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Abstract. In this paper, we present an approach to solve the problem
of secure execution of semantic web service composition plans. The inte-
grated components of this approach include our OWL-S service match-
maker, OWLS-MX, the service composition planner, OWLS-XPlan, and
the security checker module for formally verifying the compliance of the
created composition plan to be executed with given data and service
security policies using type-based information flow analysis.

1 Introduction

The composition of complex services available in the web, and the semantic web,
at design time is a well-understood principle which is nowadays supported by,
for example, service composition planners such as SHOP2, or OWLS-XPlan.
However, ensuring the secure execution of composed services still remains to
be a challenge. Related tasks to pursue range from secure communication, via
protection of services against misuse, to the preservation of user data privacy and
integriy. Standard approaches for secure execution of services such as those using
REI [12] or Ponder [3] are based on the specification of access control policies that
control the individual execution of services as actions on individual objects and
thus focus on the first two tasks. With respect to privacy aspects, access control
policy mechanisms suffer from the problem of Trojan Horses, or information
leakage caused by hidden channels. The main reason for this is, that no security
policy control is enforced on the use of provided data once it has been released
to the authorized web service. Improper processing of confidential information,
and subsequent calls of unauthorized subservices by an agent offering a composed
service as part of the composition plan to be executed could lead to the revelation
of private information even without intention.

In particular, we have to address the following questions: How can we rep-
resent and formalize privacy concerns of users, i.e. how to denote security clas-

sification of provided data and the user’s security rating of web services (the
clearances of web services)? How can we propagate classifications of input data
to classify newly computed data in view of a dynamic composition of the pro-
gram or plan? How then can we check automatically whether a web service call
complies to a given security policy? How can a subsequently called web service
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enforce its security requirements on its own data (provided as a result of its call)?
How can we guarantee the existence of an overall consistent security policy for
the total encomplishment of a service.

Since access control mechanisms are obviously inappropriate to cope with
these problems, we propose to use information flow techniques [4] in general,
and techniques from program language security [17] in particular. Analogously to
the concept of proof carrying code, we propose to add a (security) type checking
mechanism to the implementation of web services that enables an agent to do
an information flow analysis on dynamically generated plans or programs. This
type checker is used to enforce the privacy requirements of a user by guarding
calls of other web services and avoiding the execution of plans that would result
in a prohibited leakage of information. In this paper, we apply this approach to
the problem of privacy preserving execution of web services described in OWL-
S as part of a given composition plan generated by our semantic web service
composition planner OWLS-XPlan. Please note, however, that the integrated
component for security checking of both individual services and the composition
plan as a whole can be, in principle, applied to any kind of web services such as
those described in WSDL, or WSMO.

The remainder of this paper is structured as follows. We motivate our re-
search on the problem of provably secure execution of service composition plans
by means of a brief use case description in section 2. Section 3 then provides an
overview of our solution approach to this problem, while sections 4 to 6 then de-
scribe its main components, including the matchmaking, composition planning,
and security check, respectively, in more detail. We compare our approach to
existing ones in section 7, and conclude in section 8.

2 Use Case Scenario

Throughout the paper we will motivate our approach with the help of a use
case which will be described in the following. Figure 1 illustrates this example.
Living in London, a politician, named Susan Miller, wants to give an invited
public talk in the international congress center of Berlin, Germany, and meet
the Italian prime minister the day after in a secret get-together in Rome, Italy.
She instructs her personal secretary agent running on her PDA to accomplish this
particular task by entering the flight destinations, banking details for payments,
personal data and security classification with respect to the category of location
and payment.

As a result, the agent first discovers semantically relevant services, and then
generates a composition plan that satisfies the given goal without checking any
security policy. In this scenario, the goal is decomposed into subgoals of reserving
flights from London to Berlin, with a connection flight to Rome, and execution
of payment. The generated service composition plan proposes to subsequently
call the service of travel agents TA1 (AirBerlin) for the availability and costs of
a flight to Berlin and TA2 (Alitalia) for the availability and costs of a flight to
Rome, and then to call the paypal service offered by agent PA2 (PayPalService-
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04/13/2006 Flight 
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Fig. 1. Use case scenario: Execution of composed travel and payment services.

Global) to pay for both flights. The secretary agent formally checks the secure
execution of this plan with respect to the security requirements of the politician
and the services involved in the plan.

To keep Susan’s flight to Rome private, the required input (04/13/2006 Flight
Berlin to Rome) for the travel agent service of Alitalia (TA2) have to be kept
confidential. If the price (350 e) for the ticket of the selected flight from Berlin
to Rome depends on the destination (Rome), then also the offered price has to
be kept private to avoid any other agent to deduce the location Rome from the
amount of payments to be done. In other words, even if the payment service
agent PA2 does not get any details of the booked flight, Susan would have to
trust the payment service in keeping any static, or even dynamically generated
data with respect to the price private.

Suppose Susan has made bad experiences with the proposed agent PA2 since
in the past information about her whereabouts were leaked to the press. Since the
generated plan would provide PA2 with the price of the flight to Rome, the plan
violates Susan’s security requirements. However, Susan trusts another payment
service offered by agent PA1 in this point. To fix the failed plan, a possible
improvement would be to replace the payment agent PA2 by the payment agent
PA1 in order to pay the flight to Rome. The situation changes if the travel agency
Alitalia (TA2) offers a flat rate for European flights. Then the price of a flight
does not depend on the selected destination anymore. In this case, Susan does
not have to trust the discretion of the payment service (PA2) with respect to her
whereabouts and the plan could be executed without security policy violations.
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To evaluate the plan from a security point of view, Susan has to provide
her secretary agent with her personal security requirements. She has to define
which data could be provided to which web service. Technically, the service
agent assembles a list of clearances for various web services and rates Susan’s
data according to her requirements. During the check of generated plans, her
secretary agent also assembles the security assurances exported by the involved
web services. Susan’s individual security requirements (containing the clearances
of services and the classification of data) will be dynamically extended to cope
with newly computed or generated information, and subordinate services not
primarily known.

In the following section, we provide an overview of Susan’s secretary agent,
where each of its main components is described in more detail in the following
sections using this case scenario as a running example.

3 Architectural Overview

The basic architecture of our secure service composition planning agent (SCPA)
is shown in figure 2. As input, the SCPA requires the request for some desired
service in OWL-S 1.1 from the user, and her local security policies in terms of
the security classification of personal data and clearance of known web services.

Local User’s 
Security Policies:

Clearances of 
web services

Classification 
of user data

Local User‘s 
Request (Q)

SWS Composition 
Plan Security Check

SWS Composition 
Plan Execution
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Set ES(F,P) of 
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Fig. 2. Basic architecture of SCPA.

The SCPA then
attempts to dis-
cover OWL-S web
services that are
semantically rele-
vant to the re-
quest using its ser-
vice discovery and
matchmaker mod-
ule, named OWLS-
MX. In addition it
collects the corre-
sponding security
types published by
the respective web
service provider agents.
If the matchmaker
finds services de-
tected as being equiv-
alent to the re-
quested one, it directly passes the top ranked one according to its QoS value
to the security checking module to verify whether its published security policy
complies with given local security policies and with the web service’s security
type. If no equivalent service is found, the OWLS-MX module passes the set
of services to its composition planner, named OWLS-Xplan. The planner con-
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verts both the request and all OWL-S services retrieved into an initial state and
goal ontology written in PDDXML, and generates a sequential service compo-
sition plan that satisfies the goal. In case a composition plan with more than
one service is generated, the compliance of published security types of all web
services involved in the plan is checked against the local security policies of the
user. In contrast to usual access control mechanisms, the security checking of
the SCPA relies on type-based information flow analysis. Thereby the approach
also includes dynamically computed data of web services and their security clas-
sification, and its proliferation to other services.

In any case, the composition plan gets executed only if the security types
of all web services meet the local security policies. So, the plan as a whole is
formally verified as being secure. Otherwise the SCPA triggers a re-planning ac-
tivity to be performed as follows. The security checker provides the matchmaker
module with a set F (P ) of services of plan P that caused P to not comply with
the local security policies, in order to select one semantically equivalent service
with a different published security policy for each or at least some of them. If
successful, the composition planner simply modifies the original plan considered
by replacing each service in F by its substitute, and returns the modified plan
to the security checker for verification. If there exists no services in F (P ) for
which equivalent service can be found (and which are not yet tried), the compo-
sition planner generates a new plan by means of heuristic replanning [9]. In any
case, if the modified plan is also provably insecure, the SCPA repeats the same
procedure until a secure composition plan is generated, or it returns a failure
otherwise.

The SCPA executes a secure plan sequence in joint collaboration with those
agents that provide the services involved. For this purpose, it calls each of them
by sending the required input data. In addition the SCPA transmits information
on the clearance of other services with respect to the information category of
the input data. For example, if a service is trusted by the user to preserve the
privacy of data of the local information category “Location”, the SCPA also
sends its actual list of clearances of other services for this particular category.

To summarize, the SCPA assists its user in service oriented computing tasks
by means of automatically searching for, and composing individual or composed
service. Moreover the SCPA ensures that plans are only executed if the web ser-
vices are provably secure with respect to the security policies and security type.
We acknowledge that the amount of security related information the user pro-
vides to her SCPA in terms of classified data and service clearances determines
the degree to which the security of an automatically generated composition plan
can be formally verified.

4 Service Discovery and Matchmaking

Our secure service composition planning agent (SCPA) uses both a service dis-
covery and a service matchmaking module to discover services that are seman-
tically relevant to the given request. Depending on the resources available, it
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can perform any combination of very fast keyword based search for relevant
services in publicly accessible OWL-S service registries with a computationally
more expensive semantic filtering of retrieved, or locally registered services.

The OWLS-MX matchmaking module takes any description of a desired ser-
vice written in OWL-S 1.1 as an input, and returns an ordered set of relevant
services that match, each of which annotated with its individual degree of match-
ing, and syntactic similarity value. The user can specify the desired degree, and
syntactic similarity threshold. Like in [7], the discovery module also stores the
published security policies of the discovered services for further use by the se-
curity checking module, while the matchmaker focuses on its core functionality,
that is semantic matching.

The OWLS-MX matchmaker first classifies the service query I/O concepts
into its local service I/O concept ontology. For this purpose, it is assumed that
the type of computed terminological subsumption relation determines the degree
of semantic relation between pairs of inputs and concepts. Auxiliary information
on whether an individual concept is used as an input or output concept by any
registered service is attached to this concept in the ontology. The respective lists
of service identifiers are used by the matchmaker to compute the set of relevant
services that I/O match the given query according to its five filters.

The OWLS-MX module does not only determine pairwise the degree of logical
match but syntactic similarity between the conjunctive I/O concept expressions
in OWL-Lite. These expressions are built by recursively unfolding each query
and service input (output) concept in the local matchmaker ontology. As a result,
the unfolded concept expressions are including primitive components of a basic
shared vocabulary only. Any failure of logical concept subsumption produced
by the integrated description logic reasoner of OWLS-MX will be tolerated if
and only if the degree of syntactic similarity between the respective unfolded
service and request concept expressions exceeds a given similarity threshold. For
more detailed information on the OWLS-MX module of the SCPA, we refer the
interested reader to [8].

5 Service Composition Planning

The OWL-S service composition planning of the agent is performed by OWLS-
XPlan, whenever no appropriate single service can be found during matchmak-
ing. OWLS-XPlan takes a set of available OWL-S services, related OWL ontolo-
gies, and an OWL-S query as input, and returns a plan sequence of composed
services that satisfies the query goal. For this purpose, it first converts the do-
main ontology and service descriptions in OWL and OWL-S, respectively, to
equivalent problem and planning domain descriptions in the standard language
PDDL. The problem description contains the definition of all types, predicates
and actions, whereas the domain description includes all objects, the initial state,
and the goal state. Both descriptions are then used by the AI planner XPlan to
create a composition plan that solves the given problem in the actual domain.
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Fig. 3. Part of service composition plan gen-
erated by OWLS-XPlan.

XPlan is a heuristic hy-
brid FF (FastForward) plan-
ner which combines guided lo-
cal search with graph planning,
and a simple form of hierar-
chical task networks to pro-
duce a plan sequence of actions
that solves a given problem. It
uses an enforced hill-climbing
search method to prune the
search space during planning,
and a modified version of re-
laxed graph-planning. This ver-
sion allows the use of (decom-
position) information from hi-
erarchical task networks dur-
ing the efficient creation of the
relaxed planning graph, if re-
quired, such as in partially hi-
erarchical domains. Information
on the quality of an action (ser-
vice) are utilized by the lo-
cal search to decide upon two
or more steps that are equally
weighted by the used heuris-
tic. In addition, XPlan includes
a re-planning component which
can be called by the security
checking module on demand.

Figure 3 shows a part of
the travel and payment service
composition plan generated by
OWLS-XPlan for our use case
scenario, encoded in PDDXML.

For more detailed information on the OWLS-XPlan composition planning
module of the secure planning agent, we refer the interested reader to [9].

6 Plan Security Checking

Once the service composition plan has been created, the agent checks whether
it complies with given classifications, clearances and published security types of
local user data and web services involved in the plan.
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6.1 Privacy of user data

To protect the privacy of user related information, the data used in web services
is always classified according to its confidentiality. Web services require the cor-
responding clearances to deal with confidential data. Both classifications and
clearances are denoted by a so-called security rating. There is a partial ordering
≤ on security classes which allow us to compare them. The set of all security
classes together with ≤ forms a lattice, i.e. for two arbitrary security classes
there is always a least upper bound. In the simplest case we may have H and L
as the set of security classes denoting confidential (H or “high”) and public (L
or “low”) data, respectively.

Similar to the approach presented by Bell and LaPadula [1], the idea is that
a web service is only entitled to obtain a specific datum if its clearance is at
least as high as the classification of the data. For example, in order to receive
data classified as H, a web service needs a clearance H while web services with
clearance L are not entitled to get any H-classified data.

planed program /
failure information
planed program /
failure information

Web Service

Data

Clearances

Propagated
security types

Security check:
type calculus

Planning

Exported description:
functional specification

security type

Exported description:
functional specification

security type

Classifications

planed program /
failure information
planed program /
failure information

Web Service

Data

Clearances

Propagated
security types

Security check:
type calculus

Planning

Exported description:
functional specification

security type

Exported description:
functional specification

security type

Classifications

Fig. 4. Overview of security checking

However, in practice we would like
to select the clearances of web ser-
vices and also the classification of
data with respect to individual cat-
egories or types of information. For
instance, while we trust the travel
agent to keep our travel routes confi-
dential we might have mixed feelings
when providing the same agent with
a direct debit authorization for our
bank account. Analogously, a given
datum may allow us, for instance, to
infer confidential information about
the location of a person or confiden-
tial information about his bank ac-
count. Hence, both classifications of
data and clearances of web services
are described by a vector of security
ratings. Each entry in the vector de-
notes the classification or clearance -
such as, for instance, H and L denot-
ing high confidentiality and public release, respectively - with respect to a par-
ticular category (like, for instance, location or payment information).

The clearances of web services used for a web service request are assessed
by the original provider of the data (typically the user) or, in case of a del-
egation, by a web service acting on behalf of the provider. In other words, an
information provider may specify which web service it trusts to keep data private
with respect to given categories, or not. Analogously, the provider determines
the classification of the data that will be provided to web services. Web services
classify data they provide as an output by integrating the classifications of the
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input data used to compile the result and the requirements of their own security
policies.

The set of categories used to invoke a web service may change while process-
ing the request. When a called web service provides new information, it may
introduce a new category and classify the new data also with respect to this
new category. In this way a subsequently called web service can formulate its
security requirements for its provided data by defining also the clearances of all
web services with respect to the new category. In this case, all data provided
by the calling web service have to be classified as public with respect to the
newly introduced categories. This is to avoid the blocking of external data by
classifying them as confidential for a new category but providing no clearances
for any web service.

6.2 Type-based information flow analysis

Web services deal with confidential input and in general their answers will also
include confidential bits, i.e. knowing the output of a web service call (but not
the input) we might be able to deduce constraints on the confidential input. If the
knowledge of the output of a web service call would disclose information about
a confidential input, the output itself has to be confidential as well. In order to
assess the classification of data computed by web services we use information flow
techniques in general and program language security techniques in particular.

Clearances and classifications are formalized by means of standard informa-
tion flow policies [4, 11, 10]. Obviously, the output of a web service call does not
contain any information about confidential input data if it does not depend on
the concrete values of input data. Low-security data must not depend on any
high-security data. More generally, the security classification of any computed or
synthesized data has to be at least as high as the classification of all used data.
That is, no secret bit of information must be disclosed in public information.

To ensure this restrictions on web services, we adopt a security type calculus
developed by Volpano and Smith [17, 18, 14] to analyse synthesised plans and
formally encode security classifications as types. Their approach secures infor-
mation flow in a simplified programming language. They distinguish security
classifications and security clearances. Security ratings τ , like H or L, are used
to describe the classification of data (or expressions in a program). τ acc de-
notes the clearance (e.g. of a program variable) to store or keep information up
to a classification τ . For instance, a variable of type H acc is entitled to store
confidential data. Its security rating is H. Besides storing confidential informa-
tion into low-security variables, a program may leak confidential information if
confidential information causes the program to move into different branches of
the program that cause different settings of low-security variables. For example,
let x be a low-security and y be a high-security Boolean program variable, then
if y = true then x := true else x := false implicitly copies the value of
y to x. Thus, Volpano and Smith introduce a security type τ cmd for program
statements or fragments denoting that the execution of this fragment can be
only noticed by observers with clearance higher or equal than τ . Obviously, a
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program fragment is of type τ cmd if there are only assignments to variables
that possess a clearance higher or equal than τ . Calculus rules are used to for-
mally reason on security classifications and to propagate the types of data along
the program to newly computed data. For instance, an assigment like x := c is
secure if x has type τ acc and c the type τ or a type τ ′ ≤ τ . Then, the statement
itself has type τ cmd. Such rules are defined for all expressions and commands of
the programming language. The programming language used in [18] comprises
a notion of procedures as well.

The applied programming language and the web service composition plans
are very similar. The only command that has to be added and modeled is the web
service call. The underlying idea of our approach (compared to [5]) is that web
service calls can be treated like remote procedure calls, while encoding global
states as global variables common to various web services. However, in contrast
to procedures, web services have to be first class citizens. In our approach web
services possess an individual clearance. As a consequence, each service call has
to be guarded by a check whether the input to be provided to this service lies
within its clearance.

In particular, a web service WS(x, y) with input parameter x and output
parameter y has a security type τ proc(τ1, τ2) if the input variable x of security
type τ1 will not influence any (global) variable of a security type less than τ ,
and the clearance of the resulting output is of type τ2; i.e. any variable storing
the result of the web service call has to provide a clearance higher or equal
then τ2. Each web service will export its security type as a part of the interface
description. Roughly speaking, it is a promise that the input x is kept confidential
to all agents with a clearance less then τ1 and that all changes to the outside
only affects information rated τ and higher. Furthermore it is a requirement that
the output has to be kept confidential to all agents with a clearance less than
τ2. If there is no observable global “world” state (i.e. there are no side effects of
executing web service on the global state) then τ would be always the maximal
upper bound (e.g. H). In general, web services are polymorphic in their types,
i.e. τ1 and τ2 may be type variables rather than fixed values. Let τ1 be a type
variable then a type τ proc(τ1, τ1) would simply indicate that output require the
same clearance as the classification of the input. An example would be a web
service that simply copies its input to the output.

6.3 Propagation of clearances

The security type of a web service tells us about the propagation of confidential
inputs to the outputs and to the global state. However, we also have to propagate
the clearances a customer is willing to issue to individual web services or classes of
web services. Therefore, each web service provides an additional input parameter
to receive the clearances assigned to web services by the customer.

However, both the user and her agent do not necessarily know all web services
that are involved in a particular composition plan, depending on the granular-
ity of the respective process model specifications, or black-box views on sub-
ordinated services. Thus, the user may also specify delegation rules that allow
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trusted web service to fix the clearance of web services unknown to the user
(and thus not specified by the existing clearance of web services). A web service
may only add clearances to new web services but it must not change existing
clearances. Once a web service has added a clearance it will be fixed till the end
of the complete service. To communicate the addition to the clearances there is
also an additional output parameter that propagates any increments of the list
of clearances to the calling web service.

6.4 Trust

Once a customer provides a web service with a specific clearance she agrees
that this service will be provided with confidential data if the classification of
the data is less or equal than the clearance of the web service. However, she
has also to trust that the web service’s plans will always satisfy the propagated
security types, i.e. that the web service will not betray her by sending confidential
data to some unauthorised web service. One way to solve this problem is to
certify web services if they include a security type checker that will automatically
control generated plans. In this case a web service would export its security type
combined with a certification of a trusted third party that its realization will
enforce the proposed security types.

6.5 Application to the use case scenario

In the following we illustrate the sketched security checking mechanism within
the use case scenario introduced in section 2. In a first step our politician Susan
Miller has to select appropriate categories to classify her data and to formu-
late the clearances of the web services. To simplify matters, we assume that she
chooses two categories. The first category “Location” is concerned with the con-
fidentiality of her locations, while the second category “Payment” refers to the
privacy of payment informations like details about her bank accounts or credit
cards. Figure 5 illustrates the concrete security types for the data and web ser-
vices occurring in our example. Being in London or Berlin is publicly known

Personal Data Classification
Location Payment

London, 04/11/2006 L L

Berlin, 04/12/2006 L L

Rome, 04/13/2006 H L

...

Web services Clearance
Location Payment

TA1 H acc L acc

TA1 H acc L acc

PA1 H acc H acc

PA2 L acc H acc

Fig. 5. Classification and clearances of user data and web services.

and thus, she rates this information as L in the category “Location”. Since her
stay in Rome is confidential, this information is classified as H. All these data
contain no information about payments, and therefore they are L-rated in the
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category “Payment”. Next she rates travel agencies and trusts all of them that
they do not leak any information about her future whereabouts (rated as H).
She does not trust these travel agencies with respect to any payment information
(hence rated as L) but wants to receive an invoice that can be paid by a special
payment service. She has two payment services at hand in which she trusts (thus
rated as H). While the first payment service is her private bank that will not
disclose any information related to the payment (therefore also H-rated wrt. the
location), the second payment service engages untrusted employees that might
have close relationship to some newsmen. Using these settings, Susan instructs
her secretary agent to organize a round trip from London to Berlin on April
12, and to Rome on the day after. The request Q is of the form Is(London,
04/11/2006), Goal(Berlin, 04/12/2006), Goal(Rome, 04/13/2006), and Susan’s
security policies for personal data (cf. figure 5). As a consequence, the agent
first generates a service composition plan (cf. figure 3) that would enable Su-
san’s agent to accomplish the general flight reservation task by subsequent calls
of services of the corresponding execution plan as follows:

call(TA1 : FlightReservation, [London,Berlin, 04/12/2006], priceBerlin);
call(TA2 : FlugReservierung , [Berlin,Rome, 04/13/2006], priceRome);
call(PA2 : PayPalServiceGlobal , priceBerlin , okP );
call(PA2 : PayPalServiceGlobal , priceRome , okP ′);

The notation call(agtID:WS, In, Out) means that the web service WS of
agent agtID should be called with the input value of variable In, and the returned
answer be stored in the variable Out.

The secretary agent passes this execution plan to the security checking mod-
ule together with the classifications of the personal data and the clearances of
the web services as illustrated in Figure 5. By inspecting the service descrip-
tions of the web services, the security checking module can extract their security
types. Let us assume that both travel agents TA1 (AirBerlin) and TA2 (Alitalia)
publish a security type H proc(X,X acc) (X being a variable) for their corre-
sponding web services. This type reflects the fact that the output of the service,
i.e. the price of the flight, depends on the destination and date of the flight.
If an adversary knows about the price of the flight he might deduce possible
destinations of the flight. Hence the classification of the price has to be as high
as the classification of the whereabout; i.e. the price is public if and only if the
whereabout is public. In addition, both payment agents, PA1 and PA2, specify
H proc(X,L acc) as their service security type, since their output, which is the
approval of payment (okP), does not depend on the amount of the payment.

In a next step the plan security checking module uses the type calculus
to check security of the generated plan. Since the plan is a plain sequence of
web service calls, the check is a simple propagation of security types. The first
call of the plan is call(TA1 : FlightReservation, [London,Berlin, 04/12/2006],
priceBerlin). According to the Susan’s ratings, [London,Berlin, 04/12/2006] is
rated as L in both categories. Since TA1 has type H proc(X,X acc), also
the variable priceBerlin has to have at least the clearance L acc in both cat-
egories. Since L is the bottom element of the lattice, there are no restrictions to



Provably Secure Execution of Composed Semantic Web Services 13

priceBerlin arising from this call. In the next call call(TA2 : FlugReservierung ,
[Berlin,Rome, 04/13/2006], priceRome) the input [Berlin,Rome, 04/13/2006]
is rated as H in the category “Location” since the location Rome is confi-
dential. Since Susan grants TA2 a H-clearance with respect to locations the
call is admissible. TA2 publishes the security type H proc(X,X acc). As a
result, priceRome has to have a H-clearance with respect to locations while a L-
clearance is sufficent for the category “Payment”. Also the third web service call
call(PA2 : PayPalServiceGlobal , priceBerlin, okP ) is admissible when fixing the
classification of priceBerlin to [L,L]. Since the whereabout in Berlin is publicly
known, it does not matter that Susan does not trust the service of PA2 with
respect to locations. The variable okP can have an arbitrary clearance as the
output of the call demands a clearance higher or equal than [L,L].

Analysing the fourth call call(PA2 : PayPalServiceGlobal , priceRome , okP ),
the security checking module reveals the problem that priceRome has to have
a H-clearance with respect to locations but Susan does not trust PA2 with
respect to locations (cf. Figure 5). Thus, a call of this web service with the
designated parameters would violate the security requirements and therefore
the generated plan fails due to security issues. Analysing the failure we see
that the constraints on the clearance of priceRome obtained by step 2 and 4 are
inconsistent. In order to get a secure plan we have to change step 2 or 4 or both
of them. Suppose the called OWLS-MX matchmaker module returns a service
PrivatePaymentZurich offered by agent PA1 which is semantically equivalent to
the service PayPalServiceGlobal of PA2. Replanning the last step of the plan
might result in calling this other payment service to pay the flight to Rome:
call(PA2 : PayPalServiceGlobal , priceRome , okP ). Since PA1 has a H-clearance
with respect to locations the call is admissible and the changed plan would pass
the security check. As an alternative, suppose that the travel agent TA2 would
offer a special deal that all flights within Europe would cost the same price.
Then the price would not depend on the particular destination of the flight and
thus the web service would propagate a security type H proc(X,L acc). No
confidential information is revealed by knowing the price of the flight. In this
case, priceRome would only require a clearance [L,L] and the original call of PA2

to pay the flight to Rome would be admissible.
This time the security constraints are all satisfied, and the new service com-

position plan can be executed as proposed with proven guarantee of privacy
preservation.

7 Related Work

Starting with the work of Goguen and Meseguer in the domain of security, in-
formation flow control has been subject of a large variety of different approaches
introducing different formal notions of independence. Most prominent, McLean
[11], Zakinthinos and Lee [19] and Mantel [10] proposed frameworks to embed
these different notions in a uniform framework. Our work is based on language-
based information flow. The general problem whether a program leaks informa-
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tion from high-level to low-level is undecidable. Thus, type calculi as they are
proposed, for instance, in [18] are incomplete. Meanwhile following Volpano and
Smith’s work, more refined type calculi (e.g. [13]) have been developed that are
able to recognize more programs as secure. Since dynamically composed web ser-
vices are rather simple programs, we decided to use a less refined type calculus,
which requires less resources.

Various aspects of security of web services have been investigated. Some as-
pects were concerned with how to specify a policy in a machine readable and
user friendly way at the same time (see e.g. IBM and Micosoft’s Web Services
security specification [6], especially the WS-Policy part, or REI [12, 7]), how to
compose different policies, and how to prove that the web services involved en-
force their policy specification for each request. Most of the current approaches
to secure service execution concentrate on the proper use of access control mech-
anisms. As a consequence, any generated service composition plan gets executed
anyway, while checking just during execution whether the given access control
matrix prohibits any access. If that is indeed the case, the whole execution pro-
cess is stopped, and a new composition plan has to be created.

These approaches can be classified according to the type of policy they work
with. For example, both KAoS [16] and Ponder [3] handle security policies for
authentication and obligations, while REI [12] copes with the specification and
reasoning with security policies for rights, prohibitions, obligations and dispen-
sations. REI, in particular, is a rich logic-based policy language using rules and
constraints to formulate security and privacy policies. However, the REI based
approach presented in [7] does not take any information flow aspects into ac-
count. As a result, the proposed enforcement of privacy policies is simply a
matter of secure communication between web services in terms of agreed en-
cryption protocols. In other words, privacy aspects are assumed to be dealt with
by means of cryptographic techniques only. However, this is not enough to en-
sure the absense of hidden channels, or unintended leakage of information in
compiled data. However, the description of our service security policies in terms
of logical type calculus expressions could be translated to equivalent but more
natural language like expressions to be of use for annotating OWL-S service pro-
files with corresponding policies. That could be done, for example, by adapting
the RDFS syntax of REI as proposed in [7]. However, the details have to be
explored in future work.

Finally, we would also like to refer to related approaches that are concerned
with the theory of composing security policies independent of the type of the
policy [2], and practical extensions resulting in IBM’s algebra for composing
policies, which is based on their Enterprise Privacy Authentication Language
(EPAL) [6], [15].

8 Conclusion

In this paper, we presented an approach to solve the problem of provably secure
execution of semantic web service composition plans by means of type based
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information flow analysis prior to, and during, execution of the plan. While
we concentrated on privacy aspects to illustrate our approach it is worth to
mention that the same approach can be also used to ensure the integrity of data
(based on Biba instead of Bell/LaPadula). Non-repudiation or availability issues
are orthogonal to our approach. The integrated components of this approach
include our OWL-S service matchmaker, OWLS-MX, the service composition
planner, OWLS-XPlan, and the security checker module for formally verifying
the compliance of the created composition plan to be executed with given data
and service security policies of both service consumer and provider. Our approach
can be, for example, considered complementary in part to the one presented in
[7] with respect to the abstraction of specification of policies and used means of
their enforcement.
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