
Privacy Preserving Pattern Discovery in Distributed Time Series

Josenildo Costa da Silva Matthias Klusch
German Research Center for Artificial Intelligence

Deduction and Multiagent Systems
Stuhlsatzenhausweg 3, 66121 Saarbrücken, Germany

{jcsilva, klusch}@dfki.de

Abstract

The search for unknown frequent pattern is one of the
core activities in many time series data mining processes.
In this paper we present an extension of the pattern discov-
ery problem in two directions. First, we assume data to be
distributed among various participating peers, and require
overhead communication to be minimized. Second, we al-
low the participating peer to be malicious, which means
that we have to address privacy issues. We present three
problems along with algorithms to solve them. They are
presented in increasing order of complexity according to
the extensions we are pursuing, i.e. distribution and privacy
constraints. As the main result we present our secure multi-
party protocol for the privacy preserving pattern discovery
problem.

1. Introduction

Mining time series has been an active research area
which produced a lot of specialized algorithms (cf. [21, 12,
9, 7] to name a few). Many of these mining algorithms have
a pattern problem as core activity, in particular, the discov-
ery of unknown patterns.

In this paper we focus on the pattern discovery in a dis-
tributed scenario. Our main motivation in this work is to
provide a solution to distributed scenario, which in our un-
derstanding has a large number of potential applications.
The challenge is to address additional constraints of low
communication cost, high scalability, and privacy preser-
vation of data sources. To the best of our knowledge, no
solution has been presented to handle the distributed case
so far. A scenario where the privacy is an issue is in Fraud
Control. Suppose a group of banks want to cluster the trans-
action history of its clients to find out if the behavior has
something in common with illegal operations, money laun-
dry for example. Since illegal operations are commonly
spread over many institutions, this is a potential scenario

for distributed pattern mining. Informally the problem is, to
find all frequent patterns given the union of the individual
data owned by the different peers.

A solution to this problem must fulfill the following re-
quirements: (i) low communication:the volume of data ex-
changed among peers must be kept as low as possible; (ii)
correctness; (iii)privacy-preservation. The rationale for the
first requirement is that of reducing communications costs
and idle time spent waiting for communication. When it
comes to the correctness, the patterns found by a distributed
algorithm must be the same found by a traditional algorithm
running over a centralized union of the data sets. Finally, no
sensitive data owned by a peer is disclosed to other peers.
Here sensitive data may be data about individuals, trade se-
crets, buying patterns, etc.

Distributed data mining problems are commonly solved
by transferring all data to a central location. However, in
some scenarios transferring local data may not feasible.
First, the data sets may be huge. Second, we cannot as-
sume high speed networks. Third, centralized algorithms
may not scale well up. Fourth, participants may not want to
disclose data to other members of the mining group to pro-
tect individual privacy (individual records) in some cases, or
to protect business advantage (institution privacy) in other
cases.

Building local models at local sites and using some
model aggregation approach to build a global model is a
suitable alternative. More concretely, we could find locally
a set of interesting patterns and compare with the results is-
sued by other sites. However, there are at least two main
limitations. Fist, this approach may not be correct, due the
fact that some frequent patterns are spread over the data sets
and can be discovered only when we consider the whole
data set. Second, local model may allow data reconstruc-
tion, what is known as the inference problem. Finally, if a
subset of the participants forms a collusion group, they may
learn sensitive information from non-colluding participants.

Current work on pattern discovery do not address the dis-
tributed case and, more specifically, do not address privacy

1

issues. Privacy preservation is a very important property
and has been a hot topic of investigation in databases, and
more recently in data mining.

The research question in this work is how to adapt cur-
rent pattern discovery solutions to address the distributed
pattern search problem including the requirement of privacy
preservation of local data sets.

Outline. The remaining of this paper is organized as fol-
lows. Pattern discovery in time series data is discussed in
sections 2 (traditional) and 3 (distributed case). Privacy is-
sues are discussed in section 4. Our algorithm along with
an analysis of its privacy preserving properties is presented
in section 5. Related works and Conclusion can be found in
the sections 6 and 7 respectively.

2. Pattern Discovery in Time Series

A pattern in time series is an “interesting” subsequence
of the time series. Here the term “interesting” may have
different meanings, depending on the pattern problem one
wants to address.

A well investigated problem is to find patterns similar to
a given one, which is known as query-by content problem.
Another class of pattern problem occurs when the pattern is
unknown. In this case, if the goal is to identify frequently
occurring pattern the problem is called motif discovery [16].
On the other hand, the problem of finding non-frequent pat-
terns is defined as surprise detection. In this work we focus
on the problem of discovery of unknown frequent patterns
(a.k.a motif discovery) or simply pattern discovery in time
series.

Pattern discovery problem has been extensively studied
in bio-informatics, where the goal is to find frequent pat-
terns in sequences of symbols, e.g. microarray data analysis
[11]. Recently this problem was extended to handle real-
valued data [16]. More formally the problem is to identify
the k-most frequent pattern occurring in the time series.

Definition 1 (Reoccurring subsequence) Given a real-
valued time series X a reoccurring subsequence is one
which reoccurs in different parts of the time series without
overlap.

Definition 2 (k-Frequent Pattern) Given a real-valued time
series X and a table with all reoccurring subsequences or-
dered by number of occurrence, a k-frequent subsequence
is a reoccurring subsequence which is in the top k list of
reoccurring subsequences.

PROBLEM 1 (PDTS) Given a real-valued time series X
and k, an integer, the problem is to find the k-most frequent
patterns occurring in X .

A brute force algorithm to solve PDTS uses a slid-
ing window to compare the current subsequence with all
other possible subsequences in X . It has time complexity
O(|X|2), where |X| represents the size of X .

Other approaches to PDTS follows a three-step scheme
(cf. [25, 16]):

1. Dimension reduction of the original time series X;

2. Discretization of the reduced time series X into a se-
quence of symbols S;

3. Pattern discovery algorithm using the resulting symbol
sequence S.

This general scheme has the advantage of handling the
high dimensionality of data, do not assume any knowledge
on the structure of patterns and finally, provides a clear sep-
aration on the tree different tasks at hand.

We pursue this scheme focusing our attention on the
third step. Our solution works as follows: given a sequence
S, we compute the density of subsequences of S and output
the list with the top k frequent subsequences.

Our approach exploits the fact that a density estimate can
be used to find overcrowded regions in a hyperspace. If we
take subsequences of time series and represent it as points
in a multidimensional space, we can reduce the search for
frequent subsequences, to the search for dense regions1.

Our solution is based on the observation that the search
for k-most frequent patterns of size w reduces naturally to
the search for k-most dense regions on a R

w space (cf. al-
gorithm 1).

Algorithm 1 PDTS
Input: k, X , n, w, Σ, r;
Output: P;

1: H ← createHashTable(X,n,w,Σ);
2: ϕ← H.estimateDensity();
3: P ← ϕ.getCenters(k, r);

In the step 1 the function createHashTable() works as
follows. First create an empty hash table H and for each
n-sized non-overlapping subsequence S of X , do the fol-
lowing:

(a) Using eq. (2) compute S, which is composed of the
averages of the subsequence S. This will reduce the
dimensionality of the current subsequence S from n
to n

w , where w is the size of the resulting strings.
Actually, this operation (proposed elsewhere [15]) is
known as piecewise aggregate approximation (PAA):
sj = w

n

∑ n
w j

k= n
w (j−1)+1 sk

1This approach can solve at least the case where the subsequences have
fixed size.

2

(b) This is the discretization step. Compute the string W
from S by substituting an element sj of S by a cor-
respondent symbol σa in Σ. This procedure is ac-
complished by choosing break points {βa}, such that
|{βa}| = |Σ| + 1, and such that each occurrence of
a given value sj of S has the same probability [16]
assuming they are normally distributed. Finally, the
substitution rule is applied:

W [j] = σa iff βa−1 < sj ≤ βa (1)

(c) Finally, add an entry inH for the string W ;

In the second step, the density estimation of the strings
stored in the hash table, we can use any estimation method,
e.g. kernel-based estimation. The requirement is that the
density estimate function ϕ builds a non negative mono-
tonic function over R and that the local maxima represent
the most dense regions in the feature space. In practice it
even does not need to be a true estimation, an approxima-
tion will do it.

The final step. Choose a set of strings, each of them
representing a center of the k-most dense regions and call
it P . The regions are constrained to define a ball radius r.
More formally, for a given density estimate ϕ we have:

P = {σ | ∀σ′ ∈ Σw (| σ−σ′ |≤ r → ϕ(σ) > ϕ(σ′))} (2)

Theorem 1 Algorithm PDTS produces no false positives.

Proof Sketch. This is a result from the following facts.
First, patterns correspond to local maxima in the density es-
timate and maxima correspond only to highly populated re-
gions. Therefore a frequent pattern represents a frequently
reoccurring subsequence (within a given range of dissimi-
larity). Second, given two different local maxima the one
with higher density represent the pattern with higher fre-
quency rate. Therefore the ordering of the k-most dense
regions corresponds to the ordering of the k-most frequent
subsequences. Finally, since we assume non-overlapping
subsequences, each subsequence contributes only once to a
given point in the density space.

�

3. Pattern Discovery in Distributed Time Series

Now we extend the pattern discovery problem to the dis-
tributed case including the assumption of split datasets and
two constraints (communication and correctness).

PROBLEM 2 (DPDTS) Given an integer k, and a set of
sites L = {Li}1≤i≤P , each of them with a local time series
Xi, the problem is to find the set P of the k-most frequent
patterns occurring in X =

⋃P
i=1 Xi, such that:

1. The total communication cost is minimized

2. The result using the distributed data Xi is the same if
the algorithm runs using X =

⋃P
i=1 Xi

3.1. Underlying Assumptions

Time Series Semantics. An important point to mention
here is that a time series X can be instantiated in the dis-
tributed setting in two different ways: (a) the time series at
each local site measure the same variable; or (b) each time
series measures a different variable. In this work we focus
on the first case: same variable across the sites.

Architecture. We have at least (but not limited to) two
choices of distributed architecture. First, we can assume
a central entity. But it is highly dependent on the central
point. Particularly in an open environment we cannot as-
sume that it is not going to fail. Second, we can use a pure
P2P network. This architecture is not dependent on a central
entity, which means no central-point-fail problem. Since we
want to avoid the dependence on a central entity, P2P seems
the natural choice as the underling architecture of our solu-
tion.

3.2. A Density Based Solution to the DPDTS Prob-
lem

We exploit the fact that the density estimate is additive.
Therefore we can compute it locally and cooperatively pro-
duce the global result.

Algorithm 2 DPDTS
Input: k, Xi, n, w, Σ, L, r;
Output: P;

1: H ← createHashTable(X,n,w,Σ);
2: ϕi ← Hi.estimateDensity();
3: ϕ←cooperativeSum(ϕi, L);
4: P ← ϕ.getCenters(k, r);
5: broadcast(P);

DPDTS(k, Xi, n, w, Σ, L, r) computes a set of k-
frequent patterns occurring in the union of local time series
Xi and time series owned by other peers in the group L.
Xi is the local dataset, n is the size used to generate sub-
sequences, w is the number of symbols per string, i.e. the
string size, Σ is the alphabet used to generate strings, and
L is the set of peers forming the mining group. The param-
eter r is define the radius of the density ball to be used in
the second step. As output DPDTS returns a set P with the
globally k-most globally frequent patterns.

Step 1 (Local hash tables). Transform local time series
in strings of a common alphabet Σ, and build a local hash
table of strings.

3

Step 2 (Cooperative Sum). Cooperatively compute the
set of globally k-most frequent patterns by summing up all
local tables.

(a) compute the local density estimate ϕi : Σw → R of
the items inHi;

(b) cooperatively compute ϕ =
∑P

i=1 ϕi; The specific
way of computing is dependent on the underlying ar-
chitecture. In this case, using the architecture de-
scribed in section 3.1, we have each site receiving the
density estimates from its neighbor, adding its local
density and sending it to the next neighbor in the min-
ing group formed in the beginning of the protocol.

Step 3. (Choosing k-most frequent patterns) Choose a
set of strings, each of them representing a center of k-most
dense regions and call it P . The regions are constrained to
define a ball radius r:

P = {σ | ∀σ′ ∈ Σw (| σ−σ′ |≤ r → ϕ(σ) > ϕ(σ′))} (3)

3.3. Performance Analysis of DPDTS

Time. The time complexity of DPDTS at a local peer is
O(|Xi|), where |Xi| means the size of the time series at
peer Li. There are � |Xi|

n � subsequences in Xi. For each
subsequence w arithmetical means are computed summing
� n

w � points for each mean, i.e. n steps. Additionally each
arithmetical mean is substituted for a symbol, which takes
w steps. The overall time cost is |Xi|

n (n + w) = Xi(w
n + 1)

steps. Note that normally w < n � |Xi|. The discovery
step, which is the search for the k-most dense regions, is
independent of the size of Xi and is O(|Σ|w).

Communication. Each peer sends 1 message to a neigh-
bor peer and receives 1 message from another neighbor.
There are only 2 rounds of messages, one of which informs
the mining results. Each message has size O(|Σ|w), for
given global w and Σ.

4. Privacy Issues

There are scenarios where the local data cannot be ex-
changed to other parties. In this case we cannot use the
solution presented in the previous section. To put this con-
cern more clearly we define here the problem and discuss a
privacy measure we can employ to quantify privacy in time
series.

PROBLEM 3 (PP-DPDTS) Given a set of sites L as in
problem 2, with the same goal, we have to consider the fol-
lowing additional constraint: after the computation, for all
Li, Lq ∈ L, it can be shown that Li learns nothing about
the data owned by Lq, with i 	= q.

4.1. Privacy Measure

The question now is how to quantify the intuitive no-
tion of privacy. A lot of different metric have been pro-
posed in the privacy-preserving data mining literature (e.g.
[2, 20, 13]). Since none of the proposed metrics are de-
veloped for the time series the question is whether we can
pick one of the proposed metrics, or if we need a new met-
ric. In some sense each metric is focusing on a specific as-
pect of privacy. In information theoretical the aspect is how
much confident the attacker can be, given the entropy of the
variable, using basically the privacy as the reciprocal from
entropy. In more database oriented metrics, like the ideas
used in k-anonymization, the focus in on how many points
can be identified. In time series there is no identification
issue, therefore we need to provide some probability bound
on the reconstruction quality. So, we need an information
theoretical based metric.

We follow the metric proposed by Agrawal & Aggar-
wal [1] to address time series data. The starting point is
the entropy, which is can be interpreted as the size of an
interval where our interest variable X and an uniformly
distributed variable Y have the same amount of uncer-
tainty, which is given by the differential entropy H(X) =
− ∫

Ω
p(x)log2(p(x)) where Ω is the domain of X and p(x)

is its probability density function. The privacy of the time
series X at time t, denoted by PR(x[t]), is the size of the
interval of values X may assume, and it is given by:

PR(x[t]) = 2H(X) (4)

The previous equation assumes that each point in the time
series does not dependent from the previous points. When
it is not the case, only the entropy H(X) should take that in
account and the main equation remains the same.

4.2 Measuring the Information Loss

The trade-off between privacy and utility is an impor-
tant concern. Clearly, there is no use in running a privacy
preserving data mining algorithm which produces no useful
results due to the privacy constraints. On the other hand if
the risk of disclosure is too high one may do not take part in
a distributed data mining group. In the last section we dis-
cussed how to measure privacy. In the following we discuss
how to measure utility.

There are basically two approaches to capture the util-
ity of data. The first approach is to use some information
loss function quantifying the amount of distortion due to
the privacy preserving transformation imposed to the data.
The second approach is to use some measure of quality on
the mining results produced by the privacy preserving al-
gorithm. This approach is better suited to classification or
regression, where makes sense to talk about training dataset

4

and test data set. In our case, we are looking for unknown
patterns. Therefore we pursue the information loss ap-
proach.

We use the mean absolute error (MAE) as information
loss function. It is a direct comparison between the original
dataset and the public data. MAE does a great job indicating
the loss of information, in particular, when periodic patterns
are destroyed, which leave us with larger information loss
values. This will help the user to choose the trade-off be-
tween privacy and utility.

ILMAE =
∑n

i=1 | xi − x′
i |

n
(5)

where X is the original time series, n is the length of the
original time series and X ′ is the result of transformations
by the algorithm under analysis.

Other information loss functions are possible, e.g. com-
paring statistics (sample mean, variance, etc.) of the orig-
inal and transformed data. Yet another approach is to use
mean squared error or other distance measure. In our pre-
liminary tests the mean absolute error produces a good in-
dication of how many patterns have been wiped out by the
transformation being equivalent to its alternatives.

5. Privacy Preserving Pattern Discovery in Dis-
tributed Time Series

5.1. Preliminaries

Homomorphic Encryption (HE) scheme allows for par-
ties to perform arithmetical operation directly without de-
cryption. Here we use Paillier scheme [22] which is an ad-
ditive homomorphic. So, given two messages m1 and m2

the following holds: E(m1) · E(m2) = E(m1 + m2) .
The main steps of this scheme are:

Key Generation Let N = pq be a RSA modulus and g be
an integer of order αN mod N2, for some integer α.
The public key is (N, g) and the private key is λ(N) =
lcm((p− 1), (q − 1)).

Encryption The encryption of message m ∈ ZN is
E(m) = gmrN mod N2, with r randomly selected
from ZN

Decryption Given a cipher text c the message is computed
as follows:

m =
L(cλ(N) mod N2)
L(gλ(N) mod N2)

where L(u) = u−1
N .

5.2. DPD-HE: Detailed Description

We provide the DPD-HE algorithm as a solution to the
PP-DPDTS problem.

By representing subsequences of a time series as n-
dimensional points in R

n we are able to reduce the search
to frequent subsequences to the search for density populated
regions on the given multidimensional space. The main idea
is to exploit the linearity of the local density estimate to find
patterns in a distributed fashion. Since density estimates
have the additive property, we can combine local densities
estimates and search for dense regions on a global density
estimate. Of course the privacy of local data needs to be
preserved to the maximum and therefore no data transfer
is allowed. Moreover, even models are being protected by
the use of secure multi-party computation, as the following
sections describes.

Algorithm 3 Initiator
Input: k, Xi, n, w, Σ, L, r;
Output: P;

At the initiator do:
1: (n,w,Σ)← negotiateParameters(L);
2: H1 ← createsHashTable(X1, n, w,Σ);
3: LDE1 ← H1.density(θ,X1);
4: (PK,SK)← generateKeyPairs();
5: broadcast(L, PK);
6: EGDE|L|−1 ←receive(L|L|−1, Encr(PK,

∑|L|−1
j=1

LDEj));
7: GDE ←Decr(SK,EGDE|L|−1) + LDE1;
8: P ← GDE.findDensityCenters(k,r);
9: for i = 1; i < |L|; i + + do

10: broadcast(L,Encr(PKi,P));
11: end for

Algorithm 4 Arbitrary Party
Input: k, Xi, n, w, Σ, L, r;
Output: P;

At an arbitrary party j do:
1: (n,w,Σ)← negotiateParameters(L);
2: Hj ← createsHashTable(Xj , n, w,Σ);
3: LDEj ← Hj .density(θ,Xj);
4: PK ← receive(L1);
5: EGDEj−1 ←receive(Lj−1);
6: send(Lj+1, Encr(PK,LDEj) + EGDEj−1);
7: P ←Decr(SKj , receive(L1));

Our algorithm has three main phases as described bellow.

Phase 1: preparation. The mining group L agrees on the
parameters and each party computes the local density of the
strings generated from the local time series data, just like in

5

the first step of algorithm 1. The initiator, which is the peer
that proposes and coordinates the mining session, create a
key pair and publicize its public key.

Phase 2: computation. Each party encrypts its local den-
sity estimate using the public key from the initiator. Then
after it receives the encrypted partial sum from its neighbor,
sums its local encrypted density estimate, and sends to the
next neighbor in the sequence.

Phase 3: termination. When all parties added its local
encrypted density estimate it is sent back to the initiator.
The initiator decrypts it and performs an algorithm search-
ing for the local maxima in the global density estimate. The
result is sent back to the mining group.

Example. Consider the following (rather artificial) exam-
ple. Let a group of p retailers each of them with a local time
series data describing the weekly sales volumes for a period
of one year. Assume this 52 point long time series to be ba-
sically a random walk with mean µp = 0. Assume a given
pattern of length 12 occurs at each site, e.g. 0.1 ∗ sin(x)
with x ∈ (1, 6) sampled at 0.5 points. It means a period of
3 months of relative stable sales volume. Now, every peer
in this group wants to discover patterns in the union of the
data but is not willing to disclose local sales volume to its
trade rivals.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45 50

S
al

es
 V

ol
um

e

Weeks

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45 50

S
al

es
 V

ol
um

e

Weeks

Figure 1. Weekly sales report represented as
time series data

Using DPD-HE the group chooses the following param-
eters: n (the subsequence size) is set to 12, w (the string
size) is set to 3 and the alphabet is chosen to be a 4 sym-
bol set Σ = {a, b, c, d}. Firstly, the local sites generate
local strings corresponding to the discretization of its local
data. After that, the sites compute the local density of the
local strings and securely compute the global density. In
this example the values of the planted pattern will be trans-
lated to the subsequence “bba”. Since this string occurs

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

S
al

es
 V

ol
um

e

Weeks

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

S
al

es
 V

ol
um

e

Weeks

Figure 2. Local data after discretization step.
Each point will be further converted to a sym-
bol which lead us with the string ”bdbbbbb-
bacab”

more frequently than its neighbors in Σw (the set of strings
with length 3), its density value will form a local maxima in
the global density, the same happening to the other frequent
strings.

By Using DPD-HE the group can rely on the fact that
the sales volume will remain undisclosed since the protocol
does not transfer any data and the cryptography ensures that
no peer outside the group will be able to reconstruct the info
exchanged, namely, the partial sum of local densities and
the final results

Complexity Analysis The computational complexity of
either algorithms 3 and 4 is O(|Xi|) because the computa-
tion of the density dominates over the other steps.

There are two rounds of communication: the cooperative
computation phase and the broadcast of the output. There-
fore the round complexity is O(1).

The message size in each round isO(Σw) which is inde-
pendent of the input size.

5.3. Privacy and Information Loss

Raw Data By construction the DPD-HE does not trans-
mit raw data. The only information transmitted is the en-
crypted density estimate.

Disclosure Given a set of global patterns P the members
of the mining group can try to infer the original values X
which originated the set P . Since the discretization step is
the main responsible for the privacy, we intuitively know
that the more symbols in the alphabet Σ, the less privacy
we get, for the discretized version tends to get the "shape"
of the original data. The next result shows how the size of
Σ influences the privacy of a single point in X .

6

Theorem 2 Let Σ be an alphabet of symbols used by the
DPD-HE protocol. Let {βj ∈ R}|Σ+1|

j=1 be a set of break-
points which divides the normal curve in | Σ | equiproba-
ble regions. Let X be a time series and X ′ ∈ Σw be its
transform according to the discretization step of algorithm
1. For a given point x[t] if its transformed counterpart x′[u]
is known, than its privacy level is given by:

PR(x[t]) =| βj+1 − βj | (6)

Proof Sketch. This is a consequence of the discretization
step.

Let σj ∈ Σ be the symbol at point x′[u]. Since we
know that the symbol σj comes from the substitution rule
(cf. step (b) of algorithm 1), we know that the subsequence
x[t], . . . , x[t + n] lies in the interval (βj , βj+1). In the ab-
sence of further information, the only suitable option is to
model x[t] as a random variable uniformly distributed in the
given interval, i.e. x[t] ∼ U(βj , βj+1). Now, using the eq.
4 we have

PR(x[t]) = 2H(x[t]) = 2
∫ βj+1

βj
p(x)log2p(x)dx

= 2log2(βj+1−βj)

=| βj+1 − βj |
�

In other words, using the above theorem one party in the
mining group may define the minimum amount of privacy it
wants to have on its local data, by setting the maximal size
of the alphabet Σ, and consequently the size of the intervals
defined by the breakpoints {βj}. Otherwise the peer doesn’t
take part in the mining group because the privacy level is
below its local restrictions. Recall that the patterns in P
represent only subsequences the true data X . Therefore, a
malicious peer cannot reconstruct all the points in X but
only the points represented in the patterns set.

Eavesdropper Note that an eavesdropper cannot learn
anything from the data owned by the group members from
the data exchanged during the protocol.

The overall security is a consequence of the security of
the Paillier encryption scheme, which was shown to be se-
mantically secure elsewhere [22]. Therefore an eavesdrop-
per cannot reconstruct the global density estimate or even a
partial estimate sent among the parties. As a consequence,
an eavesdropper cannot reconstruct the original data, nor
estimate confidence intervals nor get information a specific
site.

Ownership Finally, when it comes to ownership the pro-
tocol does not reveal the ownership of any Xi’s by construc-
tion, provided there is a majority of non-colluding peers in

the mining group. We leave, however, the study of this issue
to further research.

Information Loss The information loss of the DPD-HE
is given by

ILMAE(X,X ′) =

∑n
i=1 | xi − x′

�w
n (i−1)�+1 |

n
(7)

where X is the original time series, X ′ is the result of sub-
stituting the symbols in the resulting string by its corre-
sponding breakpoint (see algorithm 1, step 1 (b)), and n
is the size of the PAA sequence and w is the size of the re-
sulting string. The involved index expression assures that
each point in the original time series X is compared with
the correct element in X ′, which is smaller than X .

6. Related Work

Works on privacy preserving data mining follows three
main approaches. Sanitation, aims to modify the dataset
such that sensitive patterns cannot be inferred. It was de-
veloped primarily to association rule mining (cf. [3, 24]).
The second approach is data distortion, in which the true
value of any individual record is modified while keeping
“global" properties of the data (cf. [8, 2] among others). Fi-
nally, SMC-based approaches apply techniques from secure
multi-party computation (SMC), which offers an assortment
of basic tools for allowing multiple parties to jointly com-
pute a function on their inputs while learning nothing ex-
cept the result of the function. In a SMC problem we are
given a distributed network with each party holding secret
inputs. The objective is to compute a function with the se-
cret inputs ensuring that no party learns anything but the
output. The general SMC problem was investigated by Gol-
dreich et. al [10]. Latter Lindell and Pinkas showed that
privacy-preserving data mining problems could be solved
using techniques of SMC [18, 23]. Many applications of
SMC to data mining have been proposed so far (cf. [6],
[14], to name a few).

When it comes to privacy metrics there are many ap-
proaches. The information theoretical approach defines pri-
vacy as the length of the interval which a random variable is
generated from [1]. The metric is based on the differential
entropy of the random variable. Computational approach
involves proving the impossibility of reconstruction of sen-
sitive data from a set of queries posed by an adversary in
a given adversary model [4]. Research on the trade-off be-
tween data quality and privacy has been investigated among
others by Domingo-Ferrer in the context of statistical dis-
closure control for microdata [5].

Many approaches to PDTS problem have been proposed.
Mörchen and Ultsch [21], for example, proposes using a

7

grammar-based approach and Kadous [12] suggests clus-
tering subsequences of the original time series to find pro-
totypical shapes. These approaches, however, have some
disadvantages. The grammar-based approach is too depen-
dent on the knowledge of the possible patterns to be discov-
ered and the clustering-based approach has been shown to
be very problematic [17]. Liu et al. [19] proposed effective
heuristics to solve PDTS problem defining patterns size m
as multidimensional points in R

m.

7. Conclusion and Outlook

We presented here the problem of finding frequent pat-
terns in distributed time series data. We also presented an
approach to solve this problem by means of the DPD-HE al-
gorithm, which is linear in the size of datasets and has com-
munication complexity independent of the size of dataset.
We pursue a density-based approach, that uses a discretized
version of the original data to compute a density estimate
of the candidate patterns, and proposed a secure multiparty-
computation protocol to ensure the data secrecy. Addition-
ally no peer receives original data, which ensures a prov-
able level of privacy to each participant of the mining group
against a potential malicious peer.

As future research we want to investigate how to extend
the current technique to handle patterns with variable length
and multivariate time series.

References

[1] D. Agrawal and C. C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In
20th ACM PODS, pages 247–255, Santa Barbara, Califonia,
May 2001.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In Proc. of the ACM SIGMOD Conference on Management
of Data, pages 439–450. ACM Press, May 2000.

[3] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and
V. Verykios. Disclosure limitation of sensitive rules. In Proc.
of 1999 IEEE Knowledge and Data Engineering Exchange
Workshop (KDEX’99), pages 45–52, Chicago,IL, November
1999.

[4] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. In ACM PODS ’03, pages 202–210, New
York, NY, USA, 2003. ACM Press.

[5] J. Domingo-Ferrer, A. Oganian, and V. Torra. Information-
theoretic disclosure risk measures in statistical disclosure
control of tabular data. In SSDBM ’02: Proceedings of the
14th International Conference on Scientific and Statistical
Database Management, pages 227–231, Washington, DC,
USA, 2002. IEEE Computer Society.

[6] W. Du and Z. Zhan. Building Decision Tree Classifier on
Private Data. In IEEE ICDM Workshop on Privacy, Security
and Data Mining, volume 14 of CRPIT, pages 1–8, Mae-
bashi City, Japan, 2002. ACS.

[7] M. Elfeky, W. Aref, and A. K. Elmagarmid. Using convo-
lution to mine obscure periodic patterns in one pass. In 9th
EDBT, volume 2992 of LNCS, pages 605–620, Heraklion,
Crete, Greece, March 14-18 2004. Springer.

[8] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Pri-
vacy preserving mining of association rules. In Proc. of 8th
ACM KDD, Edomonton, Alberta, Canada, 2002.

[9] P. Geurts. Pattern extraction for time series classification.
LNCS, 2168:115–127, 2001.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In In Proc. of the 19th annual ACM conference
on Theory of computing, pages 218–229. ACM Press, 1987.

[11] K. L. Jensen, M. P. Styczynski, I. Rigoutsos, and G. N.
Stephanopoulos. A generic motif discovery algorithm for
sequential data. Bioinformatics, 22:21–28, 2006.

[12] M. W. Kadous. Learning comprehensible descriptions of
multivariate time series. In Proc. 16th International Conf.
on Machine Learning, pages 454–463. Morgan Kaufmann,
San Francisco, CA, 1999.

[13] M. Kantarcioglu, J. Jin, and C. Clifton. When do data min-
ing results violate privacy? In KDD ’04, pages 599–604,
New York, NY, USA, 2004. ACM Press.

[14] M. Kantarcioglu and J. Vaidya. Privacy preserving naive
bayes classifier for horizontally pertitioned data. In IEEE
ICDM Workshop on Privacy Preserving Data Mining, pages
3–9, November 2003.

[15] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large
time series databases. Knowledge and Information Systems,
3(3):263–286, 2000.

[16] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in
time series. In Proc. of the Second Workshop on Temporal
Data Mining, Edmonton, Alberta, Canada, July 2002.

[17] J. Lin, E. Keogh, and W. Truppel. Clustering of streaming
time series is meaningless. In Proc. of the 8th ACM DMKD,
pages 56–65, New York, NY, USA, 2003. ACM Press.

[18] Y. Lindell and B. Pinkas. Privacy preserving data mining.
Lecture Notes in Computer Science, 1880:36–54, 2000.

[19] Z. Liu, J. X. Yu, X. Lin, H. Lu, and W. Wang. Locating
motifs in time-series data. In 9th PAKDD, volume 3518 of
LNCS, pages 343–353, Hanoi, Vietnam, May 18–20 2005.
Springer.

[20] S. Merugu and J. Ghosh. Privacy-preserving distributed
clustering using generative models. In Proc. of the 3rd IEEE
ICDM, Florida, 2003. IEEE CS.

[21] F. Moerchen and A. Ultsch. Discovering temporal knowl-
edge in multivariate time series. In Proc. GfKl 04, Dort-
mund, Germany, 2004.

[22] P. Paillier. Public-key cryptosystems based on composite de-
gree residuosity classes. Lecture Notes in Computer Science,
1592:223–??, 1999.

[23] B. Pinkas. Cryptographic techniques for privacy-preserving
data mining. ACM SIGKDD Explorations Newsletter,
4(2):12–19, 2002.

[24] Y. Saygin, V. S. Verykios, and A. K. Elmagarmid. Privacy
preserving association rule mining. In Reseach Issues in
Data Engineering (RIDE), 2002.

[25] Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of time-
series motif from multi-dimensional data based on mdl prin-
ciple. Machine Learning, 58:269–300, 2005.

8

