needed for the solution of our
game under cooperative game theory concepts, such as the bilat-
eral Shapley value and the kernel. We show that the existence of
both depends critically on demand price elasticity. The numerical
method converges to a unique solution under rather specific but
plausible concavity conditions. A case study from the IEEE 30-bus
system, and a three-bus bilateral market example with a dc model
of the transmission line constraints are presented and discussed.

Index Terms—Bilateral Shapley value, coalition formation, cou-
pled constraints, electricity markets, kernel, Nash–Cournot equi-
librium, Nikaido–Isoda function, relaxation algorithm.

I. INTRODUCTION

POWER system restructuring is transforming traditional
vertically integrated monopolies into deregulated entities.

Competition is fostered by newly created electricity markets
where buyers and sellers can trade electricity in auctions or
through bilateral agreements.

Cost minimization techniques used by electric utilities in
the past are being replaced by efficient bidding algorithms.
Currently, the objective of the electric utilities is profit maxi-
mization, where prices are determined by suppliers, consumers,
transmission line owners, and other participants.

Perfect competitive markets are very difficult to attain in
the electricity industry, mainly because of the small number of
players that compete. On the other hand, network constraints
affect the competitiveness of the market, since market bidders
produce bottlenecks that may induce a large increase in prices.
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Thus, the assumption of the market as being an imperfect one
is sensible.

Oligopolistic market models have been applied to study
electricity markets since the beginning of the restructuring
upheaval [1]–[5]. Our model is similar in spirit to Hobbs’ [5]
as both papers are concerned with Nash–Cournot equilibria
[6] in electricity markets. However, there are two practical
differences between our papers. While Hobbs’ method in [5]
depends on existence of a solution to a system of equations
and inequalities, which result from mixed complementarity
(Kuhn–Karesh–Tucker) conditions, ours relies on a function
minimization procedure. The other difference is in the kind
of equilibrium each paper is trying to establish: Hobbs in [5]
endeavours to compute a Nash–Cournot equilibrium that would
also satisfy a market clearing condition. We look for a coupled
constraint equilibrium, which is a rather new solution concept
to game theory problems (explained below) where the action
space is jointly restricted for all players. We consider the latter
kind of equilibrium an appropriate solution concept for many
electricity market problems.

Using the approach of [5] or looking for an analytical solu-
tion to a particular concave game of several players with non-
linear profit functions and, possibly, constraints might be dif-
ficult. The Nikaido–Isoda function and a relaxation algorithm
are combined in [7]–[9] to create a numerical method (NIRA)
for solutions of infinite games. The method is attractive in that
the most advanced computational routine required is minimiza-
tion of a multivariate function. A sequential improvement of the
Nikaido–Isoda function is obtained through a relaxation algo-
rithm that is proved to converge to a Nash equilibrium for a
wide class of problems, including nondifferential payoffs and
coupled constraint games [7], [10].

The feature of handling games with a constrained strategy
space is of particular importance for electricity market mod-
eling. In a typical problem of electricity generation and distri-
bution, the competing economic agents’ strategy space is cou-
pled. This is due to (mainly) capacity constraints and Kirch-
hoff’s laws, and signifies that in the problem, there are joint con-
straints imposed on the combined strategy space of all agents.
This means that the set of options available to an agent depends
on the other agents’ choices. If all agents act simultaneously, no
traditional noncooperative game theory concept can be used to
solve such a game. However, Rosen’s normalized equilibrium,
in which he introduces to solve games subject to a coupled con-
straint set, (called, for short, here and in [9] coupled constraint
games) can be applied [10]. A contribution of this paper is to
apply this solution concept in the context of electricity markets.
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To illustrate how this concept works, we have solved sev-
eral electricity market games. In particular, we have solved a
(slightly modified) problem posed in [5] to compare the two
methods.

The paper is organized as follows. Section II provides an in-
troduction to basic definitions and concepts. Section III presents
the relaxation algorithm and an illustrative example. Section IV
shows several case studies where the algorithm is applied, both
with and without transmission network constraints. For one of
the examples, cooperative game theory solution concepts, such
as bilateral Shapley value [11], [12] and the kernel [13], [14] are
used to analyze coalition formation. The solutions, which might
be computationally involved, are achieved by a sequential use of
the relaxation algorithm. Concluding remarks are shown in Sec-
tion V.

II. DEFINITIONS AND CONCEPTS

An -person game is a formal representation or a mathemat-
ical model of a situation in which a number of players (that can
be electricity companies) interact in a setting of strategic inter-
dependence. This means that the welfare of a player depends
upon his1 own actions and on the actions of the other partici-
pants in the game. An -person game (in normal form) is de-
fined as a three-tuple , where is the
set of players; , , is the set of strategies (or
strategy space) of player ; and , is the payoff (or wel-
fare, utility, profit, etc.) function of player that assigns a real
number to each element of the Cartesian product of the strategy
spaces .

An agent plays a game through actions. An action is a choice
that a player makes, according to his own strategy. Since a game
sets a framework of strategic interdependence, a participant
should be able to have enough information about its own and
other players’ past actions. This is called the information set. A
strategy is a rule that tells the player which action(s) he should
take, according to his own information set at any particular stage
of a game. Finally, a payoff function expresses the utility that a
player obtains given a strategy profile for all players.

More formally stated, assume that there are
players participating in a game. Each player can take an in-
dividual action represented by a vector . All players, when
acting together, can take a collective action, which is a vector

. Denote by an action set2 of player ,
by his payoff function, and by the collective
action set. Then, if and
are elements of the collective action set, an element

of the collective action set can
be seen as a set of actions where the th player plays while the
remaining agents are playing , .

A point is called the Nash equilibrium
point if, for each

max (1)

1Despite the political correctness trend, we need to use singular personal and
possessive pronouns to address a nongender specific individual agent. We adopt
the convention that the word “he” and “his” refer to a singular genderless player
of a game.

2Which is identical to the strategy set if the information set is empty.

Notice that solves the game in the
following sense: at no player can improve his individual
payoff by a unilateral (i.e., his own) action.

In order to compute the Nash equilibrium, we introduce the
Nikaido–Isoda function [15]. This function transforms an equi-
librium problem into an optimization problem. Let be the
payoff function of player , then the Nikaido–Isoda function

is defined as

(2)

From (2), it follows that . Each summand of the
Nikaido–Isoda function represents the improvement in payoff
that a player will receive when he changes his action from to

, while all other players continue playing according to . That
means that one player changes his action while the others do not.
Thus, the function represents the sum of these improvements in
the payoff. Note that the maximum value of this function is al-
ways nonnegative for a given . Also, the function is nonposi-
tive for all feasible when is a Nash equilibrium, since no
player can improve his payoff at equilibrium. In consequence,
each summand can be at most zero at the Nash equilibrium.

In conclusion, when the Nikaido–Isoda function satisfies cer-
tain concavity conditions (defined in Appendix A) and cannot
be made (significantly) positive for a given , the Nash equilib-
rium point is (approximately) reached. This is used to construct
a termination condition for the relaxation algorithm, such that
when an is chosen, the Nash equilibrium is obtained when
max , where is the iterative step of the relax-

ation algorithm. See Appendix A and [8].
An element is referred to as a Nash normalized

equilibrium point if

max (3)

Given the concavity conditions, a Nash normalized equilib-
rium is also a Nash equilibrium point [16].

Finally, the optimum response function is introduced. It is
the result of maximizing the Nikaido–Isoda function, where
all players try to improve their payoffs. The optimum response
function at the point is

arg max (4)

This function returns the set of players’ actions whereby they
all try to unilaterally maximize their respective payoffs. So, by
“playing” actions rather than , the players approach the
equilibrium.

In the next section, an algorithm that uses the Nikaido–Isoda
function to compute a Nash normalized equilibrium is pre-
sented. At each iteration of the algorithm, the players wish to
move to a point that represents an improvement on the current
player’s point. Technical definitions that are used in the con-
vergence theorem of the algorithm are included in Appendix A.
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III. RELAXATION ALGORITHM

A. Relaxation Algorithm

In order to find a Nash equilibrium of a game, having an initial
estimate , the relaxation algorithm of the optimum response
function, when is single-valued and the concavity condi-
tions are satisfied, is

(5)

where An iterative step is constructed as a
weighted average of the improvement point and the cur-
rent point . The optimum response function is calcu-
lated after solving an optimization problem, as seen in (4). The
averaging shown in (5) ensures convergence of the algorithm,
under certain conditions [7], [9]. At each stage, the optimum re-
sponse of a player is chosen, assuming that the rest will play
as they did in the previous period. Thus, by taking a sufficient
number of iterations, the algorithm converges to the Nash equi-
librium . The problem can be either considered a centralized
optimization model or a calculation of the succession of actions
by the players at each stage, where players choose their optimum
response given the actions of the opponents in the previous pe-
riod.

The theorem that ensures convergence of the relaxation algo-
rithm is presented in full detail in Appendix A. Condition 5 of
the theorem is of special importance for the solution to games,
in which the strategy space of competing generation and distri-
bution agents is coupled (e.g., due to Kirchhoff’s laws). Such
games are coupled constraint games [10] and possess equilib-
rium solutions under a rather technical (but likely satisfied) as-
sumption. The assumption is that the game is diagonally strictly
concave3 (DST). It follows from [17] that if condition 5 is satis-
fied, then the underlying game is DSC. Therefore, if the relax-
ation algorithm converges to an equilibrium, then, this equilib-
rium is a coupled constraint game solution.

B. Duopoly Example

We will use a simple example to illustrate, quite in de-
tail4 how a Nash equilibrium can be computed using the
Nikado–Isoda function. In this example [9], there are two
identical firms that sell an identical product on the same
market. Each firm chooses its production such that its profit
is maximized. Let , , and be constants (price intercept,
linear cost coefficient, and inverse elasticity, respectively).
Using the inverse demand equation, the market price becomes

(6)

and the profit made by firm is

(7)

3Loosely speaking, diagonal strict concavity means that each player has more
control over his payoff than the other players have over it.

4A reader not interested in this level of detail can proceed to Section IV where
motivating electricity market case studies are analyzed.

The Nikaido–Isoda function is

(8)

leading to an optimum response function

arg max (9)

The above maximization provides the “improvement” values
for and , given “current” and (initial or calculated in
the previous iteration). Given differentiability and weak convex-
concavity (see Appendix A) of (8) and because there are no
constraints or production limits in this case, the improvement
values are the result of just making the first derivatives of (8)
w.r.t. and equal to zero, respectively. From (9), it can be
seen that

where

(10)

Once and are known, they will, through (5), become the
“current” values and, in the next iteration, new “improvement”
values will be produced. The process continues until conver-
gence is reached [i.e., no significant improvement in (8) can be
achieved].

Notice that in this example, all conditions of the convergence
theorem (see Appendix A) are met. In particular, the matrix
(See the equation at the bottom of page.) whose positive
definiteness is required for the satisfaction of condition 5
of the convergence theorem (see Appendix A), is strictly
positive definite for a positive .
and are the Jacobians of the
Nikaido–Isoda function evaluated at , is
the Hessian of the Nikaido-Isoda function w.r.t. the first argu-
ment and is the Hessian of the Nikaido–Isoda
function w.r.t. the second argument, both evaluated at .
The result of the Nash equilibrium is with
a corresponding payoff , where su-
perscript stands for Nash equilibrium. For the particular case
of , and , then . Note
that the relaxation algorithm obtains the solution to the fixed
point problem posed in (10): ;

, after an iterative process.
In the next section, we analyze situations with a larger number

of agents. We use the relaxation algorithm to compute solu-
tions to competitive Nash–Cournot games and also to cooper-
ative games. For the latter, we apply the bilateral Shapley value
[12] and the kernel [14] as solution concepts.

IV. CASE STUDIES

Two case studies are proposed to test the relaxation algorithm.
The first one considers an electricity market that uses the IEEE
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TABLE I
IEEE 30-BUS SYSTEM MARKET DATA

TABLE II
GENERATING UNITS COST COEFFICIENTS

30-bus system [4]. The second one is taken from [5], including
transmission line modeling and flow constraints.

A. Case Study 1

In this case study, it is assumed that there are three generating
companies and each of them possesses several generating units,
as shown in Table I; and are the power generation of a
unit and a company, respectively.

The cost of a generating unit is of the type
, whose coefficients are reported in

Table II.
Assuming that the electricity demand is a strictly decreasing

function of the price , the demand function in an interval of
time during a day of study considered standard can be expressed

as where is the total power
demand level expected for a selected time interval, and repre-
sents the elasticity of the demand w.r.t. price. In particular, the
standard loading condition of the IEEE 30-bus system in a se-
lected interval is supposed to be [4]

(12)

that can be also expressed conversely as

(13)

where

(14)

are the total number of generators and represents the
transmission losses throughout the system. This simple example
neglects losses, but they can be easily incorporated as a func-
tion of the generation power using the B-matrix loss formula, as
shown in [4].

Once these premises are established, the profit made by com-
pany that owns generating units is

(15)

subject to the constraints . The
Nikaido–Isoda function for (15) is derived in the same way as

(11)
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(8) was. Below, company-by-company, the new variables
are replacing the values of

(16)

Thus, (16) has three terms: the first corresponds to company
#1 who owns one generator, the second to company #2, with two
generators, and the third to company #3, with three generators.
This function is weakly convex-concave, since the there are pos-
itive square terms of and negative square terms of . Thus,
the game also qualifies as diagonally strictly concave. For this
Nikaido–Isoda function, the optimum response function can be
written as follows:

arg max

subject to

(17)

Relationship (17) produces the values of , given
the values for . The latter comes either from an
initial estimation (only in the first iteration), or from a previous
iteration of the relaxation algorithm (5). Finally, both
and the previous iteration values for are plugged in
the relaxation formula (5) to obtain a new value of
and the next iteration starts. Convergence conditions are met,
since is positive
definite. In fact, the matrix is similar to the one in (11), but there
is a positive extra term from the quadratic cost function in the

TABLE III
IEEE 30-BUS SYSTEM NASH EQUILIBRIUM RESULTS

diagonal terms. Thus, since the inverse demand (which is equal
to 2) is also positive, the convergence is guaranteed.

NIRA-2, a software package programmed in Matlab, has
been used to solve this example [18]. Final results with an
optimized size step (see Appendix A) after 18 iterations are
presented in Table III, where is the production of generator
, and is the total production of company . The final

price is 97.19 U.S.$/MWh. Note that the same results can be
achieved by applying the traditional Nash–Cournot equilibrium
conditions expressed as a system of equations. However,
our method appears more robust in that it abstracts from the
analytical form of those conditions.

The above results are obtained assuming that the three com-
panies compete against each other. However, some of the gen-
erating companies may like to form a cartel to increase their
overall profits. In other words, it is possible that the final pro-
ductions of the companies are not necessarily the ones from
Table III, but lower, by exerting market power withholding en-
ergy. Since the number of companies involved is small, it is fea-
sible to study all possible companies’ coalitions. After enumer-
ating all of the combinations, the relaxation algorithm can be
applied to each one, which makes up a game where the players
are the coalitions, and compute a Nash equilibrium in a game
between coalitions. In this way, cooperation among the players
creates several scenarios that have different Nash equilibria.

However, what is not solved by the relaxation algorithm is
how to split the profit that results from cooperation. Cooperative
game theory concepts, such as the bilateral Shapley value (BSV)
[12] and the kernel [14] are useful tools to study how the Nash
equilibrium value can be split among the companies. Both rep-
resent a dynamic way to build coalitions among players and to
allocate profits after the coalitions are formed, see Appendix B
for details. Seeking profit maximization, each company can join
other companies and become part of a new player composed of
two or more firms.

Table IV presents five different scenarios in which the com-
panies can be arranged according to all possible coalition com-
binations. The coalition values express the profit ob-
tained by a coalition composed of players (companies) and
, as given by (15). Coalitions’ values are always a result of a

Nash equilibrium in our game. These values are calculated ap-
plying the relaxation algorithm to the Nikaido–Isoda function
corresponding to each scenario, and then obtaining the final in-
dividual profits per coalition (or coalition values) after the iter-
ative algorithm has converged. Obviously, the first scenario is
as in Table III, the second scenario has two players: and
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TABLE IV
IEEE 30-BUS SYSTEM COALITION SCENARIOS. DEMAND ELASTICITY = 0.5

3, and the last scenario is not a game but a grand coalition opti-
mization problem.5 For example, if there were two players, such
as company and company 3, then, there would be only two
terms in the Nikaido–Isoda function, and not three, as in (16).
The Nikaido-Isoda function for the second scenario would be as
follows:

(18)

In order to determine the coalitions that are actually formed,
we need to extract the coalition values that each player or
coalition has in the game. Note that they always correspond to
the minimal values—profits—that a coalition can guarantee for
itself against any other coalition. These values are highlighted
in Table IV and shown in Table V, and they are the basis for
the coalition formation and cost allocation algorithms. For
instance, player 1 has a value of U.S.$ 4397.82 when playing
against independent players 2 and 3, and a value of U.S.$
7788.85 when playing against player . Therefore, the
minimum that 1 can guarantee for himself in any scenario

5Note that (16) is the Nikaido–Isoda function when there are three indepen-
dent companies. If two or more companies form a coalition, the Nikaido–Isoda
function is different, and the number of terms changes.

TABLE V
COALITION VALUES OF THE GAME

higher demand

elasticity

price

($/MWh)

378.4

demand (MW)

demand 

elasticity = 0.5lower demand 

elasticity

Fig. 1. Price pivoting produces changes in demand elasticity.

is U.S.$ 4397.82. Note that the enumeration of coalitions
must be exhaustive, such that the set of all coalitions contains

. All coali-
tion-related calculations are done using the COALA-IDEAS
multiagent and coalition formation software [19].

The game shown in Table V is subadditive, except for the
grand coalition, meaning that the value of any coalition
is always less than the sum of the values of and . The com-
plementary case is called a superadditive game. From the coali-
tion formation simulation, it is observed that this game has nei-
ther BSV nor kernel solutions. The same situation occurs when
the demand becomes more inelastic, such that

.
However, when the demand becomes more elastic (i.e.,

), BSV and kernel solutions do exist. Fig. 1
depicts the changes in elasticity when pivoting around the price
intercept.

For the new elasticity coefficient, the game now is neither
subadditive nor superadditive, since sometimes it is better to be
alone and sometimes to join someone, depending on the coali-
tion values or joint profits.

In this new game shown in Table VI, both the BSV and
kernel solutions follow the same coalition building sequence

. Table VII shows
all of the coalitions and values for the new game.

Final results in terms of profit allocation for companies 1, 2,
and 3 are as follows:

• BSV profit allocation (U.S.$ 10 658.84, U.S.$ 12 316.99,
U.S.$ 12 259.22);

• Kernel profit allocation (U.S.$ 10 634.80, U.S.$
12 179.37, U.S.$ 12 420.88).

Final results show that the total profit of U.S.$ 35 235.05 can
be divided among the three companies according to these ra-
tios. It represents a final agreement on splitting profits if acting
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TABLE VI
IEEE 30-BUS SYSTEM COALITION SCENARIOS. DEMAND ELASTICITY = 1

TABLE VII
COALITION VALUES OF THE GAME

as a cartel. Thus, it can be observed that price-demand elas-
ticity is the key to increase the chance of cooperation among
oligopolistic firms. If the demand becomes more elastic, higher
prices will be paid (for a given demand) and the “cake” to share
will be bigger. This will make a final agreement more plausible
(than when the cake is smaller) and all players will most likely
end up in a grand coalition, increasing their profits.6

B. Case Study 2

The second example is taken from [5] although slightly mod-
ified. It is just one of the many case studies presented in that
paper. Our modified example assumes no arbitrage (existence of
marketers that can sell and buy megawatts from producers and
consumers) and a linear dc network. In the example selected, in-
dexes and indicate nodes. Each company owns several gen-
erating units distributed throughout the network. is the
cost per megawatt-hour of generating unit that belongs to com-
pany and is placed at node ; its production is MW. The
maximum capacity of a generator is MW. Consumers
at node consume MW. At each node, linear demand func-
tions are assumed to be of the form
U.S.$/MWh, where and are the price and quantity inter-
cepts, respectively. It is also assumed that the market is bilateral,
and MW are sold by the company to consumers at node .
Market clearing is such that . Also, an energy bal-
ance is imposed on each company . Given
that each company chooses generation and sales to

6Note that the conclusion about a bigger cake and the coalition formation is
also valid for when we pivot the price schedule around the demand intercept.
However, in that case, prices (and the cake) will increase with the schedules
becoming steeper. This is the conclusion that can be found in [20] where the
system operates with a price-responsive demand.

maximize profit U.S.$/h, which is equal to revenue minus gen-
eration costs

max

subject to

nodes generators

(19)

We are interested in a noncooperative Nash–Cournot solution
to the game at hand. This means that we are looking for a dis-
tribution of generation and the corresponding payoffs such that
no player can improve his own payoff by a unilateral action.

Numerical data for the general formulation of problem (19)
are as follows. There are three buses , 2, and 3, each of
which has customers. Generation only occurs at buses 1 and 2
and each pair of buses is connected by a single transmission
line. The demand functions are for buses

, 2, and U.S.$/MWh. Thus,
the demand is more elastic at the demand-only node 3 (bus 3).
Firm’s 1 generator is placed at and firm’s 2 at . Both
generators have unlimited capacity and constant marginal costs
are U.S.$ 15/MWh for firm 1 and U.S.$ 20/MWh for firm 2.

Considering these data, two cases are run. The first case as-
sumes that there are no limits on the line flows and, therefore,
there is no congestion. As a result, both firms solve the following
optimization problems subject to linear constraints:

Firm 1:

max

Firm 2:

max

subject to

(20)
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where , , 2, 3 are the bus angles in radians, the bus ref-
erence angle is at node 3 , and is the reactance
value in per unit. The three lines have equal impedances of 0.2
p.u., is the base power: 100 MVA, and the angle limits
are set to 0.35 radians. The first five constraints in (20) can
be dropped, since all variables other than are a linear com-
bination of them. The last three linear constraints in (20) can be
converted into equivalent inequalities. Every equality is equiva-
lent to two inequalities: “greater than or equal” and “less than or
equal,” to be satisfied simultaneously. Thus, written in this con-
vention, we would have had six inequality constraints. However,
we drop the three constraints, which are “greater than or equal.”
This is because the Lagrange multipliers associated with those
constraints are zero. Thus, the resulting problem has eight deci-
sion variables , , , , , , , .

For (20), the Nikaido–Isoda function becomes

(21)

And, from (21), the optimum response function is

arg max

subject to

(22)

From (22), the values of , , , , , , , ,
are obtained, and, with the previous iteration values of , ,

, , , , all of them are plugged in the relaxation for-
mula. This procedure is repeated until convergence is reached.
Note that there is no need for an extra term in the Nikaido–Isoda

TABLE VIII
GENERATION AND SALES FOR THE THREE-BUS EXAMPLE

function in regards to the angles , because they only appear as
part of the constraints. Testing the Nikaido–Isoda function (21)
for weak concavity-convexity offers similar results to case study
1, so we can assert convergence also in this situation. Note that
this is a game with coupled constraints.7 The results after 18 it-
erations using an optimized step-size are the same as in [5], as
shown in Table VIII.

And, therefore, the quantities demanded, according to (20)
are , , and . Prices at nodes
are, according to the linear demand functions: 25, 25, and 22.3
U.S.$/MWh, respectively. Angles at nodes 1 and 2 are 0.2613
radians (14.97 ) and 0.1134 radians (6.49 ), for nodes 1 and 2,
respectively. The flows through the lines are 73.95, 130.65, and
56.7 MW for lines 1-2, 1-3, and 2-3, respectively. Profits for
firms 1 and 2 are 3542.1 and 730.6 U.S.$/h, respectively.

The second case considers a limit of 25 MW in the transmis-
sion capacity of the line that connects buses 1 and 2. The line
flow limit of 25 MW on line 1-2 can be formulated as another
linear constraint added to the ones in (22)

(23)

where is the reactance of line 1-2 in p.u., and is the
base power in megavolt amperes. Constraint (23) can be also
depicted as a two-in-one set of constraints

(23-a)

(23-b)

This is a game8 with coupled constraints, and the relaxation
algorithm can find a unique equilibrium solution.9 This will be
a combination of the decision variables such that the constraints
will be satisfied and no player will be able to improve his payoff
by a unilateral move. Part of the solution will constitute the La-
grange multipliers that a regional regulator will be able to use
to enforce the equilibrium, presumably desired.

The overall results of the relaxation algorithm with a constant
size step of 0.5 are shown in Tables IX and X.

The quantities demanded, according to (21), (22), and (23) are
, , and . Prices at nodes are,

according to the linear demand functions: 24.1, 25.9, and 22.3
U.S.$/MWh, respectively. Angles at nodes 1 and 2 are 0.2123
radians (12.16 ) and 0.1623 radians (9.3 ), for nodes 1 and

7Case 1 is set as a coupled constraint game, since S , S , S , and �

belong to player 1 and S , S , S , and � belong to player 2, and they are
coupled in (20). However, in this example (but not in general), the constraint
set in (22) is nonactive and the corresponding Lagrange multipliers are zero,
because the angles’ limits are not reached. In addition, any demand change in
the nodes will not alter the productions in Table VIII, just the angles’ values.

8In this case, both (22) and (23) are active.
9Numerical experimentation indicates that the game is diagonally strictly

concave, which is enough to guarantee this unique solution (see [21] and [10]
for details).
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TABLE IX
GENERATION AND SALES FOR THE THREE-BUS EXAMPLE AND LINE FLOW

LIMIT OF 25 MW IN LINE T

TABLE X
CONVERGENCE IN THE THREE-BUS EXAMPLE AND LINE FLOW LIMIT

OF 25 MW IN LINE T

2, respectively. The flows through the lines are: 25 (line flow
limit), 106.15, and 81.15 MW for lines 1-2, 1-3, and 2-3, re-
spectively. Profits for firms 1 and 2 are 2985 and 956.9 U.S.$/h,
respectively. The following Lagrange multipliers are computed

, , , , .
The first three correspond to the set of linear inequality con-
straints in (22), the fourth to constraint (23-a), and the fifth to
constraint (23-b). The termination condition for the algorithm is

.
Suppose that the coupled constraint game that we have solved

above was in fact a local electricity authority’s problem to es-
tablish generation levels that satisfy (23) as well as the other
necessary transmission restrictions. If the authority is empow-
ered to charge the agents for some deviations from the desired
levels, it can easily compel them to implement the desired Nash
equilibrium solution. This can be achieved by using the above
Lagrange multipliers.

The Lagrange multipliers of the active constraints, which are
computed by the relaxation algorithm, can be used to enforce
the production levels of the above quantities as follows. The
authority announces that for a unit of constraint violation each
player will be charged

max

max

max (24)

This is a threat that all players have to incorporate in their
payoff functions. The modified payoff functions of firms 1 and
2 thus become

Firm 1:

max

max

max

max

Firm 2:

max

max

max

max (25)

The problem set in (25) can be solved again by the NIRA
approach by modifying the payoff functions when constructing
the Nikaido–Isoda function, and also by removing the constraint
set. The result of including the threat in the payoff functions is
that the firms solve now their individual optimization problems,
decoupled through the use of , , and and stick to the so-
lutions in their own best interest. The decoupled Nash equilib-
rium numerical results using the NIRA approach are the same as
in Table IX. This corroborates the correctness of the Lagrange
multipliers computation and compliance implementation.

Finally, note that in difference to [5], no congestion-based
wheeling fees are considered in our paper. Consequently, our
profits for the second case are different than the ones in [5].

V. CONCLUSION

This paper presents a new approach to find Nash equilibria
in electricity markets. It is based on the Nikaido–Isoda function
and a relaxation algorithm (NIRA). The Nikaido–Isoda func-
tion indicates when the Nash equilibrium has been reached (i.e.,
the players cannot improve their profits). The relaxation algo-
rithm is the way to converge to the Nash equilibrium by iterating
with a weighted average of the players’ improvements. Thus,
the method can be seen either as centralized optimization or as
distributed optimization, where the generating companies solve
their own profit maximization subproblems.

Several case studies of electricity markets that use the re-
laxation algorithm to achieve Nash equilibrium are presented.
The first case study shows the importance of the price-demand
elasticity. Changes in elasticity can produce different sets of
coalitions among generating companies that can be studied with
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concepts such as the bilateral Shapley value or the kernel. The
second case models transmission network constraints and in-
troduces flow limits and shows how the NIRA approach can
be used for enforcement of results that are satisfying local au-
thority’s constraints.

APPENDIX A

We present several definitions and remarks from mathemat-
ical literature to help the reader understand the concept of the
Nikaido–Isoda function and its usage in electricity economics.

For the relaxation algorithm to converge to a unique
equilibrium, the Nikaido–Isoda function needs to be weakly
convex-concave. The notions of weak convexity and weak
concavity weaken the concept of strict convexity and concavity.
The family of weakly convex-concave functions includes
smooth functions (derivatives of all orders are continuous) as
well as many nondifferentiable functions. Many “real-life”
payoff functions satisfy are weakly convex-concave.

Definition 1a: Let be a convex subset of the Euclidean
space . A continuous function is called weakly
convex on if for all , , the following
inequality holds:

Definition 2a: A function is called weakly concave on
if the function is weakly convex on . This means

that for all , , the following inequality
holds:

Definition 3a: A function of two vector arguments
is referred to as weakly convex-concave if it satisfies weak
convexity w.r.t. its first argument and weak concavity w.r.t. its
second. That is, for a fixed

and as

and

and as

where and are called the residual terms.
Obviously, a Nikaido–Isoda function is of two arguments, at

least. If it is twice continuously differentiable with respect to
both arguments, the residual terms satisfy [22]:

and

where is the Hessian of the
Nikaido–Isoda function w.r.t. the first argument and

is the Hessian of the Nikaido–Isoda
function w.r.t. the second argument, both evaluated at .
Note that if the function is convex w.r.t. and concave
w.r.t. , then . Thus,
the remainder terms necessary for checking convergence
conditions of the relaxation algorithm are simplified. Also note
that to prove the last convergence condition of the relaxation
algorithm shown in Section III, assuming that is
twice continuously differentiable, it will suffice to show that

is strictly positive (see [9] and [21] for
details). This is a relatively straightforward algebraic exercise,
see (11).

A. Relaxation Algorithm Convergence Theorem

There exists a (normalized) Nash equilibrium point to which
the relaxation algorithm converges if [7]

1) is a convex compact subset of ;
2) the Nikaido–Isoda function is a weakly

convex-concave function and for ;
3) the optimum response function is single-valued and

continuous on ;
4) the residual term is uniformly continuous on

w.r.t. for all , ;
5) the residual terms satisfy

where is an strictly increasing function;
6) the relaxation parameters satisfy

(a) ;
(b) ;
(c) as .

Note that the usual linear electricity generation and capacity
coupled constraints will naturally define the convex set . Ob-
serve, moreover, that nondifferentiable Nikaido–Isoda functions
are also possible. However, deciding on their weak convexity-
concavity will be less of an easy exercise than checking strict
positive definiteness of (as in (11)).

In order for the algorithm to converge, any sequence of
step-sizes that satisfies condition 6 (above) will suffice,
although a constant step of leads to a quick con-
vergence [18]. However, the last condition of the theorem
will have to be replaced by the one-step optimal step-size
[18], such that it minimizes the optimum response function at

argmin .
Note that depends on . By optimizing the step-size

the number of iterations decreases, but each step is longer [9],
[18]. In that case, a convergence proof based on Kakutani’s fixed
point theorem can be found in [9].

APPENDIX B

A. BSV Method

The Shapley Value is a solution concept for a n-person coop-
erative game. It calculates a fair division of the utility, based on
individuals’ contributions, among the members of a coalition.
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It is a solution concept for a n-person cooperative game. The
Shapley Value can be considered as a weighted average of mar-
ginal contributions of a member to all of the possible coalitions
in which it may participate. It assumes that the game is superad-
ditive and the grand coalition is likely to be formed. The math-
ematical expression of the Shapley Value, is given by

where is a player, is a coalition of players, is the number
of players in coalition , is the total number of players, is
the set of all players, and is the characteristic function as-
sociated with coalition . Looking for a negotiation framework
based on the Shapley value, the bilateral Shapley value (BSV)
is introduced for a completely decentralized and bilateral nego-
tiation process among rational agents.

Let be a coalition structure on a given set of agents
where , and

. Therefore, is a (bilateral) coalition of disjoint (n-agent)
coalitions of and . The BSV for coalition in
the bilateral coalition is defined by

Both coalitions and are willing to form coalition , if
and .

In fact, a superadditive cooperative game is played between
and . From the equations above, it can be seen that the

founders will get half of their local contributions, and the other
half obtained from cooperative work with the other entity. The
second term of the BSV expression reflects the strength of each
agent based on its contribution. Thus, two players will form a
coalition if both obtain more value than acting alone. The coali-
tion formation process continues if the newly formed players
that are recently allied wish to team with other players to in-
crease their value. If the process continues until the end, the
grand coalition (all players) form a single team, since it is bene-
ficial for all. More details about the method can be found in [11]
and [12].

B. Kernel Method

The kernel is another solution concept for cooperative games.
The kernel coalitional configurations are stable in the sense that
there is an equilibrium between pairs of individual agents which
are in the same coalition. Two agents , in a coalition
are in equilibrium if they cannot outweigh one another from

, their common coalition. Agent can outweigh if is
stronger than , where strength refers to the potential of agent

to successfully claim a part of the payoff of agent .
In each stage of the coalition formation process, the agents are

in a coalitional configuration. That is, the agents are arranged in
a set of coalitions . During the coalition formation,
agents can use the kernel solution concept to object to the payoff
distribution that is attached to their coalitional configuration.
The objections that agents can make are based on the excess
concept. The relevant definitions are recalled now.

Excess: The excess of a coalition with respect to a coali-
tional configuration is defined as

where is the payoff of agent and is the coalitional
value of coalition . The number of excesses is an important
property of the kernel solution concept. Agents use the excesses
as a measure of their relative strengths. Since a higher excess
correlates with more strength, rational agents must search for
the highest excess they have. The maximum is defined by the
surplus.

Surplus and Outweight: The maximum surplus of
agent over agent with respect to a coalitional configuration
is defined by

max

where are the excesses of all the coalitions that include
and exclude , and the coalitions are not in the current

coalitional configuration. Agent outweighs agent if
and , where is the coalitional

value of agent in a single agent coalition. The agents compare
their maximum surpluses, and the one with the larger maximum
surplus is stronger. The stronger agent can claim a part of the
weaker agent’s payoff, but this claim is limited by the individual
rationality: . Therefore, agent cannot claim an
amount that would leave agent with or less. If two
agents cannot outweigh one another, they are in equilibrium:

and are in equilibrium if one of the following conditions
is satisfied: 1. ; 2. and ;
3. and . Note that equilibrium is
defined only for pairs of distinct agents who are members of
the same coalition. Using the concept of equilibrium, the kernel
can be defined as the set of all coalitional configurations (and
its associated payoffs) such that every pair of agents within the
same coalition are in equilibrium. A coalitional configuration
(and payoff distribution) of this type is also called kernel stable
(K-stable). Furthermore, the kernel always exists for any
coalitional configuration. However, checking the stability does
not direct the agents to a specific coalitional configuration.
More details about the method can be found in [13] and [14].
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