
Inference in Distributed Data Clustering

Josenildo Costa da Silva ∗, Matthias Klusch

German Research Center for Artificial Intelligence (DFKI)
Deduction and Multiagents Systems

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
{jcsilva,klusch}@dfki.de

Abstract

In this paper we address confidentiality issues in distributed data clustering, par-
ticularly the inference problem. We present KDEC-S algorithm for distributed data
clustering, which is shown to provide mining results while preserving confidentiality
of original data. We also present a confidentiality framework with which we can
state the confidentiality level of KDEC-S. The underlying idea of KDEC-S is to
use an approximation of density estimation such that the original data cannot be
reconstructed to a given extent.

Key words: Privacy-preserving data mining, distributed data mining, data
clustering, inference problem.

1 Introduction

Data Clustering is a descriptive data mining task aiming to partition a data
set into groups such that data objects in one group are similar to each other
and are as different as possible from those in other groups. In distributed data
clustering (DDC) the data set are distributed among several sites. The tradi-
tional solution to (homogeneous) DDC problem is to collect all the distributed
data sets into one centralized repository where the clustering of their union is
computed and transmitted back to the sites.

This approach, however, may be impractical if there are constraints on net-
work bandwidth or restrictive security policies. For instance, the sites may
not be allowed to share data due to legal imposition, e.g. medical records and

∗ Corresponding author. Tel: +49 681 302 51 55, Fax: +49 681 302 22 35

Preprint submitted to Elsevier Science 14 October 2005

marketing secrets. The main problem is that confidential information may
be reconstructed even if it is not explicitly exchanged among the peers. This
problem, known as inference problem, was first studied in statistical data bases
and more recently has attracted the attention of the data mining community
[1].

In this paper, we address the problem of homogeneous DDC considering con-
fidentiality issues, particularly the inference problem. Informally, the problem
is to find clusters using distributed set of data ensuring that, at the end of the
computation, each peer only knows his own dataset and the resulting cluster
mapping. We present a solution to this problem by means of a distributed
algorithm for DDC, the KDEC-S, which is designed to preserve confidential-
ity of local data. In order perform the confidentiality analysis of KDEC-S
we propose a confidentiality framework which address scenarios where par-
ties colludes and use inference attacks to disclose data from its mining peers.
This paper is an extended version of our work presented at the International
Conference on Data Mining and Machine Learning MLDM 2005 [2].

The remaining of this paper is organized as follows. In section 2, we present
our confidentiality framework. KDEC-S algorithm is presented in section 3.
Experiments concerning the trade-off between confidentiality and mining re-
sults are presented in section 4. Sections 5 and 6 present related works and
conclusions, respectively.

2 Confidentiality in Distributed Data Clustering

In the following sections, we define the problem of confidential distributed
data clustering and present a technique to compute density estimate while
preserving data confidentiality to a given extent.

Definition 1 Let L = {Lj|1 ≤ j ≤ P} be a group of peers sites, each of
them with a local set of data objects Dj = {xi | i = 1, . . . , N} ⊂ Rn, with

x
(d)
i denoting the d-th component of xi. Let A be a DDC algorithm executed

by the members of L. We say that A is a Confidential DDC algorithm if the
following holds: (a) A produce correct results (b) at the end of the computation
Lj knows only the cluster mapping and its own data set Dj, with 1 ≤ j ≤ P .

To analyze how much confidentiality a given distributed clustering algorithm
manages to keep (the second requirement in the above stated problem), we
have to introduce a confidentiality framework, which we discuss in the follow-
ing section.

2

2.1 Confidentiality Measure

We start off by defining a confidentiality measure. One way to measure how
much confidentiality an algorithm preserves, is to ask how close one attacker
can get from the original data objects. In the following, we define the notion
of confidentiality of data with respect to data reconstruction.

Definition 2 Let L be a group of peers and A an algorithm, as in defini-
tion 1. Denote by Rk ⊂ Rn a set of reconstructed data objects owned by some
malicious peer Lk after the computation of A, such that each ri is a recon-
structed version of xi ∈ Dj. We define the confidence level of A with respect
to dimension d as:

Conf
(d)
A = min{|x(d)

i − r
(d)
i | : xi ∈ Dj, ri ∈ Rk, 1 ≤ i ≤ |Dj|} (1)

Definition 3 We define the confidentiality level associated to some algorithm
A, as:

ConfA = min{Conf (d)
A | 1 < d < n} (2)

Roughly speaking, our confidentiality measure, indicates the precision with
which a data object xi may be reconstructed.

In a distributed algorithm we have to consider the possibility of two of more
peers forming a collusion group to disclose information owned by others. The
next definition extends the confidentiality level to include this case.

Definition 4 Let A be a distributed data mining algorithm. We define the
function ConfA : N→ R+ ∪ {0}, representing ConfA when c peers collude.

Definition 5 (Inference Risk Level) Let A be a DDC algorithm being ex-
ecuted by a group L with p peers, where c peers in L forms a collusion group.
Then we define:

IRLA(c) = 2(−ConfA(c)) (3)

It turns out that IRLA(c) → 0 when ConfA(c) → ∞ and IRLA(c) → 1
when ConfA(c)→ 0. In other words, the better the reconstruction, the higher
the risk. Therefore, this definition capture the informal concepts of insecure
algorithm (IRLA = 1) and secure (IRLA = 0) as well.

2.2 Confidential Density Estimation

Density-based clustering is a popular technique, which reduces the search for
clusters to the search for dense regions. This is accomplished by estimating a

3

so-called probability density function from which the given data set is assumed
to have arisen. An important family of method is known as kernel estimator
[3]. Let D = {xi | i = 1, . . . , N} ⊂ Rn represent a set of data objects. Let K be
a real-valuated, non-negative, non-increasing function on R with finite integral
over R. A kernel-based density estimate ϕ̂K,h[S](·) : Rn → R+ is defined as
follows:

ϕ̂K,h[D](x) =
1

N

N∑

i=1

K

(
d(x,xi)

h

)
(4)

In [4] is presented the KDEC schema, a density-based algorithm for DDC,
which is based on [3]. In density-based DDC each peer contributes to the min-
ing task with a local density estimate of the local data set and not with data
(neither original nor randomized). As shown in [5], in some cases, knowing the
inverse of kernel function implies in the reconstruction of original (confiden-
tial) data. Therefore, we look for a more confidential way to build the density
estimate, i.e. one which doesn’t allow reconstruction of data.

Definition 6 Let f : R+ ∪ {0} → R+ be a decreasing function. Let τ ∈ R be
a sampling rate and let z ∈ Z+ be an index. Denote by v ∈ Rn a vector of
iso-levels 1 of f, whose each component v(i), i = 1, . . . , n, is built as follow:

v(i) = f(z · τ), if f(z · τ) < f([z − 1] · τ) (5)

Moreover 0 < v(0) < v(1) . . . < v(n).

Definition 7 Let f : R+ ∪ {0} → R be a decreasing function. Let v be a
vector of iso-levels of f . Then we define the function ψf,v as:

ψf,v(x) =

0, if f(x) < v(0)

v(i), if v(i) ≤ f(x) < v(i+1)

v(n), if v(n) ≤ f(x)

(6)

Definitions 6 and 7 together define a step function based on the shape of some
given function f . Figure 1 shows an example of ψf,v applied to a Gaussian 2

function with µ = 0 and σ = 2, using four iso-levels.

Lemma 1 Let τ ∈ R denote a sampling rate, and z ∈ Z+ be an index. Define
f1 : R+ → R+, a decreasing function and v, a vector of iso-levels. If we
define a function f2 = f1(x − k), then ∀k ∈ (0, τ),∀z ∈ Z+ we will have
ψf2,v(z · τ) = ψf1,v(z · τ).

Proof. For k = 0 we get f2(x) = f1(x − 0) and it is trivial to see that
the assertion holds. For 0 < k < τ we have f2 = f1(x − k). Without loss of

1 One can understand v as iso-lines used to contour plots
2 Gaussian function is defined by f(x) = 1

σ
√

2π
e−(x−µ)2/2σ2

4

Fig. 1. ψf,v of the Gaussian function.

generality, let z > 0 be some integer. So, f2(z·τ) = f1(z·τ−k) = f1([z−k/τ]·τ).
If f1([z− 1] · τ) = a > f1(z · τ) = b then we have ψf1,v(z · τ) = a. Since z− 1 <
z− k/τ < z, and since f1 is decreasing, f1([z− 1] · τ) = a > f1([z− k/τ] · τ) >
b = f1(z·τ). By the definition 7 we can write ψf1,v([z−k/τ]·τ) = b = ψf1,v(z·τ)

This lemma means that we have some ambiguity associated with the function
ψf,v, given some τ and v, since two functions will issue the same values iso-
levels around the points close than τ .

Now, substitute a kernel K by ψK,v, for a given a sample rate τ . According
with the lemma 1, we should expect to localize the points in an interval not
smaller than |(0, τ)|, i.e. the confidentiality will be ConfA ≥ τ . So, we compute
a rough approximation of the local density estimate using:

ϕ̃[Dj](x) =

∑
xi∈Nx

ψK,v(d(x,xi)
h

) , if (x mod τ) = 0

0 , otherwise.
(7)

where Nx denotes the neighborhood of x. Since ψK,v is a non-increasing func-
tion, we can use it as a kernel function. The global approximation can be
computed by:

ϕ̃[D](x) =
p∑

j=1

ϕ̃[Dj](x) (8)

3 The KDEC-S Algorithm

KDEC-S is an extension of the KDEC scheme, which is a recent approach for
kernel-based distributed clustering [4]. In KDEC each site transmits the local
density estimate to a helper site, which builds a global density estimate and
sends it back to the peers. Using the global density estimate the sites can exe-
cute locally a density-based clustering algorithm. KDEC-S works in a similar

5

way, but replaces the original estimation by an approximated value. The aim
is to preserve data confidentiality while maintaining enough information to
guide the clustering process.

3.1 Basic definitions

Definition 8 Given two vectors zlow, zhigh ∈ Zn, which differ in all coordi-
nates (called the sampling corners), we define a grid G as the filled-in cube in
Zn defined by zlow, zhigh. Moreover for all z ∈ G, define nz ∈ N as a unique
index for z (the index code of z). Assume that zlow has index code zero.

Definition 9 Let G be a grid defined with some τ ∈ Rn. We define a sampling
Sj of ϕ̃[Dj] given a grid G, as:

Sj =
{
ϕ̃j

z | ∀z ∈ G, ϕ̃j
z > 0

}
(9)

where ϕ̃j
z = ϕ̃[Dj](z · τ). Similarly, the global sampling set will be defined as:

S = {ϕ̃z | ∀z ∈ G, ϕ̃z > 0}

Definition 10 (Cluster-guide) A cluster guide CGi,θ is a set of index codes
representing the grid points forming a region with density above some threshold
θ:

CGi,θ = {nz | ϕ̃z ≥ θ} (10)

such that ∀nz1 , nz2 ∈ CGi,θ : z1 and z2 are grid neighbors and
⋂C

i=1CGi,θ = ∅.
A complete cluster-guide is defined by: CGθ = {CGi,θ| i = 1, . . . , C} where C
is the number of clusters found using a given θ.

A cluster-guide CGi,θ can be viewed as a contour defining the cluster shape
at level θ (an iso-line), but in fact it shows only the internal grid points and
not the true border of the cluster, which should be determined using the local
data set.

3.2 Detailed description

KDEC-S algorithm is structured in two parts, as discussed in the following.

Local Peer. (Algorithm 1) The first step is the function negotiate(), which
succeeds only if an agreement on the parameters is reached. Note that the
helper doesn’t take part on this phase. In the second step each local peer
compute its local density estimate ϕ̃[Dj](z · τ) for each z · τ , with z ∈ G.
Using the definition 9 each local peer builds its local sampling set and sends
it to the helper. The clustering step (line 6 in algorithm 1) is performed as a

6

Algorithm 1 Local Peer

Input: Dj (local data set), L (list of peers), H (Helper);
Output: clusterMap;

1: negotiate(L, K, h,G, θ);
2: lde← estimate(K,h,Dj, G, δ);
3: Sj ← buildSamplingSets(lde,G, θ, v);
4: send(H, Sj);
5: CGθ ← request(H, θ);
6: clusterMap← cluster(CGθ, D

j, G);
7: return clusterMap

8: function cluster(CGθ, D
j, G)

9: for each x ∈ Dj do
10: z ← nearestGridPoint(x, G);
11: if nz ∈ CGi,θ then
12: clusterMap(x)← i;
13: end if
14: end for
15: return clusterMap;
16: end function

lookup in the cluster-guide CGθ. The function cluster() shows the details of
the clustering step. The data object x ∈ Dj will be assigned to the cluster i,
the cluster label of the nearest grid point z, if nz ∈ CGi,θ.

Helper. (Algorithm 2) For a given value of θ, the helper sums up all sam-
ples sets and, using definition 10, computes the cluster-guides CGθ. Function
buildClusterGuides() in algorithm 2 shows the details of this step.

3.3 Performance Analysis

Time complexity at Local Peer (algorithm 1) is O(|G|M j + log(C)|Dj|), where
|G| is the grid size, M j is the average size of the neighborhood, C is the
number of clusters and Dj is the set of points owned by peer Lj. The first
lines have complexity O(|G|M j), since the algorithm compute the density for
each point z in the grid G using the subset of points in Dj which are neighbors
from z, with average size M j. Line 4 has complexity determined by the size of
sampling set Sj, which is a subset of G, i.e., its complexity is O(|G|). Line 5
has complexity O(C). The last step (line 6) has to visit each point in Dj and
for each point it has to decide its label by searching the corresponding index
code in one of the cluster-guides. There are C cluster guides. Assuming the
look-up time for a given cluster to be log(C) we can say that O(log(C)|Dj|)
is the complexity of the last step.

7

Algorithm 2 Helper

1: Sj ←receive(L);
2: ϕ̂z[D

j] = recover(Sj);
3: ϕ̂z ← ∑

ϕ̂z[D
j];

4: CGθ ← buildClusterGuides(ϕ̂z, θ);
5: send(L, CGθ);

6: function buildClusterGuides(ϕ̂z, θ)
7: cg ← {nz|ϕ̂z > θ};
8: n ∈ cg;
9: CGi,θ ← {n};

10: i← 0;
11: for each n ∈ cg do
12: if ∃a((a ∈ neighbors(n)) ∧ (a ∈ cg)) then
13: CGi,θ ← {n, a} ∪ CGi,θ;
14: else
15: i++;
16: CGi,θ ← {n};
17: end if
18: cg ← cg \ CGi,θ;
19: end for
20: CGθ ← {CGi,θ|i = 1, . . . , C};
21: return CGθ

22: end function

Time complexity at the Helper (algorithm 2) is mainly determined by the size
of the total sampling set. The helper will receive from p peers at most |G|
sampling points. The local peer has to reconstruct and sum them up (lines
2 and 3), what takes in the worst case O(p|G|) steps. Thus, the process of
building the cluster-guides (line 4) will take O(|G|) steps in worst case.

Communication. The overall communication cost is O(|G|). Each site will have
at most |Sj| < |G| sampling points (index-codes) to send to the helper site.
The helper site has at most |G| index-codes to inform back to local sites.
Moreover, our algorithm uses only few rounds. In the first round each site
sends one message informing the local sampling Sj set to the helper and one
(or more subsequent) message(s) requesting a cluster-guide with some desired
θ. The helper, then, sends messages informing the cluster-guides as requested
by local peers.

3.4 Confidentiality Analysis

We used two scenarios to analyze the inference risk level of KDEC-S (denoted
IRLKDEC-S). First scenario we assume that the malicious peers doesn’t form

8

collusion group, i.e. c = 1, and the second scenario we assume that they can
form collusion group, i.e., c ≥ 2.

Lemma 2 Let L be a mining group formed by p > 2 peers, one of them being
the helper, and c < p malicious peers form a collusion group in L. Let τ ∈ R
be a sampling rate. We claim that IRLKDEC-S(c) ≤ 2−τ for all c > 0.

Proof. Assume that c = 1, and that each peer has only its local data set
and the cluster-guides he gets from the helper. The cluster-guides, which are
produced by the helper, contains only code-index representing grid points
where the threshold θ is reached. This is not enough to reconstruct the original
global estimation. The Helper has all sampling points from all peers, but it has
no information about the kernel or about the sampling parameters. Hence, the
attackers can not use the inverse of Kernel function to reconstruct the data.
The best precision of reconstruction has to be based on the cluster guides. So,
one attacker may use the width of the clusters in each dimension as the best
reconstruction precision. This lead to ConfKDEC-S(1) = aτ , with a ∈ N, since
each cluster will have at least a points spaced by τ in each dimension. Hence,
if c = 1 then IRLKDEC-S(c) = 2−aτ ≤ 2−τ .

Assume c ≥ 2. Clearly, any collusion group with at least two peers, including
the helper, will produce a better result than a collusion which doesn’t include
the helper, since the helper can send to the colluders the original sampling sets
from each peer. However, each sampling set Sj was formed based on the ϕ̃[Dj]
(cf. eq. (7)). Using lemma 1 we expect to have ConfKDEC-S(c) = τ . With more
colluders, say c = 3, one of them being the helper, there are no new information
which could improve the reconstruction. Therefore, IRLKDEC-S(c) ≤ 2−τ , for
all c > 0.

3.5 Comparison with KDEC

KDEC scheme exploits statistical density estimation and information sampling
to minimize communication costs among sites. Some possibilities of inference
attacks in KDEC were shown in[5]. Here we analyze it using our definition of
inference risk.

Lemma 3 Let τ ∈ R be a sampling rate. Then IRLKDEC(c) > 2−τ , forall
c > 0.

Proof. KDEC requires the peers to exchange samples of the local density
estimate. Let y = ϕ̂(x) be a sample point. Assuming that a malicious peer Lk

inside the group knows all parameter used during the computation, Lk may
use y to compute the distance d = K−1(y)h, and consequently find the true x∗

which lies at x∗ = x+d. Errors in this method can arise due machine precision,

9

but they are still much smaller than τ , which in KDEC is suggested to be h/2.
We remark that these results can be reached by one malicious peer alone, i.e.
ConfKDEC(1) ¿ τ . With collusion group this reconstruction may be more
accurate. Therefore, ConfKDEC(c)¿ τ for c > 0. Hence, IRLKDEC(c) > 2−τ ,
for all c > 0.

Theorem 1 Let τ ∈ R be a sampling rate parameter. For a given value of τ
we have IRLKDEC-S(c) < IRLKDEC(c), for all c > 0.

Proof. By lemma 2 we know that IRLKDEC-S(c) < 2τ and by lemma 3 we
have 2τ < IRLKDEC(c), for all c > 0. Therefore, the assertion holds.

4 Experimental Evaluation

In the experiments reported here we focus on the trade-off between the privacy
and the clustering results in KDEC-S. We used two synthetic data sets. The
first one consists of 500 points, generated from a mixture model with four
Gaussians, each one with σ2 =1 in all dimensions. For the second data set we
produced 400 points. We generated 200 points from a Gaussian with µ = 0
and σ2 = 5. Additionally we generated 200 points around the center with
radius R ∼ N(20, 1) and angle uniformly distributed from ∼ U(0, 2π).

We applied KDEC-S to both data sets with the following parameters: band-
width h = 1, neighborhood radius fixed in 4, reference tau set to τref = h/2,
and value of τ ranging from 0.5 to 3.0 with step 0.1. For the Gaussian data
set we used grid corners ((-15,-15), (15, 15)) and threshold θ = 1.0. For the
polar data set we used grid corners ((-30, -30),(30,30)) and threshold θ = 0.1.

Fig. 2. Gaussian Data: four clusters gen-
erated from a Gaussians mixture.

Fig. 3. Polar Data: two clusters with ar-
bitrary shape.

We counted the mislabeling error, considering as correct mapping the cluster-
ing obtained with τref = h/2. We follow [6] and compute the clustering error
as follows:

10

E =
2

|D|(|D| − 1)

∑

i,j∈R2,i<j

eij (11)

where |D| is the size of the data set and eij is defined as:

eij =

0 if (c(xi) = c(xj) ∧ c′(xi) = c′(xj)) ∨
(c(xi) 6= c(xj) ∧ c′(xi) 6= c′(xj))

1 otherwise

(12)

with c(x) denoting the reference cluster label assigned to object x, i.e. the
label found using τref , and c′(x) denoting the new label found with τ > τref .

Fig. 4. Clustering error bandwidth h = 1 and τ ranging from 0.5 to 3.

From the results of our experiments we conclude that we may set our value
of τ up to h with no error in the clustering results. In the Gaussian data set
error appears just after τ = 2.5 and in the polar data sets error becomes large
after τ = 2. In general, we observed that as the tau goes to values beyond the
kernel bandwidth we have an increase in the error because more points are
considered as outliers. With the Gaussian kernel we know that the kernel goes
to zero around 3 ∗ h, therefore the iso levels summation does not reach the
given threshold. Consequently the correspondent grid point is left out from
the cluster guides, i.e. is considered as an outlier. A possible solution is to use
adaptive thresholds or even adaptive isolines. We are working on these issues.

5 Related Work

5.1 Inference and privacy preserving data mining

The question of how to protect confidential information from unauthorized dis-
closure has stimulated much research in the data base community. This prob-

11

lem, known as the inference problem, was first studied in statistical databases
and secure multi-level databases and more recently in data mining. The reader
is referred to [1] for a survey on the inference problem including its instance on
data mining. Proposed solutions to privacy preserving data mining can be or-
ganized into three main groups: secure multi-party computation (SMC) [7–9],
sanitization [10,11] and data randomization [12,13]. Privacy measures can be
found in [14] and [15] to the case where the mining algorithm uses randomized
data.

5.2 Privacy preserving data clustering

Merugu and Ghosh [16] presents an algorithm for computing a global model
F from a predefined fixed family of models. The global model approximates
the underlying probability model that generated the global dataset Z. They
define privacy as the reciprocal of the average log-likelihood of Z given the
model F . Intuitively, the larger the likelihood that the data was generated by
the global model, the less privacy is retained. If the predefined family has a
very large number of mixture components then the privacy is likely to be low.

Vaidya and Clifton [17] propose a privacy-preserving K-means algorithm on
heterogeneously distributed data using cryptographic techniques. They offer
a proof that each site does not learn anything beyond its part of each cluster
centroid and the cluster assignment of all points at each iteration. The key
problem faced at each iteration is securely assigning each point to its nearest
cluster. Since each site owns a part of each tuple (which must remain private),
this problem is non-trivial. They proposed an algorithm which is based on
homomorphic encryption to achieve security.

Oliveira and Zaiane [18] present a family of geometric data transformation is
introduced, which aims to provide privacy while maintaining the statistical
features of the data in order perform a clustering algorithm. They discussed
the efficiency of this method using misclassification error measure and included
a comparison with additive noise approach (randomization) with respect to
the amount of privacy provided.

6 Conclusions

Our contribution can be summarized as: a confidentiality framework for dis-
tributed data clustering together with an algorithm which was showed to be
privacy preserving. Our definition of confidentiality and inference levels make
little assumptions, what allow for comparing a broad range of data mining

12

algorithms with respect to the risk of data reconstruction, and consequently
permit us to classify them in different security classes. On the other hand, this
levels are currently defined just to distributed data clustering and doesn’t in-
clude (up to date) the notion of discovery of data ownership in a mining group.
KDEC-S is based on a modified way of computing density estimation such that
it is not possible to reconstruct the original data with better probability than
some given level. Results of our analysis showed that KDEC-S indeed rep-
resents an improvement with respect to inference attacks on kernel density
estimate, without compromising the clustering results. KDEC-S suffers from
using more parameters than KDEC, however, it has a lot of nice properties,
e.g. better noise resistance than KDEC, may find arbitrarily shaped clusters,
and performs the clustering faster, due to use of lookup table instead of hill
climbing the density estimate.

7 Acknowledgments

The authors thank German Ministry of Education and Research for support
through grant BMBF 01-IW-D02-SCALLOPS and the Brazilian Ministry for
Education for support through grant CAPES 0791/024.

References

[1] C. Farkas, S. Jajodia, The inference problem: A survey, ACM SIGKDD
Explorations Newsletter 4 (2) (2002) 6–11.

[2] J. C. da Silva, M. Klusch, Inference and distributed data clustering, in:
P. Perner, A. Imiya (Eds.), Machine Learning and Data Mining in Pattern
Recognition, no. 3587 in LNAI, Springer Verlag, Leipzig/Germany, 2005, pp.
42–52.

[3] A. Hinneburg, D. A. Keim, An efficient approach to clustering in large
multimedia databases with noise, in: Knowledge Discovery and Data Mining,
1998, pp. 58–65.

[4] M. Klusch, S. Lodi, G. Moro, Agent-based distributed data mining: the KDEC
scheme, in: M. Klusch, S. Bergamaschi, P. Edwards, P. Petta (Eds.), Intelligent
Information Agents: the AgentLink perspective, Vol. 2586 of Lecture Notes in
Computer Science, Springer, 2003.

[5] J. C. da Silva, M. Klusch, S. Lodi, G. Moro, Inference attacks in peer-to-
peer homogeneous distributed data mining, in: 16th European Conference on
Artificial Intelligence (ECAI 04), Valencia, Spain, 2004.

13

[6] N. Labroche, N. Monmarché, G. Venturini, A new clustering algorithm based
on the chemical recognition system of ants, in: F. Harmelen (Ed.), Proceedings
of the 15th European Conference on Artificial Intelligence, IOS Press, Lyon,
France, 2002, pp. 345–349.

[7] Y. Lindell, B. Pinkas, Privacy preserving data mining, Lecture Notes in
Computer Science 1880 (2000) 36–54.

[8] B. Pinkas, Cryptographic techniques for privacy-preserving data mining, ACM
SIGKDD Explorations Newsletter 4 (2) (2002) 12–19.

[9] M. Kantarcioglu, C. Clifton, Privacy-preserving distributed mining of
association rules on horizontally partitioned data, in: The ACM SIGMOD
Workshop on Research Issues on Data Mining and Knowledge Discovery
(DMKD’02), 2002.

[10] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, V. Verykios, Disclosure
limitation of sensitive rules, in: Proceedings of 1999 IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX’99), Chicago,IL, 1999, pp. 45–52.

[11] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, E. Bertino, Hiding association
rules by using confidence and support, Lecture Notes in Computer Science 2137
(2001) 369–??

[12] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: Proc. of the ACM
SIGMOD Conference on Management of Data, ACM Press, 2000, pp. 439–450.

[13] S. J. Rizvi, J. R. Haritsa, Maintaining data privacy in association rule mining,
in: Proceedings of the 28th VLDB – Very Large Data Base Conference, Hong
Kong, China, 2002, pp. 682–693.

[14] A. Evfimievski, J. Gehrke, R. Srikant, Limiting privacy breaches in privacy
preserving data mining, in: In Proceedings of PODS 03., San Diego, California,
2003.

[15] D. Agrawal, C. C. Aggarwal, On the design and quantification of privacy
preserving data mining algorithms, in: Proceedings of 20th ACM Symposium on
Principles of Database Systems, Santa Barbara, Califonia, 2001, pp. 247–255.

[16] Merugu S. and Ghosh J., Privacy-Preserving Distributed Clustering Using
Generative Models, in: Proceedings of the IEEE Conference on Data Mining
(ICDM), 2003.

[17] Vaidya J. and Clifton C., Privacy-Preserving K-means Clustering Over
Vertically Partitioned Data, in: Proceedings of the SIGKDD, 2003, pp. 206–
215.

[18] S. Oliveira, O. R. Zaiane, Privacy preserving clustering by data transformation,
in: Proc. of SBBD 2003, Manaus, AM, Brasil, 2003.

14

