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Abstract. Time series data is a very common kind of data in many
different fields. Despite of that, time series has not received a lot of at-
tention in the data mining community. Unknown frequent pattern discov-
ery is one of the core activities em many time series mining algorithms.
Patterns can be used for clustering or rule mining in applications rang-
ing from bioinformatics to network intrusion detection. Several solutions
to pattern discovery have been proposed so far. However, all solutions
assume centralized dataset. With increasingly development of network
technology distributed data analysis has become popular, raising issues
like scalability and cost minimization. Additionally, some scenarios such
as mining distributed medical or financial data involves the question of
how to preserve data privacy. In this paper we present a density based
pattern discovery algorithm for time series, which is shown to be scalable,
communication efficient and privacy-preserving. Our results are based on
theoretical analysis and experiments as well.
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1 Introduction

Time series data is one of the most common type of data generated in real world
scenarios. Scientific experiments, space telemetry, medical care, financial and
business applications generate an enormous amount of time series data. Several
time series mining algorithms have been proposed in the data mining literature,
such as time series classification or rule discovery [5, 6, 16, 11, 9, 7]. However there
are still a number of challenges to be addressed, such as data distribution and
data privacy.

In real world scenarios datasets are normally split among different sites. To
work in such distributed scenarios any mining algorithm has to deal with ques-
tions related to scalability (both in dataset size and number of participants), min-
imization of communications costs and data quality. Classic approach to mine
distributed data is to gather all data in a single central repository and apply a
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mining algorithm to find patterns in the centralized data [18]. Although appeal-
ing for most cenarios, this approach may be unfeasible when network bandwidth
is restricted or there is a cost associated to newtork usage. Moreover, comercial
or scientific databases are normally huge, being measured in Terabytes or even
larger. Therefore, centralization in such cases is not an option. Distributed data
mining addresses these questions providing a number of techniques based on
ideas such as meta learning [18], distributed function learning [12], to name a
few.

Another crucial question in distributed scenarios is how to preserve privacy of
sensitive data. Since distributed data normally is owned by different instutions,
or corporations, data may represent a invaluable asset and the parties may not
want to join a mining group if there is no guarantees that privacy is being
preserved. In fact, many countries have privacy regulations which controls which
data can be disclosed beyond its original purposes, e.g. medical information,
or credit card transactions. However, these data present a huge potential for
knowledge discovery and should not be simply set aside. Privacy-preserving data
mining is a research field that address the general problem of providing good data
mining results without violating data privacy in the process [22, 1, 19, 10]. Many
solutions to specific data mining tasks have been proposed, such as association
rules [4, 20], classification [8, 3, 17], and data clustering (clustering) [21], among
others.

In this paper we investigate privacy preserving time series mining. We focus
on unknown pattern discovery, since this is one important step in many time
series mining algorithms [13, 15]. Frequent patterns can be used for clustering
or rule mining in applications ranging from bioinformatics to network intrusion
detection. Our approach is based on the assumption that time series patterns can
be represented as multidimensional points in a Rn data space. Therefore, we can
reduce the problem of searching for frequent patterns, to the search for densely
populated regions in this new data space. Our results shows that this approach
is time and space efficient and misses no positive. Moreover, this approach allow
us to cope with privacy requirements since no patterns are transmited among
the parties.

Assumptions. We assume that data is horizontally distributed among a set of
parties. Each party holds a mining agent and a data agent which are responsible
for taking part in a mining session with agents from other parties. Notice that
only local data agents are granted access to local datasets. Datasets are sensitive
and should not be disclosed to other parties. However, each party may set a local
privacy threshold denoting the minimum amount of privacy it requires to join in
a specific mining session. Agents are organized in a pure peer to peer network. We
also assume that agents are semi-honest, meaning that they follow the protocols,
but are curious enough to try to discover any sensitive data from other parties
whenever possible.

Contributions. (i) We propose DPD-TS, an algorithm based on the idea that
frequent patterns discovery can be reduced to finding density regions in an ap-
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propriate data space; (ii) we show how privacy is given by data transformation
approach; and (iii) We propose a privacy metric which is suitable for time series
data.

Outline. The remainder of this paper is organized as follows. Section 2 presents
background on our notation and definitions. DPD-FS algorithm is presented in
section ?? and its privacy properties are discussed in section 3. Experiments are
presented in section 4. We discuss related work and conclusion in sections 5 and
6, respectively. TODO: Explain how data is

partitioned

TODO: what are the roles
of the participants

TODO: what are the
privacy issues here

TODO: what is the attacker
model (curious or
malicious)?

2 Definitions and Background

In this section we present background on our notation and formulate the time
series pattern discovery problem more formally.

Let f : N → R be a function from time stamps to reals. We define a time
series T = {xt | xt = f(t)}, with 1 ≤ t < m, as ordered set of reals xt coming
from some measurement function f . The ordering is with respect to the time
stamp t. So, given a total order ≺ we have xt ≺ xt+1 for all t, 1 ≤ t < m.
Further, we denote the length of the time series T by |T |.

A subsequence of T is denoted ⟨xt, . . . , xt+v⟩, for given integers 1 ≤ t < m
and 1 ≤ v < t − m. A frequent pattern in time series is a subsequence of the
time series that reoccurs at different points of T .

Definition 1 (Match). Let T be a time series with size m. Given a subsequence
Q = ⟨xq, . . . , xq+v⟩ with xq ∈ R, 1 ≤ v < q−m be a query subsequence, a match
is a subsequence S = ⟨xs . . . , xs+v⟩ of T which satisfies d(Q,S) ≤ δ, for a given
distance function d and threshold δ.

The definition of match helps us to capture the notion of reoccurring subse-
quences.

Definition 2 (Reoccurring subsequence). Given a time series T , a subse-
quence Q is reoccurring if

(i) there is more than one match for this query in T ; and
(ii) for every pair of matching subsequences R and S from T , it holds that R

and S do not overlap.

The non-overlapping requirement intends to avoid trivial matches. For exam-
ple, if we find a match sequence at position t=1 to t=10, all subsequent matches
found which includes any point from up to t=10 will be considered trivial. Triv-
ial matches may falsely indicate a frequent subsequence if the sequence has a
high degree of self-similarity. This constraint helps us to eliminate these false
positives.

Definition 3 (k-frequent subsequence). Given a real-valued time series T ,
a reoccurring subsequence Q is said to be k-frequent if Q is in the top-k list of
reoccurring subsequences from T.
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Following this definition a 1-frequent subsequence is the most frequent one.
Similarly, a 3-frequent subsequence is one of the three most frequent, not neces-
sarily the most frequent one.

Throughout this paper we use the term pattern as a synonym to k-frequent
subsequence. In the figure 1 we show three matches for a given pattern. Each
match can be seen as an instance of a prototypical pattern summarizing the
subsequences matched.

Fig. 1. Time series with three occurrences of the same pattern.

Having introduced the basic notation and definition we move forward to
define the privacy preserving pattern discovery problem.

Problem 1 (PP-DPDTS). Given a real-valued time series T , an integer k, and a
set of sites L = {Li}1≤i≤P , each of them with a local time series Ti, find the set

P of the k-most frequent patterns occurring in T =
∪P

i=1 Ti, such that:

1. The total communication cost is minimized;

2. The result using the distributed data Ti is the same if the algorithm runs
using T =

∪P
i=1 Ti;

3. No party learns about specific values stored in other parties, up to a user
defined privacy threshold.

An important assumption in this work is that the time series data collected
at different sites refers to the same variable and has the same time spacing.

For example, all parties might work with time series about daily sales volumes
about the same product. In this case the common variable is sales volume and
the time spacing is 24h.
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3 Privacy Metric for Time Series Mining

Privacy can be informally defined as the right to keep some information hid-
den from other people. It can be further refined to privacy of datasets (data
privacy) and privacy of information about the data collector (organization pri-
vacy). Privacy-preserving data mining address the general problem of providing
useful mining results while providing data privacy. Many solutions have been
proposed to specific distributed data mining tasks, for instance association rules
[4, 20], classification [8, 3, 17], or data clustering [21].

Time dimension in data introduces several aspects which may describe a
process evolution through a period of time [23]. Amplitude is the value of time
series at a particular time point and can be compared to the data value in non-
time series data. Amplitude in time series must be protected if it represents
a measurement of a sensitive variable, such as sales volume, purchase history,
etc. Further, peaks are extreme values assumed in the series and may indicate
a sudden change of normal behavior, money flow problems, etc. Predictions,
or trends, is another aspect that may be considered sensitive since it allows
the attacker to anticipate a given value in the future, with a given statistical
confidence level. Predictions depends on the accuracy of the prediction model
that is available to the attacker. If predictions are too accurate, it can represent
a privacy breach.

The basic piece of information to all time series aspects is the amplitude,
from which all other aspects can be derived (peaks, trends and predictions). If
a particular data point is not known, or only known to be in a given interval,
all other aspects will have less accuracy than if the point was known with exact
precision. Therefore, we focus on the amplitude, i.e. the raw value at a particular
data point.

As discussed in Sections ?? and ??, several different metrics have been pro-
posed in the privacy-preserving data mining literature. Since none of the pro-
posed metrics are developed for the time series the question is whether we can
pick one of the proposed metrics, or if we need a new metric. In some sense, each
metric focuses on a specific aspect of privacy. Information theoretical approaches
focus on the aspect of how much confident the attacker can be, given the en-
tropy of the variable, using the privacy as the reciprocal of entropy. In more
database-oriented metrics, like the ideas used in k-anonymization, the focus in
on how many points can be identified. In time series, there is no identification
issue, therefore we need to provide some probability bound on the reconstruc-
tion quality. Therefore, we chose to work with an information theoretical based
metric.

We follow an information-theoretical model of privacy. It means that our
measure of privacy is given by the uncertainty an attacker has on where a given
original point is located in the amplitude. Other privacy models involve a proof
of infeasibility of attacks or showing the computational power necessary to learn
something from the available data. We see these approaches as complementary
efforts.
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Our model is an extension of the entropy-based metric introduced by Agrawal
and Aggarwal [2]. We include an additional element in our model to capture the
fact that parties may collude. The following definition gives the details.

Definition 4. The privacy level of a given point xt in a time series T, modeled
by a random variable X, in presence of c colluders, is given by

PR(xt, c) = 2h(X) (1)

where h(X) is the differential entropy of X, i.e. h(X) = −
∫
f(x)log2(f(x))dx,

and f(x) is the probability density function of X modeled in a scenario where c
colluders are active.

We compute the privacy of a given point in the time series by modeling it
from the point of view of the attacker. Therefore, we model an arbitrary point
xt of the original time series T as a random variable X, what allow us to use the
privacy definition above. The probability density function f(x) may be used to
model the knowledge the attacker has about the point xt. If the attacker has no
knowledge, we use the uniform distribution, what give us PR(X) = 2log2(a) = a,
the size of the interval from where X is drawn. On the other hand, if we know
a better model for xt we can incorporate it in the privacy level naturally. This
would be the case, when the time series has good predictability and we compute
the privacy with a correct model.

Now, we extend the basic metric to a complete time series.

Definition 5. The privacy level of a time series T in presence of c colluders is

PR(T, c) = min{PR(xt, c) | t = 0, 1, 2, 3, . . . , |T |} (2)

where |T | denotes the size of T .

Finally, using the previous metric, we can measure the privacy level of a time
series mining algorithm.

Definition 6. Given a time series mining algorithm A, its privacy level given
c colluders is:

PRA(c) = min{PR(O, c) | O is an output of A} (3)

The privacy of an algorithm is the weakest level measured for any of its
outputs, at any stage of the mining process. This includes any model, mining
results, intermediate results, etc.

The question now is how to control the privacy level used the above definition.
This control should be provided by the algorithm, allowing the local site to decide
how much privacy it want, before engaging in a mining session with other sites.
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3.1 The DPD-TS Algorithm

In this section we present DPD-TSalgorithm, which is a first step towards a
solution to PP-DPDTS problem stated in Section ??. DPD-TSfollows the gen-
eral three-step scheme discussed before (cf. Sec. ??), but differs from other ap-
proaches in the third step, as discussed below.

DPD-TSworks as follows. Given a sequence S, it computes the density of
subsequences of S and output a list with the top k most dense subsequences.
Our approach exploits the fact that a density estimate can be used to find
overcrowded regions in a hyperspace. Our main hypothesis is that if we take
subsequences of time series and represent it as points in a multidimensional
space, we can reduce the search for frequent subsequences of fixed size, to the
search for dense regions in a multidimensional space. Consequently, the search
for k-most frequent patterns of size w reduces to the search for k-most dense
regions on a Rw space.

DPD-TScomputes the density over a distributed dataset. At each peer a
local density estimate is computed and together the peers sum up local densities
to produce a global density estimate. With the global density estimate, each
local mining agent can perform the discovery step to spot frequent subsequences
on the local dataset.

Algorithm 1 DPD-TS: initiator

Input: k, Ti, n, w, Σ, L, r;
Output: P;
Method:

At the initiator party L1 do:
1: negotiate(k,n,w, Σ,r);
2: T ′

1 ← reduceDim(T1, n, w); // Using Eq. (4)
3: T ′′

1 ← discret(T ′
1, w,Σ); //Local dim. reduction and discretization

4: φ̂1 ←estimateDensity(T ′′
1 , w, r); //Local density estimation

5: send φ̂1 to L2; //Cooperative sum
6: receive φ̂p from Lp

7: φ̂← φ̂p // Global density estimate
8: P ←getCenters(φ̂,k, r); //Finding globally Frequent patterns
9: send P to all agent Lj ∈ L;

The pseudocode for DPD-TSis outlined in Algorithms 1 (initiator) and 2
(arbitrary party). Details are discussed in the following.

Detailed Description of DPD-TS DPD-TScomputes a set of k-frequent pat-
terns occurring in the union of local time series Ti owned by peers in the mining
group L. Peers are assumed to form a peer-to-peer network. DPD-TSneeds the
following parameters: Ti is the local dataset, n is the size used to generate sub-
sequences, w is the number of symbols per string, i.e. the string size, Σ is the
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Algorithm 2 DPD-TS: arbitrary party

Input: k, Ti, n, w, Σ, L, r;
Output: P;

At an arbitrary party j do:
1: negotiate(k,n,w, Σ,r);
2: T ′

j ← reduceDim(Tj , n, w); // Using Eq. (4)
3: T ′′

j ← discret(T ′
j , w,Σ); //Local dim. reduction and discretization

4: φ̂j ←estimateDensity(T ′′
j , w, r); //Local density estimation

5: receive φ̂j−1 from Lj−1;
6: φ̂j ← φ̂j−1 + φ̂j ; // Updating with local density
7: send φ̂j to L(j mod p)+1; // Send to next peer and the last one sends to initiator
8: receive P from L1;

alphabet used to generate strings, and L is the set of peers forming the min-
ing group. The parameter r define the radius of the density ball to be used in
the second step. As output, DPDTS returns a set P with the globally k-most
frequent patterns.

Negotiation. The first step inDPD-TSis a negotiation on the parameters values.
In this phase, a given peer may decide no to engage in the mining session if the
negotiation is not in accordance with its own local policy. The other peers may
decide to continue with the mining session even if some of the original members
leave the group. All further steps in the algorithm assume that the negotiation
was successful.

Dimension Reduction. Function reduceDim() splits the original time series Ti in
various subsequences S of size n. For each non-overlaping subsequence S ⊑ Ti a
reduced subsequence S is computed. Each point of S is the average of a small
subsequence of S of size n

w . This operation (proposed elsewhere [14]) is known
as piecewise aggregate approximation (PAA):

sj =
w

n

 n
w j∑

k= n
w (j−1)+1

sk

 (4)

where sk is a single point in the subsequence S. This transformation reduces the
dimensionality of a given subsequence S from n to w, where n is the size of S
and w is the size of the resulting subsequence S. The resulting time series T ′ is
a concatenation of all reduced subsequences S computed from from T . Figures
2 and 3 illustrate the dimension reduction of a single subsequence.

The following example illustrates the dimension reduction process.

Example 1. Let T = ⟨1.0, 2.0, 3.0, 5.0, 3.0, 4.0, 8.0, 9.0, 5.0, 6.0, 7.0, 2.0⟩, subse-
quence size n = 6, and word size w = 3. With these parameters T can be split in
two subsequences S1 = ⟨1, 2, 3, 5, 3, 4⟩ and S2 = ⟨8, 9, 5, 6, 7, 2⟩. Since we want to
reduce the size from 6 to 3 we compute for each subsequence, S1 and S2, three
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Fig. 2. A subsequence S of T is split into n/w subsequences of size w and the average
value is computed for each one of these subsequences of S.

Fig. 3. Reduced subsequence is composed of n/w average values.

averages using two values at time. Threfore we have the reduced subsequences
S1 = ⟨1.5, 4.0, 3.5⟩ and S2 = ⟨8.5, 5.5, 4.5⟩. The resulting reduced time series is
a concatenation of all reduced subsequences,i.e. T ′ = ⟨1.5, 4.0, 3.5, 8.5, 5.5, 4.5⟩.

Discretization. Function discret() produces a discretized version of T’, which is
a sequence os symbols in a given alphabet. We refer to the discretized version
as T ′′. For each element x of T ′, the corresponding string T ′′ will have a symbol
σa ∈ Σ. The substution procedure is accomplished by choosing break points {βa}
in the values dimension of a given time series T , such that |{βa}| = |Σ| − 1, and
such that each occurrence of a given value x of T ′′ has the same probability [15],
assuming they are normally distributed. For example, considering a 4-symbol
alphabet, we need 3 break points, where each region will have probability 0.25
of appearing in the time series (cf. Fig. 4).

Then, the substitution rule is applied:

xj =


σ1 if sj ≤ β1

σa if βa−1 < sj ≤ βa,with 1 < a < m

σm otherwise.

(5)

where 1 < m ≤ |Σ| and xj ∈ T ′′.

Example 2. Figure 5 illustrates the discretization process. Each value in the
reduced time series is mapped to a symbol in the alphabet. Considering the
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Fig. 4. Break points are defined in the value dimension of time series, i.e. x(t), such that
each symbol of the alphabet is mapped to a region with same probability, considering
that the values of the time series follows a normal distribution [15].

Fig. 5. Each average value is substituted by a symbol, according to the regions defined
by break points (Adapted from [15]). In this case a 4-symbol alphabet is used to
discretize a time series, generating the word “bcaddbdab”.

alphabet Σ = {a, b, c, d} and the reduced time series in Fig. 3, the discretized
sequence of symbols is T ′′ = “bcaddbdab”. Notice that breakpoints are chosen in
the value dimension of time series.

Estimating Density of Strings. Function estimateDensity() computes the density
estimates of strings S′′ from discretized time series T ′′

j . An important require-
ment is that the density estimate function φ̂ builds a non-negative monotonic
function over R and that the local maxima represent the most dense regions
in the feature space. In practice, the function does not even need to be a true
estimation; an approximation will do it.

A general approach to compute data density function is kernel-based density
estimation (already discussed in previous chapter, Sec. ??). For a given kernel

function K such that
∫ +∞
∞ K(x)dx = 1, an estimate of the density, for a specific

dataset D, is given by:

φ̂[D, r](x) =
1

Nh

∑
xi∈Neigh(x,r)

K

(
d(x, xi)

h

)
(6)
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where N is the total number of points, d is a distance function, h is a bandwidth
parameter and Neigh(x, r) is the neighborhood of point x in a given dataset D,
considering only neighbors inside a ball radius r computed with distance d.

We use the triangle kernelK(u) = (1−|u|)I{|u| ≤ 1}, where I is the indicator
function3. We choose this kernel for its simplicity, but any other kernel can be
used instead. We set the kernel bandwidth parameter equals to the neighborhood
radius, i.e. h = r. We use the Euclidean distance, denoted d, and assume that
the alphabet has a total order. An arbitrary point is a string S′′ from T ′′

j , i.e.
S′′ ⊑ T ′′

j . For a given discretized time series T ′′, there are |T ′′|/w strings to
consider. In the Kernel expression we use the substitution u = d(S′′, S′′

i )/r.
Putting all together, we have:

φ̂(S′′) =
w

|T ′′|r
∑

S′′
i ∈Neigh(σ)

(
1−

(
d(S′′, S′′

i )

r

))
I{(d(S′′, S′′

i )/r) ≤ 1} (7)

Computing Global Density. The mining group cooperatively compute the set of
globally k-most frequent patterns by summing up all local tables. Initially, peer
L1 sends its local density to L2. After that, each peer Lj receives partial density
estimate φ̂i from its neighbor Li, with i = j − 1 and j > 1. Lj adds its own
local density to partial global density estimate, i.e. φ̂j = φ̂i + φ̂j . Then, site Lj

sends partial global density φ̂j to the next neighbor Lj+1 in the mining group.
This protocol continues until the partial sum is sent to L1, which broadcasts the
global density estimate φ̂ to all members of the mining group.

Finding Patterns by Locating Centers. To find the patterns, each peer uses
the getCenters(), which works as follows. Choose a set of strings, each of them
representing the points that are local maxima in the global density estimate, i.e.
centers of the top k most dense regions, and call it P. The regions are constrained
to define a ball radius r. More formally, for a given density estimate φ̂, distance
function d, and a string S, we have:

P = {S | ∀ R ∈ Σw : (d(S,R) ≤ r → φ̂(S) > φ̂(R))} (8)

In general, we can say that the higher populated the neighborhood, the higher
the estimated density of a given point. Of course, by just looking at the density,
we would identify several candidate patterns, which are even not present on the
string T ′′. The number of these candidate pattern is controlled by the parameter
r. It can be thought as kind of error rate. If we set a high r, e.g. r = 2, for a
given pattern, we expect to find all variations of it in a ball radius r, even if it
is not present in the current string T ′′. Setting r < 1 admits no error and only
the patterns explicitly found in T ′′ are reported.

Lemma 1. Let S1, S2 ∈ Σw be two sequences of size w. Let φ̂ be a density
estimate computed using Eq. 7 and denote Neigh(S) the neighborhood of a string

3 The indicator function, also known as characteristic function, returns 1 if the ex-
pression in curly brackets holds and 0 otherwise.
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S, i.e. Neigh(S) ⊂ Σw. Then

φ̂(S1) > φ̂(S2)↔ |Neigh(S1)| > |Neigh(S2)|

Proof. (→) Assume that φ̂(S1) > φ̂(S2). By Eq. (7) it means that

φ̂(S1) =
∑

Si∈Neigh(S1)

(
1−

(
d(S, Si)

r

))
I

(
d(S1, Si)

r
≤ 1

)
>

φ̂(S2) =
∑

Sj∈Neigh(S2)

(
1−

(
d(S2, Sj)

r

))
I

(
d(S2, Sj)

r
≤ 1

)

In general, the inequality only holds if Neigh(S1) > Neigh(S2), because the
sum of indicator function and the distance function are proportional to the size
of the neighborhood. Therefore, it holds that φ̂(S1) > φ̂(S2) → |Neigh(S1)| >
|Neigh(S2)|.

(←) By similar argumentation, we verify that the assertion holds on the other
direction, i.e. |Neigh(S1)| > |Neigh(S2)| → φ̂(S1) > φ̂(S2).

By lemma 1, the local maxima in the pattern space correspond to strings
that reoccur more frequently than others do.

Performance Analysis of DPD-TS

Time. The time complexity of DPDTS at a local peer is O(|Ti|), where |Ti|
means the size of the time series at peer Li. There are ⌊ |Ti|

n ⌋ subsequences in Ti.
For each subsequence w arithmetical means are computed summing ⌊ nw ⌋ points
for each mean, i.e. n steps. Additionally each arithmetical mean is substituted

by a symbol, which takes w steps. The overall time cost is |Ti|
n (n+w) = Ti(

w
n +1)

steps. Note that normally w < n≪ |Ti|. The discovery step, which is the search
for the k-most dense regions, is independent of the size of Ti and is O(|Σ|w).

Communication. Each peer sends 1 message to a neighbor peer and receives
1 message from another neighbor. There are only 2 rounds of messages, one
of which informs the mining results. Each message has size O(|Σ|w), for given
global w and Σ.

Correctness. One important property of this algorithm is that it produces no
false positives, although it may miss some less frequent patterns. It is not a
problem because we are trying to find just the most frequent patterns.

Theorem 1. Algorithm DPD-TSproduces no false positives.
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Proof. This is a result from the following facts. First, patterns correspond to local
maxima in the density estimate and maxima correspond only to highly populated
regions as a consequence of Lemma 1. Therefore, a frequent pattern represents
a frequently reoccurring subsequence (within a given range of dissimilarity).
Second, given two different local maxima the one with higher density represent
the pattern with larger neighborhood and consequently higher frequency rate.
Therefore, the ordering of the k-most dense regions corresponds to the ordering
of the k-most frequent subsequences.

3.2 Privacy Analysis of DPD-TS

We analyzed the privacy of DPD-TSin various attacks scenarios, as discussed
in the following.

Single Initiator Attack. Recall that the initiatior peer knows all parameters, the
set of global patterns,its own local density estimates and the global density esti-
mates. It does not know any local data from other peers, since, by construction,
DPD-TS scheme does not require the parties to transmit raw data. The only
information transmitted by the peers during the mining session is the encrypted
partial density estimate. Therefore, a malicious initiator will not receive any
piece of original sensitive data from other peers.

The initiator is the only peer that has access to the global density estimate.
However, the density estimate has no information on the order of occurrence of
each time series subsequence, which is necessary to reconstruct the original time
series. Consequently, an attacker can only try to reconstruct the most provable
values for xt, for a given time stamp t.

The initiator has the set of global patterns P from which it can try to infer
the original values T . Since the discretization step is the main responsible for
the privacy, we intuitively know that the more symbols in the alphabet Σ, the
less privacy we get, because the discretized version tends to get the “shape” of
the original time series data. The next result shows how the size of Σ influences
the privacy of a single point in T .

Theorem 2. Let Σ be an alphabet of symbols used by the DPD-TS protocol.

Let {βj ∈ R}|Σ|+1
j=1 be a set of breakpoints which divides the normal curve in

| Σ | equiprobable regions. Let T be a time series and T ′′ ∈ Σw be its transform
according to the discretization step of Algorithms 1 and 2. For a given point xt

if its transformed counterpart x′′
u is known then its privacy level is given by:

PR(xt) =| βj+1 − βj | (9)

Proof. This is a consequence of the discretization step. Let σj ∈ Σ be the symbol
at point x′′

u. Since we know that the symbol σj comes from the substitution rule
(cf. Sec. ??), we know that each point of the subsequence ⟨xt, . . . , xt+n⟩ lies in
the interval (βj , βj+1). In the absence of further information, the only suitable
option is to model xt as a random variable uniformly distributed in the given
interval, i.e. xt ∼ U(βj , βj+1). Now, using the Equation (1) we have
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PR(xt) = 2h(xt) = 2
∫ βj+1
βj

p(x)log2p(x)dx

= 2log2(βj+1−βj)

=| βj+1 − βj |

Using the above theorem, peers in the mining group can define a minimum
amount of privacy they require in order to join the mining session. This is done
by setting the maximal size of the alphabet Σ and, consequently, the size of the
intervals defined by the breakpoints {βj}. If the minimal privacy requirement is
not met, the peer does not join the mining group. Recall that the patterns in P
are sequences of symbols and not subsequences of the true data T .

Single Arbitrary Party Attack. Each party in a DPD-TSmining session knows
all parameters values agreed in the negotiation step, the set of global patterns
receive from the initiator, and its own local density estimates. Without collusion
an arbitrary party has no access to density estimates of other peers and, as a
consequence, may try to infer only the true values xt associated to symbols in the
global patterns. As in the previous attack, the privacy level is provided by the
amount of discretization applied to original time series T . Therefore, the privacy
level of each point in the time series is the same as in the previous attack.

Collusion Attack (including initiator). Any collusion group that includes the
initiator peer has information about the parameter values, local density estimates
of attacker and the global density estimates from initiator. Thus, any collusion
group that includes the initiator has enough information to isolate the partial
density estimates of a group of victms. In the extreme case, when p − 1 peers
colludes against one single victim peer, the attackers can discover the victim
density estimate. Nevertheless, the density estimate can only be used to find the
most frequent patterns at a given peer, or group of peers. As discussed in the
fist attack scenario, the density estimates gives no information on the order of
occurrence of each pattern. Consequenctly, the attackers cannot reconstruct the
entire local times series of any victim. Again, the privacy of each point in the
time series is preserved as in the single initiator attack.

Collusion Attack (without initiator). Any collution attack without the initatior
has no access to the global density estimates. Thus, a collusion without the
initatior brings no further information to the collusion group beyond the public
information they already have, such as the parameter values and the local density
estimates. The privacy level of each point is preserved to the same level as in
previous attacks.

4 Experiments

Datasets. For the experiments reported here, we used the power data records the
electricity consumption from Netherlands Energy Research Foundation (ECN)
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for one year, recorded every 15 minutes. There are 35 040 data points corre-
sponding to the year of 1997. Figure ?? shows an excerpt of the power data.
This dataset has a pattern structure that can be observed visually.

(a) (b)

Fig. 6. (a) An instance of a normal week, the most frequent subsequence in the power
data, showing high consumption on workdays and low consumption at weekends. (b)
An instance of a week with holiday pattern in the power data. In this example, the
Monday was a holiday.

Methodology. We set the parameter as follows. Subsequence size n = 96, which
corresponds to one day (with one measurement every 15 minutes). We choose
pattern size w = 7, since it represents a week. The alphabet Σ was set to { a,
b, c, d}. Symbol ‘a’ represents lowest values and ‘d’ represents highest value of
consumption. The radius was set to r = 1. Larger values of r produces larger
neighborhoods. The density landscape becomes smoother what may reduce the
number of local maxima and consequently the number of patterns. Choosing
smaller values of r produces a more spiky density with more local maxima and
more patterns. Therefore, r help us to control the number of patterns.

The information loss of the DPD-HE is was defined as

ILMAE(T, T
′) =

∑n
i=1 | xi − x′

⌊w
n (i−1)⌋+1 |

n
(10)

where T is the original time series, T ′ is the result of substituting the symbols in
the resulting string by its corresponding breakpoint (see Algorithm DPD-TSin
Sec. ??), and n is the size of the PAA sequence and w is the size of the resulting
string. The involved index expression assures that each point in the original time
series T is compared with the correct element in T ′, which is smaller than T .

Results. With the aforementioned parameters values we found 2 frequent pat-
terns. The first pattern is “cccccaa” which corresponds to a normal week. The
second pattern is “acccaa” which correspond to weeks having a holiday on the
first day. Figure 6 shows one instance of each pattern.
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Results with different alphabet sizes, with all other parameters set as above,
found an increasing number of patterns. This is mainly because larger alpha-
bets produce more accurate discretization, what allows for a more detailed dif-
ferentiation among the patterns. These additional patterns basically presented
refinements of the more general pattern “five day high + two days low”.

 0

 1

 2

 3

 4

 5

 6

 0  50000  100000  150000  200000  250000  300000

C
P

U
 ti

m
e 

(s
)

Size of time series (# of points)

Fig. 7. Time performance (in seconds) with increasing size of time series.

Results of performance are shown in Figures 7 and 8. We performed the
experiments with the same parameters values as in the previous experiments.
For the performance tests, we created a synthetic time series with 300 000 points,
by cloning power data 10 times. As shown in the Figure 7, the CPU time increases
linearly with the size of the time series.

The results of privacy vs. size of alphabet are presented in figure 8. To mea-
sure the privacy, we used the interval size corresponding to each alphabet symbol
in the discretization step. In the initial case, with just one symbol, we used the
size of interval from the minimum to the maximum value observed in the time
series, which is 1 056 kWh. Assuming that max and min values are public, the
attacker can compute the entropy of a random variable X over this interval,
and consequently the privacy level 2h(X). That is the privacy we get when the
sequence consists of symbols from a singleton alphabet. In the figure, we see the
decrease of privacy by using more symbols to discretize the time series. With 10
symbols we get a privacy level of 300 kWh, which means that an attacker cannot
reconstruct a data point within an interval smaller than 300 kWh. It is up to
the user, however, to decide whether or not a given privacy level is enough.
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