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ABSTRACT
We introduce the notion, issues, and challenges of dynamic
coalition formation (DCF) among agents in open, heterogeneous
and world widely distributed environments. Results achieved in
the traditional field of static coalition formation are briefly
discussed, as well as the desired results in the new research field
of DCF. We propose a simulation-based DCF scheme, called
DCF-S, to be applied to any multiagent system acting in
environments in which agents face imperfect information on
tasks and society. Using this scheme each agent attempts to form
task-oriented coalitions with other agents it knows about.
Coalition leading agents are continuously striving to improve
their coalition by simulation of potential alternatives in case
agents leave or enter the scene, or tasks are changed by the
users. In this paper we outline and discuss the simulation-based
scheme for dynamic coalition formation.
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1. INTRODUCTION
Self-interested, autonomous software agents on the Internet may
negotiate rationally to gain and share benefits in stable
(temporary) coalitions. This is to save costs by coordinating
activities with other agents. For this purpose, each agent
determines the utility of its actions and productions in a given
environment by an individual utility function. The value of a
coalition among agents is computed by a commonly known
characteristic function which determines the guaranteed utility
the coalition is able to obtain in any case. In a characteristic
function game the agents may use imposed individual strategies
to achieve a desired type of economically rational behaviour
such as altruistic, bounded rational, or group rational.

In any case, the distribution of the coalition’s profit to its
members is de-coupled from its obtainment but is supposed to
ensure individual rational payoffs to provide a minimum of
incentive to the agents to collaborate. Rational agents are usually
required to form beneficial coalitions in open, distributed and
heterogeneous environments at any and in reasonable time. That
includes scenarios in which dynamically occurring events may
interfere with the running coalition.

Due to its nature dynamic coalition formation (DCF) methods
promise to be particularly well suited for applications of
ubiquitous and mobile computing. In m-commerce settings, for
example, personalized information agents each representing a
potential business partner may dynamically form temporary
profit-oriented coalitions on demand at any time. That may
increase customers’ benefits of purchasing and negotiating sets
of items at multiple electronic market places world wide in
reasonable time. This appealing vision for the common Internet
user appears to be not far away from being realised with respect
to recent advances in appliances of wireless computing and
communication. First research towards appropriate economic
models for agent-based applications in this domain includes, for
example, [20] [23] [16].

The remaining sections of this paper are structured as follows.
Section 2 introduces to the traditional field of static coalition
formation; readers who are familiar with the domain may skip
this section. In section 3 and 4 we briefly describe the problem
of dynamic coalition formation, and then discuss how selected
work from different research disciplines may be coping with
parts of the DCF problem. We propose a simulation-based DCF
scheme in section 5, and conclude the paper with a brief outlook
on future work in section 6.

2. Traditional Methods to Coalition Forming
According to [4] models of coalition formation may be classified
into two main approaches: utility-based and complementary-
based models dividing the societies of actors into ones following
either the principle of ‘bellum omnium contra omnes’ as it is
largely favoured, for example, by game theory [12], or ones
which rely on the collaborative use of complementary individual
skills to enhance the power of each agent to accomplish its
goals, respectively.

Up to now, most classic methods and protocols for a formation
of stable coalitions among rational agents follow the utility-
based approach. They rely on derived concepts from co-
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operative game theory, economics, and operations research.
Utilitarian coalition formation covers two main activities:

(1) the generation of coalition structures, that is partitioning or
covering the set of agents into coalitions, so as to maximize
the monetary value depending on the benefit of
accomplishing tasks regarding used resources and time
spent;

(2) the distribution of gained benefit among the participants of
each of the coalitions.

These activities may be interleaved and are not independent. A
comprehensive discussion and classification of relevant work on
coalition formation is given, for example, in [11] [21]. In the
following we provide the reader with a very brief introduction to
basic concepts and notions of co-operative game theory.

2.1 Basic Concepts and Notions
A co-operative game (A, v) is defined by a set A of agents
wherein each subset of A is called a coalition, and a real-valued
characteristic function v assigning each coalition C in A its
maximum gain, that is the expected total income of the coalition
(the so-called coalition value). It is commonly assumed that the
value of any coalition C is in money and the value v(C) does not
depend on the actions of agents outside the coalition.
Furthermore, we may assume that any coalition C forms by a
binding agreement (coalition contract) on the distribution of its
coalition value v(C) among its members, in particular no side-
payments are allowed from C to any agents outside C within the
game. Finally, the characteristic function v is assumed to be
known to all agents in A.

The solution of a co-operative game with side payments is a
coalition configuration (S, u) which consists of a partition S of
A, the so-called coalition structure, and a n-dimensional, real-
valued payoff distribution vector which components are
computed by a real-valued payoff or utility function u. The
payoff distribution assigns each agent in A its utility u(a) out of
the value v(C) of the coalition C it is member of in a given
coalition structure S. It is commonly assumed that every
coalition may form, including singletons or the grand coalition
A. However, the number or size of coalitions to be formed using
a coalition formation method is often restricted to ensure, for
example, polynomial complexity of the formation process.

Individually rational payoff distributions are assigning each
agent at least the gain it may get without collaborating within
any coalition. For group rational coalitions it holds that the
group of all agents is assumed to maximize its joint payoff. In
coalition configurations with so-called Pareto-optimal payoff
distributions no agent is better off in any other valid payoff
distribution for the given game and coalition structure. A
coalition configuration (S, u) is called stable if no agent has an
incentive to leave its coalition in S due to its assigned payoff
u(a). Different characteristics and criterions of stability define
different solution space for co-operative games (section 2.2).

Rational agents which are involved in a co-operative game (A,v)
are supposed to negotiate a stable payment configuration (S,u) as
a solution of the game by the use of an appropriate coalition
algorithm (CA). The CA is completely decentralized, and should
provide a stable coalition configuration for any co-operative
game in the considered environment at any time. The latter
property is, in general, hard to achieve in DCF environments.

A coalition formation environment (CE) for a given set of
agents A is the set of assumptions and constraints which are
valid for any kind of coalition forming activity between agents
in A including propositions on:

1. The task-related functionality of each individual agent in A,
including its set of tasks and goals to accomplish, set of
appropriate actions, and methods to compute the individual
utilities of  task-related productions;

2. Valid methods for computing the values of coalitions, for
example, by the sum of production utilities of all agents in
a coalition;

3. Valid methods for determining coalition configurations,
including methods for searching coalition structures,
negotiation and payoff distribution schemes;

4. Commitments, obligations of and agreements between
agents in A concerning the type of collaboration and
interaction.

In a given coalition formation environment the agents
particularly agree on (a) what kind of stable coalitions shall be
negotiated, and (b) what particular coalition algorithm CA shall
be used for the negotiation.

A coalition formation environment is called super-additive or
sub-additive depending on the type of all co-operative games it
allows, and general if it allows for at least one sub-additive
game. Both general and sub-additive environments are often
called non-super-additive environments. In sub-additive games
at least one pair of potential coalitions is not better off by
merging into one. This could be caused by, for example,
communication and co-ordination overhead costs, etc.   

A coalition formation model CFM = (CE, CA) is defined by
both, the considered coalition formation environment CE and a
given coalition algorithm CA for this environment. Interesting
models are those where coalition formation is concerned with
general and sub-additive environments.

The meaning of stability of coalitions depends on the considered
discipline and application domain. Many if not most of the
coalition formation algorithms today rely on chosen game-
theoretic concepts for stable pay-off division within coalitions
according to, for example, the Shapley-value, the Core, the
Bargaining Set, or the Kernel [8]. For example, the Kernel K of
a co-operative game (A,v) with respect to a given coalition
structure is the set of K-stable configurations (S,u) in which all
coalitions in S are in equilibrium. A coalition C is in such an
equilibrium if each pair of agents in C is in equilibrium, i.e., any
pair of agents in C is balanced, that is, none of both agents can
outweigh the other in (S,u) by having the option to get a better
payoff in coalition(s) not in S excluding the opponent agent. In
other words, agents may argument each other like “Since I could
obtain more without you in alternative coalitions than you
without me, I deserve more, but without going to harm you.” For
this purpose each agent has to compare its surplus with those of
other agents; the calculation of the surpluses bases on that of the
excesses of every alternative coalition possible. Thus, the kernel
of a game is exponentially hard to compute unless, for example,
the size of the coalition is limited by a constant. One attractive
feature of this stability concept is that it is locally Pareto-optimal
in the set K.



2.2 Limits of Traditional Approaches to
Form Stable Coalitions
All traditional  approaches to coalition formation remain static
in the sense that they do not allow for any type of (non-
deterministic) interference with the running coalition formation
process. In addition, many results known today only hold for
super-additive coalition formation environments. Regarding
results achieved in the domain of fuzzy and stochastic co-
operative games, further basic research on appropriate concepts
and criterions of “vague” stability and corresponding coalition
algorithms remains to be performed. Besides, most work on
coalition formation rely on coalition formation environments in
which all agents are assumed to be homogeneous, means they
have the same task-related internal functionality; which in an
open and changing world we are considering is not a feasible
assumption. In the following section we discuss issues and
problems of dynamic coalition formation environments and
point out what kinds of results would be desirable in the new
research field of DCF.

3. The DCF Problem
The research domain of dynamic coalition formation (DCF) can
be defined by the set of co-operation methods, schemes, and key
enabling technologies to cope with the problem of dynamically
building beneficial coalitions among agents in open, distributed,
and heterogeneous environments. This DCF problem has to be
solved in any collaboration environment and scenario in which

(1) agents may enter or leave coalition formation processes at
any time,

(2) the set of tasks to be accomplished by and the
(computational) resources of individual used may change
dynamically, and

(3) the information, network, and user environment of each of
the agents and the system as a whole may change
dynamically as well.

Co-operation scenarios inducing uncertain, time-limited,
context-based utilities and coalition values may exacerbate the
DCF problem. In dynamic coalition formation environments the
following classes of events may non-deterministically occur.

- Tasks:  The set of tasks, goals to accomplish and
corresponding plans to pursue may change for each
individual agent at any time. Such changes concern, for
example, the volume of tasks, utilities, and costs of task
execution as well as the frequency of such changes. General
task allocation problems are known as at least NP-hard
problems. Real-time issues and requirements to perform
planning under time-dependent uncertainty [22] may even
exacerbate these kinds of problems.

- Agents: Agents may leave or enter the agent society at any
time; some agents may even temporarily hide their
existence to parts of the society for different reasons.

- Information: Information and data may change, or become
corrupt either intentionally by the sender or via its
transmission over the network. User preferences may
continuously change as well as network connections to
agents in the considered agent society.

One hard challenge for agents to negotiate stable coalitions in
such dynamic settings is how to flexibly react on different kind
of changes preferably in real-time without having to restart the
complete negotiation process. This in particular requires the
agents to individually handle uncertain environment knowledge
via appropriate adaptation mechanisms. Basic research is needed
to clarify in which kinds of dynamic settings and to what extent
available algorithms for the static formation of stable coalitions
may be adopted such as the meaning of the chosen stability
criterion may be retained. In particular, efficient methods have
to be invented allowing the agents to deliberately restart their
coalition negotiations at any time depending on the kind of
possible changes in the considered environment.

4. Relevant Work for DCF
The development of DCF schemes may in particular benefit
from adopting appropriate methods for quantitative or
qualitative decision making in face of imperfect information.
Reasonable solutions for fuzzy [30] and stochastic co-operative
games [29] may be adopted for the development of co-operation
schemes which enable the agents to deal with different types of
imperfect information such as the vagueness of expected
coalition values, payoffs, or membership of agents in coalitions.
In both cases such uncertainties may be induced in dynamic
coalition formation environments. Other relevant work for
developing co-operation schemes for dynamic environments
include, for example, utility-based schemes for dynamically re-
organising organisational structures [1], and exception tolerant
reasoning and multi-criteria decision making under uncertainty
[2].

Social reasoning mechanisms are considered as essential
building blocks suitable to situations where agents may
dynamically enter or leave the society, without any global
control. Therefore advances in social reasoning have a clear
impact on the development of DCF schemes. Social reasoning
mechanisms are often based on the notion of social dependence
[3], or aim at reputation and trust management.

In order to acquire and use dependence knowledge on the
considered agent society, each agent has to explicitly represent
some properties of the other agents, which may change
dynamically; exploit this representation thereby optimising its
behaviour according to the evolution of the society; and to
monitor and revise its representation to avoid inconsistencies to
an acceptable degree, without any pre-established global control.

Reputation management aims at avoiding interaction with
undesirable participants and may complement other security
technologies for authentication and authorisation. Mechanisms
for building, propagating, measuring and maintaining reputation
and trust [24] are useful to apply, for example, to settings for
coalition formation among self-interested agents in e-commerce
applications where trusted third parties are required but not
available. Negotiation schemes for uncertain games with trusted
third party are proposed, for example, in [18].

Rational agents may face many potentially beneficial choices
related to the timing of events, which may occur during the
individual decision process, and the negotiation with other
potential coalition partners. Regarding the use of social
reasoning mechanisms for the formation of temporary coalitions
in continuously changing environments temporal dependence



networks and adequate temporal social reasoning mechanisms
may be applied to DCF schemes. Work on real-time issues in the
context of agent-based online auctions on a single auction server
suggesting a design for maximal asynchrony and robustness to
network delay includes, for example, [22]. In general, any
problem of performing time-constrained reasoning for coalition
formation may be viewed naturally as a constraint satisfaction
problem [6]. Therefore one might adopt approaches for solving
dynamic CSPs [13] to cope with this part of the DCF problem.

5. DCF-S: A Simulation-Based DCF Scheme
The simulation-based dynamic coalition formation scheme DCF-
S is designed to enable agents for effectively reacting on
changes of their set of goals and agent society. This DCF-S
scheme may be instantiated by, for example, the utilization of
different computational methods and negotiation protocols with
respect to the considered application and chosen criterion for
coalition stability. Each instantiation yields a particular DCF-S
based coalition algorithm. In the following we briefly outline
and discuss the DCF-S scheme.

5.1 Assumptions on the Environment
We consider a coalition formation environment in which agents
may continuously receive a set of goals. Furthermore, any agent
may freely enter or leave the society at any time. Due to this
dynamic nature of the environment the agents are situated in
their mutual knowledge and possible benefits to share in
coalitions may be vague and incomplete. That requires each
agent to utilize appropriate mechanisms to cope with these
uncertainties and gradually adapt its decision making with
respect to non-deterministically occurring changes in the
environment. Furthermore, we assume an additional set of
special agents, called world-utility agents (WUA) to the
environment. Any WUA may receive, compile and maintain
information about each of its registered agents. This information
includes, for example, statements on the problem solving
capability of an individual agent and the evaluation of its quality
of service by other agents. Such evaluation may concern, for
example, the reliability and trustworthiness of an agent with
respect to its co-operation with other agents. It is assumed that
these evaluation records are safe against possible manipulation
and securely distributed to and updated by the networked world-
utility agents. However, it is noteworthy to emphasise that each
agent in the considered agent society is free to request its nearest
world-utility agent. Though this set of WUA is not essential it
may be quite useful as an additional source of information for
the agent society.

We define a goal-oriented co-operative game (A, v)|G as a co-
operative game (section 2.1) with respect to a given goal G.
Such a game is determined by a given set A of agents and a real-
valued function v assigning each coalition C in A its total
expected outcome with respect to the accomplishment of the
goal G.  In particular, the computation of the individual utility of
the set of productions of coalition members in C is restricted to
the set of productions related to G. We further assume that any
coalition may be represented to the outside world by an
appropriate coalition leading agent (CLA). Therefore, we
consider each coalition as one entity or agent. Since one agent
may also be considered as a single-agent coalition the term agent
and coalition may be used interchangeably. Initially, the set of

all possible, non-empty coalitions is the set of single-agent
coalitions, and each agent is a CLA for a coalition which it has
initiated to form for one of its goals. Any CLA is supposed to
reliably and trustworthy act on behalf of the members of its
coalition. This includes, for example, the responsibility to
negotiate and control the distribution of resources and payoffs
among the coalition members according to the coalition
contract.

5.2 The DCF-S Scheme
In the DCF-S scheme each coalition leading agent concurrently
simulates, adaptively selects, and negotiates coalitions each of
which is able to accomplish one of its goals with an acceptable
ratio between estimated risk of failure and individual profit to
gain in the coalition. In the following we first summarize the
main steps of the scheme, then present the scheme in more detail
in pseudo-code.

5.2.1 Outline of the DCF-S Scheme
The main steps of the DCF-S scheme are executed by each
coalition leading agent (CLA).

(1) Preparation: The CLA determines the set of goals to be
accomplished in co-operation with other agents. It
periodically updates its knowledge on the environment. The
local knowledge base includes information on (partially)
known problem-solving capabilities of other agents as well
as individual evaluations of past collaborations with these
agents with respect to their reliability and trustworthiness in
co-operation. To obtain this information it may in particular
request its nearest world-utility agent. Since this
environment knowledge may be incomplete or vague the
agent is assumed to utilize appropriate learning
mechanisms for approximating the needed information.

(2) Simulation: The CLA simulates the formation of coalitions
each of which may be able to accomplish a given goal with
an acceptable ratio between the estimated individual profit
and risk of forming the coalition. This simulation consists
of the following steps.

- The agent performs a capability-based matching to
determine the set of possible candidates for jointly
accomplishing a goal in some coalition.

- For each goal and corresponding set of candidates the
agent then randomly simulates coalitions of limited
size until it finds a coalition which appears to be
significantly better than the currently valid coalition
with respect to its estimated individual profit to gain
and risk of forming the coalition. In particular, each of
these coalitions is simulated by randomly adding and
removing candidates. The individual decision on
whether a candidate will be added to or removed from
the currently valid coalition is made by the agent with
respect to its estimated risk of co-operating with this
candidate as well as the marginal contribution of the
candidate to the coalition. Both estimation values may
be derived from information available in the updated
local knowledge base of the agent. The individual risk
for the agent to form the simulated coalition is related
to the sum of all individual penalties the agent will
have to pay to those of its partners in the currently



valid coalition which are not supposed to remain in
the new restructured coalition.

- If no events did occur so far this may endanger the
formation of at least one of the simulated coalitions
the CLA proceeds with the following negotiation step
to realise these coalitions. Otherwise it continues the
simulation deliberately taking the detected changes in
the environment into account trying to avoid a
complete restart. This is achieved by keeping the
already committed agents in the initial hypothetical
coalition for the new simulation.

(3) Negotiation: The CLA negotiates all coalitions it has
determined in the previous simulation step. Each goal-
oriented coalition is bilaterally negotiated by the CLA with
each potential member of the coalition in sequence; the
complete set of negotiation sequences may be performed
concurrently. The result of a successful negotiation is a
binding agreement between agents on the constraints and
attributes of their co-operation in the new coalition. As
mentioned above, bilaterally negotiated coalition
configurations may be stable according to, for example, the
bilateral Shapley-value transformed to general
environments.

In case one bilateral negotiation fails or an event changing
the value or structure of the considered coalition is detected
the negotiation process for that coalition is immediately
halted. The CLA then evaluates the negotiation process for
this coalition so far in the next step and restarts the
simulation of potential coalitions for the particular goal.
Please note that, for the restart it keeps those agents in its
coalitions with which it has already successfully negotiated
and takes the current situation of the environment into
account. This way the CLA may avoid a complete restart,
thereby avoiding possible penalty payments and a
corresponding decrease of its own reliability in co-
operation for the rest of the agent society.

Evaluation: The CLA may evaluate its recent negotiations and
report these evaluations to the nearest world-utility agent for
distribution. Concurrently, it controls the distribution of payoffs
and resources to members of the newly formed coalitions
according to the successfully negotiated contracts.

5.2.2 DCF-S Scheme: Prerequisites
In the following we introduce the terms, sets, values, and
functions used in the description of the DCF-S scheme.

The local knowledge base of an agent a consists of the following
components.

- The set GS(a) of goals the agent has to accomplish.
Interleaved goals are assumed to be aggregated by a into
one goal.

- The list CL|G (BestCL|G) contains the (best) candidates
with which agent a may coalesce to accomplish a goal G in
GS(a).

- The list ACL|G of agent information records contains
information of agent a on the capabilities of other agents
a’ with respect to G. Each record stores a finite
dimensional vector of real-valued attributes of an agent a’
with respect to its estimated value of contribution to the

accomplishment of goal G in GS(a). These attributes are as
follows.

- Goal-related attributes of agent a’ concern, for example,
the estimated amount of its available resources, costs,
quality, and efficiency with respect to goal G.

- Other attributes of a’ concern its reliability and
trustworthiness in co-operation.

- The real value crv(a’, ACL|G, C) in [0,1] denotes the
risk of agent a to cooperate with agent a’ in coalition
C for goal G in GS(a) with respect to the information
on a’ in the list ACL|G.

- The real value crl(a’, C) denotes the worst acceptable
risk of agent a to cooperate with agent a’ in coalition
C.

- The real value rrl(a’ C) in [0,1] denotes the worst
acceptable risk of agent a to remove agent a’ from
valid coalition C the agent a is leading. This risk
value might be computed with respect to the implied
payment of trust penalty tp(a’, a) and the penalty
payment limit ppl(a).

- The real value tp(a’, a) is the trust penalty to be paid
by a to a’ in case a breaks a coalition agreement with
a’.

- The real value ppl(a) denotes the upper limit of
penalty payments by agent a.

In addition, we define the following values, sets, and functions.

- Integer MaxSim denotes the maximum number of
simulation steps per simulation round.

- CC|G set of candidates for the formation of a coalition
with respect to goal G.  These candidates are taken
from the current set CS of all valid coalitions and
determined by the function Match.

- Match(CS, G, ACL|G) determines the set of agents in
the set CS of all agents (individual agents and valid
coalitions which are actually known to agent a) each of
which is capable of contributing to the accomplishment
of goal G. The capability-based matching [9]
determines to what degree the agents’ capability
descriptions in ACL|G match the description of the goal
G. In addition, other agent attributes concerning trust
and reliability in co-operation are matched. The
returned set may be limited in size by including only
few top-ranked matching candidates.

- Request(ACL|G, WUA), Update_Agt_Information
(ACL|G,  RecentAC) concern the request of the nearest
WUA for information to (periodically) update the list
ACL|G. The function Update_Agt_Information
utilizes the results of an appropriate learning
mechanism to approximate the needed information; this
mechanism is assumed to be part of the functionality of
the agent a. We suggest to use an appropriate
reinforcement learning method [19].

- SelectAgt_MinRisk_MaxValue(CC, C, ACL|G)
returns an agent a’ from set CC of agents with
estimated minimum risk of co-operation in and
maximum value of contribution to the coalition



HC∪ {a’} with respect to goal G regarding the attributes
of a’ stored in the agent information list ACL|G. The
payoff for a’ in C is individual rational for a’.

- SelectAgt_MaxRisk_MaxValue(CC|G, HC|G,
ACL|G) returns an agent a’ from set CC|G with
estimated maximum risk of co-operation in HC|G,
maximum value of the coalition C\{a’} regarding the
information on a’ in ACL|G.

- Events(BestCL|G) returns the set of events occurred
which have an impact on the formation of the coalition
which consists of all agents in the list BestCL|G. These
events concern the modification, deletion, or adding of
a goal in GS(a), and the leaving and entering of agents.
Any processed event is automatically removed from the
set.

- Value(CL|G) determines the value v(C) of the coalition
C which consists of all agents in the list CL|G.

- BilateralNegotiation(a, a’, Value(BestCL|G), C∪ {a’})
returns true if the bilateral negotiation of agent a with
agent a’ on a joint coalition C∪ {a’} with respect to its
value is successful, otherwise it returns false.

The negotiation should respect the individual
rationality of payoffs derived from the value of the
negotiated coalition and given, appropriate criterion of
coalition stability such as the bilateral Shapley-value
with equal or proportional share between coalition
members [17] [5]. Regarding the negotiation of other
attributes we suggest to use an appropriate multi-
attribute negotiation method such as proposed in  [7].

- Evaluate(ACL|G) updates the agent information list
ACL|G according to the local evaluation of the recent
negotiation processes of the agent and returns the
updated list ACL|G. This evaluation gives input to the
internal learning mechanism of the agent for adapting
to changes in its environment.

- StopNegotiation(BestCL|G) stops all running
negotiation processes with all agents in BestCL|G on a
coalition for the goal G and updates the list CL|G by
keeping those agents with which the executing agent
has already successfully negotiated.

- RedundancyCheck(CL|G) returns a list of tuples (agt,
op) in which (agt, add) and (agt, remove) are deleted.

Each coalition leading agent a executes the following steps.
Consider agent a as leader of valid coalition C|G for goal G in
GS(a).

for each G in GS(a) do concurrently, until external
termination

{ halt:= false;

  while not halt do {

(1) Preparation

CL|G, BestCL|G :=null; op:=’’; z = penalties:=0;

   if periodic(date, ACL|G) then

   {RecentAC := Request(ACL|G, WUA);

     ACL|G:=Update_Agt_Information(ACL|G,
RecentAC);}

(2) Simulation
CC|G:= Match(CS, G, ACL|G);

HC|G:= C|G;

for z:= 1 to MaxSim do
{ op := Random({noop, add_agent,
remove_agent});
      if op = add_agent then
  { agt:= SelectAgt_MinRisk_MaxValue(CC|G,
              HC|G,  ACL|G);
      if  crv(agt, ACL|G, HC|G) ≤ crl(agt, HC|G)
then
         {CL|G:= CL|G + (agt, add);
           HC|G:=HC|G∪ {agt};}
   }
   else
   if op = remove_agent then
   { agt:= SelectAgt_MaxRisk_MaxValue(HC|G,
               ACL|G);
       if  crv(agt, ACL|G, HC|G) > rrl(agt, HC|G)
then
      {CL|G := CL|G + (agt, remove);
        HC|G:=HC|G \{agt};
        penalties:=penalties + tp(agt, a); }
   }
}
if Value(CL|G) > Value(BestCL|G) then

BestCL|G:= RedundancyCheck(CL|G);
if Value(BestCL|G) >> v(C|G) && penalties <
ppl(a) && Events(BestCL|G) = ∅  then halt:= true;

    }
(3) Negotiation

halt:= false;
for each (a’, op) in BestCL|G  do concurrently
{ try
      if op = add then{
          if  BilateralNegotiation(a, a’,
                  Value(BestCL|G), C|G∪ {a’})
          then {GS(a)=GS(a)\{G}; C|G:= C|G∪ {a’} }}

  else { C|G:= C|G \ {a’};
                  Payment( tp(a’, a), a’); }
   catch(event) {

GS(a) = GS(a) ∪ {G}
if Events(BestCL|G) <> ∅ then {
StopNegotiation(BestCL|G); Goto (4)};

   }
}

(4) Evaluation
EvalRes:= Evaluate(ACL|G);
[if desired then Send(EvalRes, WUA);]

  }



In the following section we briefly discuss some issues of the
outlined DCF-S scheme and then compare it with an alternative
DCF scheme proposed in [17].

5.3 Discussion of the DCF-S Scheme
In the DCF-S scheme each agent concurrently simulates,
adaptively selects, and negotiates coalitions each of which is
able to accomplish one of its goals with an acceptable ratio
between estimated risk of failure and individual profit to gain in
the coalition. In other words, the agents strive to concurrently
solve a set of single goal-oriented co-operative games (A, v)|G
by forming potentially overlapping coalitions with stable payoff
distributions regarding their local environment knowledge and
given stability criteria. The problem of assigning tasks and goals
to coalitions of agents has been approached in [14] [15]. It is
noteworthy that each of these goal-oriented co-operative games
may change at any time subject to different kinds of non-
deterministically occurring events such as agents leaving or
entering the society, as well as deleting or modifying the
considered goal. Each detected change may induce new co-
operative games to be solved by the agents.

According to the DCF-S scheme each coalition leading agent
reacts on these changes during negotiation via a partial rather
than complete restart of necessary simulation and negotiation of
alternative size-bounded coalitions. The agent tries to keep those
agents in the affected coalitions with which it has already
successfully reached a coalition agreement. However, the DCF-S
scheme does not guarantee in general that an optimal solution of
these games will be found. Rather the agents are supposed to
continuously approximate best solutions given their current
knowledge on the dynamic environment by simulation and
adaptation. One problem is that changes in the environments
may occur that rapidly that it is not possible to realize any of the
continuously simulated coalitions. However, that is a general
problem for any type of DCF algorithm.

The DCF-S scheme assumes the existence of a set of networked
world-utility agents, which each agent in the society is free to
contact for obtaining needed information on the environment. In
addition, the update of local knowledge by an agent is assumed
to utilise results from a continuous adaptation process to
approximate the needed information on its environment. That
may improve the quality of its decision making independent
from the world-utility agents, and reduce the overall complexity
in computation and communication. As mentioned above, the
complexity of any DCF-S based coalition algorithm as an
instantiation of the DCF-S scheme largely depends on the
complexity of the implemented methods.

5.4 Comparison With Other DCF Scheme
To date there exists only one alternative DCF scheme which has
been suggested in [17]. It is to some extent similar to our DCF-S
scheme. This scheme (ST-DCF) consists of the following steps.

1. An agent that detects a problem to be solved by some
proper coalition first hastily forms an initial coalition by
selecting neighbouring agents that it considers having high
potential utilities for this task. This selection is based on its
individual profile of its neighbourhood including
information on the capability of each neighbour and its
respective past inter-agent relationships. Agents may use a
particular learning (case-based reasoning) mechanism for

learning to form coalitions better by adjusting the weighted
potential utility of neighbours, driven by the failure and
success rates of past coalition formation.

2. The agent finalizes the coalition via concurrently performed
bilateral negotiations with only selected top-ranked
neighbours of high potential utility, during which
constraints and commitments are exchanged in a special
(argumentation) setting. The selection enables to conserve
both computational resources and communication usage.
When a coalition is formed or no longer can be formed due
to some negotiation failures, all remaining negotiations are
terminated.

3. The initiating agent acknowledges the status of a coalition,
a responsible act that seals the validity of a planned
coalition.

In principle, both ST-DCF and DCF-S schemes are
opportunistic and of high risk since the formation of an optimal
coalition cannot be guaranteed. However, both schemes
significantly differ in the way coalitions are formed. Unlike the
DCF-S scheme, the ST-DCF scheme does not allow agents to
further improve a particular coalition for a given task if the
corresponding information is not available at the time of its
creation. This implies that sub-optimal solutions may not be
improved to optimal ones even when the required information to
compute such solutions becomes available to the agents.
Moreover, it remains unclear how agents using the ST-DCF
scheme may discover its neighbourhood; the DCF-S scheme
allows agents to contact world-utility agents to obtain such
information.

Both schemes allow for overlapping coalitions such that one
agent may participate in multiple single goal-oriented coalitions.
But the ST-DCF scheme prohibits agents to leave their coalition
voluntarily; coalitions may only be disrupted just in case of the
occurrence of external events like network failures. In addition,
unlike the DCF-S scheme no penalties have to be paid by agents
for leaving a valid coalition. The ST-DCF scheme pays less
attention to avoiding possible deception and fraud via
distribution of information on individual agent’s trust and
reliability in co-operation with other agents.

6. Conclusions
We introduced the notion, selected issues, and challenges of
dynamic coalition formation (DCF) among rational software
agents. Using the DCF-S scheme each agent may concurrently
simulate, adaptively select, and negotiate coalitions each of
which is able to accomplish one of its goals with an acceptable
ratio between estimated risk of failure and individual profit to
gain in the coalition. Application-specific instantiations of this
scheme may lead to a variety of DCF-S coalition algorithms. For
this purpose, many relevant approaches and theoretical work
stemming from different disciplines are available to date
including work on temporal social reasoning, machine learning,
and fuzzy and stochastic co-operative games. DCF algorithms
promise to be particularly well suited for applications of
ubiquitous and mobile computing, including mobile commerce
in wireless network environments. However, further basic
research is needed to investigate the potential of the new
research field of dynamic coalition formation, which still
remains in its very infancies to date.
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