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Abstract—We present an intelligent service matchmaker, called
iSeM, for adaptive and hybrid semantic service selection that
exploits the full semantic profile in terms of signature annotations
in description logic Sℋ and functional specifications in SWRL. In
particular, iSeM complements its strict logical signature matching
with approximated reasoning based on logical concept abduction
and contraction together with information-theoretic similarity
and evidential coherence-based valuation of the result, and non-
logic-based approximated matching. Besides, it may avoid failures
of signature matching only through logical specification plug-
in matching of service preconditions and effects. Eventually, it
learns the optimal aggregation of its logical and non-logic-based
matching filters off-line by means of binary SVM-based service
relevance classifier with ranking. We demonstrate the usefulness
of iSeM by example and preliminary results of experimental
performance evaluation.

I. INTRODUCTION

Semantic service selection is commonly considered key
to the discovery of relevant services in the semantic Web,
and there are already quite a few matchmakers available for
this purpose [13]. In this paper, we present the first adaptive
semantic service IOPE matchmaker. In essence, its innovative
features are (a) approximated logical signature (IO) matching
based on non-monotonic concept abduction and contraction
together with information-theoretic similarity and evidential
coherence-based valuation of the result to avoid strict logical
false negatives, (b) stateless strict logical specification (PE)
plug-in matching to avoid failures of signature matching
only, and (c) SVM (support vector machine)-based semantic
relevance learning adopted from [10] but extended to full
functional service profile (IOPE) matching and use of ap-
proximated IO matching results to prune the feature space for
precision. Preliminary evaluation results particularly indicate
that this kind of approximated logical matching can perform
significantly better than its strict logical counterpart, performs
close to its non-logic-based approximated counterparts, that
are text and structural matching, and does even more so in
adaptive hybrid combination with the latter.

The remainder of the paper is structured as follows. We
motivate and provide an overview of the matchmaker iSeM in
Sections II and III. This is followed by a detailed description
of its signature matching filters with focus on approximated
logical matching in Section IV, while Section V discusses
its stateless, logical specification matching filter. Section VI

describes the SVM-based service relevance learning for se-
lection, while preliminary evaluation results are provided in
Section VII. Eventually, we comment on related work in
Section VIII and conclude in Section IX. 1

II. MOTIVATION

The specific problems of semantic service selection the
matchmaker iSeM has been particularly designed to cope
with are motivated by the following service example, which
is used throughout the paper.

Example 1: Consider the semantic profiles of service request
R and offer S in Figure 1, taken from the standard test
collection OWLS-TC3 according to which S is relevant to
R. The desired service R is supposed to purchase a book for
a given person by debiting his own debit account, shipping
the book to him and eventually acknowledging the completed
deal. The e-shopping service S like amazon.com offers
arbitrary articles including books that are requested by some
customer whose own credit card account gets respectively
charged while sending an invoice for and pricing information
about the deal. Both services are written in OWL-S with
semantic signature (IO) concept definitions in description
logic Sℋ and their logical preconditions and effects (PE)
in SWRL. In the following, we assume the matchmaker to
have an appropriate shared ontology and a service registry
available over which semantic service selection is performed. ∘

False negatives of strict logical signature matching. The
majority of semantic service matchmakers perform logical
signature matching [13]. One prominent set of strict logical
matching filters for this purpose is provided below [18], [9].
Each of these filters requires (a) each service input concept
to be more generic than or equal to those provided in the
request and (b) the complete requested output to be covered
by that of the service in terms of the respectively considered
type of logical concept subsumption relation.

Definition 1: Strict logical signature matching.
Let S,R semantic services, in(S), out(S), in(R), out(R) the

1This paper is an invited, slightly modified version of [11] printed with
kind permission by Springer.



Fig. 1. Service request (book purchasing) and relevant service offer (article purchasing).

multisets of input, resp., output concepts of semantic sig-
natures of S and R defined in a shared OWL ontology
O; BPG⊑(C̄, D̄) the set of injective concept assignments
(C,D), C ∈ C̄, D ∈ D̄ as valid solution of bipartite graph
matching with maximized sum of binary weights v of edges
between concepts as nodes in the graph indicating whether
the considered type of strict logical subsumption relation (≡,
⊒, ⊑1, ⊒1; the latter denote direct parent/child relations
in a subsumption graph) holds (v = 1 iff C ⊑ D else
v = 0); BPG⊑(C̄, D̄) = ∅ iff no such assignment is possible
(∣D̄∣ < ∣C̄∣). BPGX(C̄, D̄) with X ∈ {(≡,⊑1,⊒1} are
defined analogously. The degree MatchIOLogic(R,S) of strict
logical signature matching is as follows:
MatchIOLogic(R,S) ∈ { Exact, Plug-in, Subsumes,
Subsumed-by, LFail } with

∙ Exact: S equivalent to R ⇔ ∀IS ∈ in(S) :
∃IR ∈ in(R) : (IS , IR) ∈ BPG≡(in(S), in(R)) ∧
∀OR ∈ out(R) : ∃OS ∈ out(S) : (OR, OS) ∈
BPG≡(out(R), out(S))

∙ Plug-in: S plugs into R⇔ ∀IS ∈ in(S) : ∃IR ∈ in(R) :
(IS , IR) ∈ BPG⊒(in(S), in(R)) ∧ ∀OR ∈ out(R) :
∃OS ∈ out(S) : (OR, OS) ∈ BPG⊒1(out(R), out(S))

∙ Subsumes: R subsumes S ⇔ ∀IS ∈ in(S) :
∃IR ∈ in(R) : (IS , IR) ∈ BPG⊒(in(S), in(R)) ∧
∀OR ∈ out(R) : ∃OS ∈ out(S) : (OR, OS) ∈
BPG⊒(out(R), out(S))

∙ Subsumed-by: R subsumed by S ⇔ ∀IS ∈ in(S) :
∃IR ∈ in(R) : (IS , IR) ∈ BPG⊒(in(S), in(R)) ∧
∀OR ∈ out(R) : ∃OS ∈ out(S) : (OR, OS) ∈
BPG⊑1

(out(R), out(S))
∙ LFail: None of the above logical filter constraints are

satisfied. ⋄
Applying these strict logical matching filters to the ex-

ample above produces a logical fail (LFail), hence a false

negative. The reasons are that (a) the inputs book and article
are not strictly logically disjoint siblings in the ontology,
that is (Book ⊓ Article ∕⊑ ⊥), and (b) the inputs debit
account and credit card are strictly logically disjoint, that is
(DebitAccount ⊓ CreditCard ⊑ ⊥).

Such cases of logical signature mismatches may appear
quite often, in fact, applying the above filters to the standard
collection OWLS-TC3 yields a relatively high number of
strict logical false negatives for each request in the order
of 45% of the size of its relevance set in average. As
shown, for example, in [10], [9], [12] and the contest S3
(http://www.dfki.de/-klusch/s3), some hybrid combination of
strict logical with non-logic-based approximated signature
matching methods may avoid failures of strict logical
signature matching filters defined above in practice2. But
how can logical matching itself be improved by what kind of
complementary approximation (cf. Section IV), and how well
does this perform compared to and in combination with its
non-logic-based counterparts in practice (cf. Section VII)?

Failures of signature matching only. It is well known that
matching of semantic signatures only may fail in many cases,
since they do not capture the functional behavior commonly
encoded in logical service preconditions and effects (PE).
There are different approaches to logical PE-matching [13]
- but which one to use in case of a third-party matchmaker
that usually has no access to concept instances for registered
semantic services (cf. Section V)?

Best combination of semantic matching filters. How to best
combine different kinds of semantic service matching filters in
terms of precision? One option proposed, for example, in [10],

2Avoidance and higher (lower) ranking of false negatives (positives) in-
creases average precision of ranked result lists



[12] is to let the matchmaker learn the optimal aggregation of
different matching results for its semantic relevance decision
- rather than to put the burden of finding and hard-coding the
solution by hand on the developer. Though this turned out
to be quite successfull in the S3 contest restricted to semantic
signatures, how can approximated logical matching be used to
improve the learning for better precision of service selection
(cf. Section VI)?

III. ISEM MATCHMAKER: OVERVIEW

Before delving into the technical details of the matchmaker
iSeM, we shall first provide an overview of its functionality.

Matchmaking algorithm in brief. For any given service
request, the iSeM matchmaker returns a ranked set of relevant,
registered services as its answer set to the user. For this
purpose, it first learns the weighted aggregation of different
kinds of service IOPE matching results off line over a given
training set of positive and negative samples by means of
SVM-based binary relevance classification with ranking.
These different kinds of matching a given service request
R with service offers S in OWL-S or SAWSDL concern
strict and approximated logical, text similarity-based and
structural semantic matching of service signatures (IO) in
Sℋ, as well as stateless, logical plug-in matching of service
preconditions and effects (PE) in SWRL, if they exist.3 Once
learning has been done, the same filters are used by the
learned relevance classifier for selecting relevant services for
previously unknown requests. iSeM classifies as adaptive,
hybrid semantic service IOPE matchmaker [13].

Hybrid signature (IO) matching. Logical signature matching
of iSeM comes in two complementary flavors: Strict logical
matching and approximated logical matching. For every
service pair (R,S) for which strict logical signature matching
as defined above (Section II, Def. 1) fails, iSeM computes the
approximated logical matching degree MatchIOALogic(R,S)
based on approximated subsumption relations (C ⊑AC D)
between I/O concepts C,D via contraction and structured
abduction together with their information-theoretic valuation.
This leads to two hypotheses of approximated logical
signature matching, that are approximated logical plug-in
(H1) and subsumed-by (H2), both of which weighted by
their averaged informative quality v ∈ [−1, 1]. Eventually,
the degree MatchIOALogic(R,S) = (H , v) of approximated
logical service signature matching is determined as the
hypothesis H with maximal valuation v. The approximated
logical matching results are used in the learning process over
a given training set of service pairs to prune the respective
feature space restricted to logic-based matching to compensate
for strict logical false negatives. In addition, iSeM performs
non-logic-based approximated matching, that are text and
structural semantic similarity-based signature matching for

3Restriction to annotation in Sℋ is due to respective limitation of the
adopted concept abduction reasoner [4]; its extension to SℋOℐN is ongoing.

which purpose it applies the respective filters of OWLS-MX3
[10] (cf. Section IV).

Logical specification (PE) matching. To cope with failures
of signature matching only and allow for third-party
matchmaking without having access to service concept
instances, iSeM performs stateless, logical plug-in matching
MatchPE(S,R) of service preconditions and effects by means
of approximated theorem proving, that is theta-subsumption,
of required logical PE-implications like in LARKS[18] (cf.
Section V).

Learning of full service profile (IOPE) selection. To
combine the results of its different IOPE matching filters
for optimal precise service selection, iSeM performs binary
SVM-based semantic relevance learning off line over a given
training set of positive and negative samples (S,R) each of
which is represented as a vector x in the 10-dimensional
feature space of different matching filters. This space gets
particularly pruned by exploiting the approximated logical
signature matching results to compensate for strict logical
false negatives. Once that has been done, the learned binary
classifier d with ranking r is applied by iSeM to any service
pair (S,R) with unknown request R to return the final result:
MatchIOPE(S,R) = (d, r) (cf. Section VI, VII).

IV. HYBRID SEMANTIC SIGNATURE MATCHING

Semantic signature matching by iSeM is performed by
means of both logic-based and non-logic-based matching.
While the first type basically relies on strict logical (cf.
Definition 1) and approximated logical concept subsumptions
(cf. Section IV-A), the second exploits text and structural
similarities of signature concepts (cf. Section IV-B). Both
kinds of approximated logical and non-logic-based matching
are performed by iSeM in particular to compensate for strict
logical signature matching failures in due course of its rele-
vance classification learning (cf. Section VI).

A. Approximated Logical Matching

Inspired by [3], [4], [16], approximated logical signature
matching of a given service pair (S,R) relies on the combined
use of logical contraction and abduction of signature concepts
for approximated concept subsumption (cf. Definition 2)
which is valuated in terms of the information gain and loss
induced by its construction (cf. Definition 3). Eventually, we
extend both means of approximation and valuation on the
concept level to its application on the signature level (cf.
Definition 4).

Definition 2: Logical concept contraction and abduction.
Let C,D concepts of ontology O in Sℋ. The contraction
of C with respect to D is CCP (C,D) = (G,K) with
C ≡ G ⊓K and K ⊓D ∕⊑ ⊥.4 The abducible concept Kℎ is
derived from concept K through rewriting operations [4]:

4K (”‘keep”’) denotes the compatible part of C with respect to D, while
G (”‘give up”’) denotes the respectively incompatible part.



Kℎ = ℎ0 ⊓ rew(K), rew(A) = A, rew(¬A) = ¬A,
rew(C1 ⊓ C2) = rew(C1) ⊓ rew(C2), rew(∃R.C) =
∃R.(ℎi ⊓ rew(C)) and rew(∀R.C) = ∀R.(ℎi ⊓ rew(C));
where i is incremented per application of rew, A
primitive component (in the logical unfolding of K
in O), Ci concepts in Sℋ, and H̄ = (ℎ0, . . . , ℎn).
Structural abduction of concept K with respect to D is
SAP (K,D) = H = (H0, . . . ,Hn) with �[H̄,H](Kℎ) ⊑ D
and �[H̄,H](Kℎ) ∕⊑ ⊥. The approximated concept
C ′ := �[H̄,H](Kℎ) of C with respect to D is constructed
by applying �[H̄,H] = {ℎ0 7→ H0, . . . , ℎn 7→ Hn}
to the abducible concept Kℎ. The approximated logical
concept subsumption C ⊑AC D is defined as follows:
C ⊑AC D ⇔ C ′ ⊑ D with (G,K) = CCP (C,D),
H = SAP (K,D) and C ′ = �[H̄,H](Kℎ). ⋄

To avoid strict logical false negatives meaning lower
average precision, iSeM assumes the user to be consent to
give up those parts of logical signature concept definitions
that cause strict logical subsumption failures and keeping
the remaining parts instead. The latter are used to compute
approximated concept subsumption relations and the
respectively approximated signature matching. Figure 2
provides a schematical overview of the approximation
process: given the incompatibe concept definitions C and D,
the contraction is computed to establish compatibility in terms
of a less specific definition K based on C (step 1). Based
on this result, structural abduction is applied to construct the
approximation C ′, for which concept subsumption C ′ ⊑ D
holds (step 2).

Example 2: Consider Example 1. The approximated logical
subsumption between strict logically disjoint siblings
DebitAccount, CreditCard is computed as follows:
(G,K) = CCP (DA,CC) = (¬∃allows.CreditP ,MOE ⊓
∃issuedBy.BankP ),
Kℎ = ℎ0 ⊓ ObjectP ⊓ ∃ℎasV alue.(ℎ1 ⊓ V alueP ) ⊓
∃issuedBy.(ℎ2 ⊓BankP ),
H̄ = (ℎ0, ℎ1, ℎ2),
H = SAP (DA,CC) = (∃allows.CreditP ,⊤, CompanyP ),
�[H̄,H] = {ℎ0 7→ ∃allows.CreditP , ℎ1 7→ ⊤, ℎ2 7→
CompanyP },
DA′ = �[H̄,H](Kℎ) = ∃allows.Credit ⊓ MOE ⊓
∃issuedBy.(Bank ⊓ Company),
with DA, CC and MOE abbreviations for concept names
DebitAccount, CreditCard and MediumOfExcℎange
respectively. It holds that DebitAccount′ ⊑ CreditCard,
hence DebitAccount ⊑AC CreditCard. ∘

In order to rank the computed approximations, we valuate
them by means of their informative quality. Roughly, the
informative quality of approximated logical subsumption
between signature concepts C,D is the difference between
the information gain and loss induced by its construction.
That is, the utility of the respectively approximated concept
C ′ is the trade off between its information-theoretic similarity

[16] with the original concept C and the targeted one D. The
similarity bases on the probabilistic information content of
concepts with respect to the frequency of their occurrence in
semantic service signatures.

Definition 3: Informative quality of approx. subsumption.
Let SR set of service offers registered at the matchmaker
(service registry), in(S), out(S) multi-set of concepts used for
signature (IO) parameter annotation of service S, SAC(SR)
set of all concepts used for annotating services in SR. We
define the informative quality v of approximated concept
subsumption C ⊑AC D (cf. Definition 2) as:

v(C,D) = siminf (C ′, D)− (1− siminf (C ′, C)) ∈ [−1, 1]

with the information-theoretic similarity siminf (C,D) ∈
[0, 1] of concepts C and D taken from [16]:

siminf (C,D) = 2 ⋅ IC(maxdcs(C,D))/(IC(C) + IC(D)),

where maxdcs(C,D) = argmaxc∈dcs(C,D){IC(c)} is the
direct common subsumer (dcs) of C,D in ontology O with
maximum information content IC(c). The information content
of concept C ∈ SAC(S,R) is IC(C) = − logP (C), else
IC(C) := maxD∈SAC(SR){IC(D)}. We define the proba-
bility of concept C being used for semantic service annotation
as the frequency of its occurrence in semantic signatures of
services in service registry SR:

P (C) = 1
SAC(SR) ⋅

∑
S∈SR ∣{D ∈ in(S)∪out(S) : D ⊑ C}∣,

⋄

Example 3: Informative quality of DebitAccount ⊑AC
CreditCard in Example 2 is computed as follows:
IC(DA) = − logP (DA) = − log 0.045 ≈ 1.348 ,
IC(CC) = − logP (CC) = − log 0.075 ≈ 1.125 ,
IC(DA′) = − log 0.019 ≈ 1.727 ,
siminf (DA′, CC) = 2⋅1.125

1.727+1.125 ≈ 0.789 ,
siminf (DA′, DA) = 2⋅0.92

1.727+1.348 ≈ 0.6 ,
v(DA,CC) = 0.789− (1− 0.6) = 0.39. ∘

For each service pair, depending on the computed type of
their approximated signature concept subsumption relations
one can determine two hypotheses of approximated logical
service signature matching, that are approximated logical
plug-in and approximated subsumed-by, each of which with
maximal informative quality through respective bipartite
concept graph matchings.

Definition 4: Approximated logical signature match.
Let S,R semantic services, in(S), out(S), in(R), out(R)
multisets of their signature concepts and BPG⊑AC

(C̄, D̄)
the concept assignment via bipartite graph matching as in
Definition 1 but with approximated subsumption ⊑AC and
informative quality of edge weights v(C,D) for C ∈ C̄,
D ∈ D̄; BPG⊒AC

(C̄, D̄) analogously with edge weights
v(D,C). Approximated logical plug-in signature matching
hypothesis H1(R,S) holds iff:



Fig. 2. Approximated logical concept subsumption

∀IS ∈ in(S) : ∃IR ∈ in(R) : (IS , IR) ∈
BPG⊒AC

(in(S), in(R)) ∧ ∀OR ∈ out(R) : ∃OS ∈
out(S) : (OS , OR) ∈ BPG⊑AC

(out(S), out(R)).
Approximated logical subsumed-by signature matching
hypothesis H2(R,S) holds iff:
∀IS ∈ in(S) : ∃IR ∈ in(R) : (IS , IR) ∈
BPG⊒AC

(in(S), in(R)) ∧ ∀OR ∈ out(R) : ∃OS ∈
out(S) : (OS , OR) ∈ BPG⊒AC

(out(S), out(R)).
Informative quality val(S,R) : {H1, H2} 7→ [−1, 1] of an
approximated signature matching hypothesis is the average of
informative qualities of its respective approximated concept
subsumptions:

val(S,R)(H1) =
1

2⋅∣in(S)∣ ⋅
∑

(IR,IS)∈BPG⊒AC
(in(R),in(S)) v(IR, IS)

+ 1
2⋅∣out(R)∣ ⋅

∑
(OS ,OR)∈BPG⊑AC

(out(S),out(R)) v(OS , OR).

val(S,R)(H2) =
1

2⋅∣in(S)∣ ⋅
∑

(IR,IS)∈BPG⊒AC
(in(R),in(S)) v(IR, IS)

+ 1
2⋅∣out(R)∣ ⋅

∑
(OS ,OR)∈BPG⊒AC

(out(S),out(R)) v(OR, OS).

The approximated logical signature matching degree
is the approximation hypothesis with maximum
informative quality: MatchIOALogic(S,R) := (H, v) with
H = argmaxx∈{H1,H2}val(x) and v = val(S,R)(H).
Semantic relevance ranking of services S bases
on MatchIOALogic(S,R)[2]∈[-1,1]. Binary relevance
classification by approximated logical matching:
MatchIOALogic(S,R)* = 1 iff MatchIOALogic(S,R)[2]
> 0, else MatchIOALogic(R,S)* = 0. ⋄

Example 4: Consider Examples 1 – 3. The approximated
logical signature match of S,R is computed as follows:
BPG⊒AC

(in(R), in(S)) =
{(Book,Article), (DA,CC), (Person,Customer)},
BPG⊑AC

(out(S), out(R)) = {(Invoice, Ack)} ,
val(S,R)(H1) = 1

2⋅3 ⋅(0.04+0.39+0.95)+ 1
2⋅1 ⋅0.895 = 0.851.

In this example, the same valuation holds for H2, and
MatchIOALogic(S,R) := (H1, 0.68) ∘

Obviously, the approximated logical matching relation
MatchIOALogic(R,S) always exists, and its binary decision
variant MatchIOALogic(R,S)* is redundant to its logical coun-
terpart MatchIOLogic(R,S) with respect to positive service
selection, that is their true and false positives are the same,

but not vice versa. This can be easily seen by considering that
strict logical positives already provide parameter assignments
based on subsumption relations and approximation is trivial
in those cases. The latter fact is used in iSeM to restrict its
computation of approximated logical signature matches in the
learning phase to cases of strict logical false negatives only
and use the evidential coherence of the matching results to
heuristically prune the feature space for precision (cf. Section
VI-B).

B. Text and Structural Signature Matching

Non-logic-based approximated signature matching can
be performed by means of text and structural similarity
measurement. For iSeM, we adopted those of the matchmaker
OWLS-MX3, since they have been experimentally shown to
be most effective for this purpose [10]. For text matching of
signature concepts in the classical vector space model, their
unfoldings in the shared ontology are represented as weighted
keyword vectors for token-based similarity measurement,
while the structural semantic similarity of concepts relies
on their relative positioning in the subsumption graph, in
particular on the shortest path via their direct common
subsumer and its depth in the taxonomy [15].

Definition 5: Approx. non-logic-based signature matching
Let SR service registry, ℐ text index of service signature
concepts, shared ontology O, Sin TFIDF weighted keyword
vector of conjunction of unfolded input concepts of S. Text
similarity-based signature matching is the average of the
respective signature concept similarities:

MatchIOText(S,R) =

1
2 ⋅ (simtext(in(S), in(R)) + simtext(out(S), out(R)))

with Tanimoto coefficient (alternatively Cosine similarity)
simtext(f(S), f(R)) ∈ [0, 1], f ∈ {in, out}.
Structural semantic signature matching is the averaged maxi-
mal structural similarity of their signature concepts:

MatchIOStruct(S,R) =

1
2 ⋅ (simstruct(in(S), in(R)) + simstruct(out(S), out(R)))

with simstruct(A,B) = 1/∣A∣
∑
a∈Amax{simcsim(a, b) :

b ∈ B} ∈ [0, 1], and structural concept similarity adopted
from [15]: simcsim(C,D) = e−�l(e�ℎ−e−�ℎ)/(e�ℎ+e−�ℎ)



if C ∕= D else 1, with l shortest path via direct common
subsumer between given concepts and ℎ its depth in O,
� = 0.2 and � = 0.6 weighting parameters adjusted to
structural features of ontology O. ⋄

Example 5: Applied to Example 1, we obtain a high score
for text-based signature matching MatchIOtext(S,R) = 0.71
which correctly accounts for semantic relevance of S to R,
hence avoids the strict logical false negative. The same holds
for the structural semantic matching MatchIOstruct(S,R)
= 0.69. For example, text and structural similarities of the
strict logically disjoint input concept siblings DebitAccount
and CreditCard are high (simtext(DA,CC)= 0.94,
simcsim(DA,CC) = 0.63) which indicates their semantic
proximity. Please note, that we do not apply a threshold
value do determine relevance but perform semantic relevance
learning (cf. Section VI). However, matching pairs tend to
get higher results for MatchIOtext and MatchIOstruct than
irrelevant pairs. ∘

While text matching of signatures may avoid strict logical
matching failures, structural semantic matching may also
compensate for text matching failures, in particular when
mere is-a ontologies with inclusion axioms only are used for
semantic annotation of service signatures. For reasons of space
limitation, we refer to [10] for more details and examples.

V. STATELESS LOGICAL SPECIFICATION MATCHING

As mentioned above, semantic signatures of services do
not cover functional service semantics usually encoded in
terms of logical service preconditions and effects such that
signature matching only may fail. Though semantic service
descriptions rarely contain such specifications in practice
[14], we equipped the implemented iSeM matchmaker with
the most prominent PE-matching filter adopted from software
retrieval: Logical specification plug-in matching.

Definition 6: Stateless, logical specification plug-in matching.
Let (S,R) services with preconditions (PR, PS) and effects
(ER, ES) defined in SWRL. Service S logically specification-
plugin matches R:

MatchPE(S,R) iff ∣= (PR ⇒ PS) ∧ (ES ⇒ ER).

Stateless checking of MatchPE(S,R) in iSeM 1.0 is adopted
from LARKS [18]: Preconditions and effects specified as
SWRL rules are translated into PROLOG as in [19] and then
used to compute the required logical implications by means of
�-subsumption checking stateless, that is without any instances
(ABox), as given in [20]:

(∀pS ∈ PS : ∃pR ∈ PR : pR ≤� pS)⇒ (PR ⇒ PS)
(∀eR ∈ ER : ∃eS ∈ ES : eS ≤� eR)⇒ (ES ⇒ ER).

A clause C �-subsumes D, written C ≤� D, iff there exists a
substitution � such that C� ⊆ D holds; �-subsumption is an
incomplete, decidable consequence relation [7]. ⋄

Example 6: If applied to Example 1, this PE-matching filter
succeeds, hence avoids the respective false negative of strict
logical signature matching only. Further, consider a service
pair (S,R′) having the identical or strict logically equivalent
semantic signatures as (S,R) given in Example 1 - but with
the requested effect of R′ to only register a book at a given
local index such that service S is irrelevant to R′: The
false positive S of (strict or approximated) logical signature
matching only can be avoided by an additional specification
plug-in matching filter, which, in this case, would correctly
fail. ∘

VI. OFF-LINE SERVICE RELEVANCE LEARNING

In order to find the best combination of its different match-
ing filters for most precise service selection, iSeM learns
their optimal weighted aggregation by using a support vector
machine (SVM) approach. In particular, the underlying feature
space is pruned by evidential coherence-based weighting of
approximated against strict logical signature matching results
over the given training set to improve precision.

A. Overview: Learning and Selection

The training set TS is a random subset of the given service
test collection TCSℋ created from a given standard service
retrieval collection TC by restricting service annotations to
Sℋ. It contains user-rated service pairs (S,R) each of which
with 10-dimensional matching feature vector xi for positive
and/or negative service relevance samples (xi, yi) ∈ X ×
{1,−1} in the possibly non-linearly separable5 feature space
X . The different matching results for (S,R) are encoded
as follows: x[1] ... x[5]∈ {0, 1}5 for MatchIOLogic(R,S)
in decreasing order; x[6] = val(S,R)(H1) and x[7] =
val(S,R)(H2) ∈ [−1, 1] for MatchIOALogic(R,S); x[8]∈ [0, 1]
for MatchIOText(R,S); x[9]∈ [0, 1] for MatchIOStruct(R,S);
and x[10]∈ {0, 1} for MatchPE(R,S). For example: x =
(0, 0, 0, 0, 1, 0.85, 0, 0.4, 0.6, 1) encodes a strict logical fail but
approximated logical plugin with informative quality of 0.85,
text (structural) match of 0.4 (0.6) and plugin specification
match.

The SVM-based classification learning problem of iSeM
then is to find a separating hyperplane ℎ in X such that for
all samples (x, y) ∈ TS for (S,R) with minimal distances to
ℎ these distances are maximal. This yields a binary relevance
classifier d(x) with respect to the position of feature vector
x to the separating ℎ while ranking of S is according to the
distance dist(x) of x for (S,R) to ℎ. Once that has been
done, the learned classifier can be applied to any service
pair (S,R) with potentially unknown request R and returns
MatchIOPE(S,R) = (d(x), dist(x)). As kernel, we employed
the Radial Basis Function (RBF). For more details of this
learning process in general, we refer to [10], [12].

5E.g. feature space for OWLS-TC3 is non-linearly separable



B. Evidential Coherence-Based Feature Space Pruning

To improve the performance of the binary SVM-based
relevance classier to be learned by iSeM, iSeM exploits
information available from the given trainings set TS to
prune the feature space X based on the classification results
of strict Vs. approximated logical signature matching. Due
to redundance of both logical matching types for (true and
false) positive classification, it restricts the pruning of feature
vectors x ∈ X to cases of strict logical matching failures
(MatcℎIOALogic(R,S) = LFail). The respective set Ev =
{(x, y) : x[5] = 1} of classification events is partitioned with
respect to binary classification results of approximated logical
matching (MatchIOALogic(R,S)*) for these cases as follows:

E1 = {(x, y) ∈ Ev : y = 1 ∧ (x[6] > 0 ∨ x[7] > 0)}, (1)
E2 = {(x, y) ∈ Ev : y = −1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0}, (2)
E3 = {(x, y) ∈ Ev : y = 1 ∧ x[6] ≤ 0 ∧ x[7] ≤ 0}, (3)
E4 = {(x, y) ∈ Ev : y = −1 ∧ (x[6] > 0 ∨ x[7] > 0)}. (4)

For example, E1 denotes all relevant samples (x, y) ∈ Ev
classified correctly as (true) positives by MatcℎIOALogic
while E2 contains all irrelevant samples (x, y) ∈ Ev classified
correctly as (true) negatives by MatcℎIOALogic. The sets E3

and E4 contain wrong classifications of approximated match-
ing, hence are redundant to their strict logical counterpart and
deleted from the respectively pruned feature space for learning.

Inspired by the work of Glass [5], the feature space X is
pruned further by modification of logical matching results of
feature vectors x ∈ X of samples in E1 or E2 based on evi-
dential coherence-based weighting of approximated matching
results as follows:

E1, x[6] ≥ x[7] 7→ x[5] := 0, x[6] := w1 ⋅ x[6], x[7] := 0,

E1, x[6] < x[7] 7→ x[5] := 0, x[6] := 0, x[7] := w2 ⋅ x[7],

E2, x[6] ≥ x[7] 7→ x[6] := w3 ⋅ x[6], x[7] := 0,

E2, x[6] < x[7] 7→ x[6] := 0, x[7] := w4 ⋅ x[7].

In case of true positive approximated logical matching, the
encoded strict logical misclassification in x ∈ X is displaced
(x[5] = 0); in any case, the better approximation (H1 or
H2) is weighted with the evidential coherence value (one
of w1 . . . w4) of one of the following hypotheses (A1, A2)
of relevance explanation: (A1) MatcℎIOALogic is a correct
explanation of semantic relevance (avoids logical false nega-
tives), and (A2) MatcℎIOALogic is a correct explanation for
semantic irrelevance (avoids introduction of false positives).

Which of both hypotheses of semantic relevance explanation
is best with respect to a given test collection? Following [5],
iSeM determines the quality of an explanation by measuring
the impact of evidence E on the probability of explanation
H (with coherence or confirmation measures) rather than
measuring its posterior probability with Bayes. In other
words, it determines the most plausible explanation H instead
of the most probable measured in terms of its coherence
with evidence E over given training set. While hypothesis
A1 (A2) is represented by special case set H+

i (H−i ), the set

E+ (E−) provides cases of observed evidence for relevance
(irrelevance) in the test collection. The coherence overlap
measure Co(H,E) = P (H∩E)

P (H∪E) performed best in practice [5],
and is used by iSeM to compute the weights of approximated
logical signature matching results for respective feature
space pruning: w1 = Co(H+

1 , E
+), w2 = Co(H+

2 , E
+),

w3 = Co(H−1 , E
−) and w4 = Co(H−2 , E

−).

Example 7: Consider training set TS with ∣Ev∣ = 20,
∣E1∣ = 10 and ∣E4∣ = 1. E1 contains 8 events (cases) of
approximated plug-in matching (x[6] ≥ x[7]), the only event
in E4 is also an approximated plug-in match. Required
posterior probabilities for w1 = Co(H+

1 , E
+) are computed

as follows: P (H+
1 ) = ∣{x∈E1∪E4:x[6]≥x[7]}∣

∣Ev∣ = 9
20 ,

P (E+) = ∣E1∪E3∣
∣Ev∣ = 14

20 , P (H+
1 ∣E+) = ∣{x∈E1:x[6]≥x[7]}∣

∣E1∪E3∣ =
8
14 . The resulting evidential coherence-based weight
of approximated logical matching is: Co(H+

1 , E
+) =

P (E+)⋅P (H+
1 ∣E

+)

P (E+)+P (H+
1 )−P (H+

1 ∩E+)
≈ 0.5333. That is, the coherence

value of the hypothesis of approximation H1 (represented
by feature x[6]) being a correct explanation for semantic
relevance (A1) is w1 = 0.5333. ∘

VII. EVALUATION

Our preliminary experimental performance evaluation of
the implemented iSeM 1.0 is restricted to semantic signature
matching, since the otherwise required standard service re-
trieval test collection for IOPE-based matching does not exist
yet6. For evaluation, we used the public tool SME2 v2.17 and
the subset TCSℋ of services in OWLS-TC3 annotated in Sℋ.

Fig. 3. Macro-averaged recall/precision (MARP) and average precision
(AvgP) of basic and adaptive signature matching by iSeM 1.0.

In summary, the evaluation results shown in Figure 3 reveal
that (a) approximated logical matching via abduction and
informative quality can perform significantly better than its
strict logical counterpart, (b) performs closer to but still worse

6The public standard test collections OWLS-TC3 for OWL-S and
SAWSDL-TC2 for SAWSDL at semwebcentral.org contain services with
semantic signatures only.

7http://projects.semwebcentral.org/projects/sme2/



than its non-logic-based approximated counterparts (text and
structural matching), and (c) adaptive hybrid combination
outperforms all other variants in terms of precision. The first
two findings can be directly derived from the MARP graph
and the AvgP values shown in Figure 3.

As expected, due to the redundance of strict and approx-
imated logical signature matching positives, approximated
logic-based matching alone was not able to outperform its
non-logic-based counterparts but performed better than strict
logical matching. However, additional evaluation restricted to
TCLFN/FP ⊂ TCSℋ that only contains cases of false pos-
itives and false negatives of strict logical signature matching
indicated that, according to the statistical Friedman Test, none
of the tested matching variants performed significantly better
than the others at 5% level. This implies that each of the basic
signature matching filters of iSeM contributes to an overall
increase of performance for some cases of strict logical false
classification, i.e. none of the tested variants outperformed the
others for almost all service requests in the test collection.

The adaptive hybrid aggregation of the four different seman-
tic signature matching filters as done by iSeM (cf. Section VI)
significantly increases the retrieval performance compared to
that of its individual matching filters. While the combination
of strict logic-based, text similarity and structure matching
already yields good results, the additional consideration of
approximated logical matching (in the learning process) per-
forms even if only slightly better. For our specific use case,
the proposed feature space pruning for relevance learning
performed best, but arguably not in general [1].

VIII. RELATED WORK

iSeM is the first adaptive, hybrid semantic service IOPE
matchmaker, and there are quite a few other matchmakers
available [13]8. For example, the strict logical and the non-
logic-based semantic signature matching filters as well as the
SVM-based learning process of iSeM are adopted from the
adaptive signature matchmaker OWLS-MX3 [10]. However,
unlike iSeM, OWLS-MX3 neither performs approximated log-
ical signature matching, nor PE-matching, nor is its adaptive
process applicable to IOPE matching results and the feature
space is not evidentially pruned. The same holds for the
adaptive hybrid semantic signature matchmaker SAWSDL-
MX2[12]. Besides, SAWSDL-MX2 performs structural match-
ing on the WSDL grounding level only which significantly
differs from the semantic structural matching performed by
iSeM. The use of abduction for approximated logical signa-
ture matching is inspired by DiNoia et al.[4], [3]. However,
their non-adaptive matchmaker MaMaS performs abduction
for approximated matching of monolithic service concept
descriptions in Sℋ, while iSeM exploit it for significantly
different approximated structured signature matching and its
use for learning. Besides, MaMaS has not been evaluated yet.

8See also S3 contest in 2009: http://www.dfki.de/ klusch/s3/html/2009.html

IX. CONCLUSION

We presented the first adaptive, hybrid and full semantic
service profile (IOPE) matchmaker that, in particular, performs
approximated logical reasoning and respectively evidential
coherence-based pruning of learning space to improve pre-
cision over strict logical matching. The preliminary evaluation
of iSeM revealed, among others, that its adaptive hybrid com-
bination with non-logic-based approximated signature match-
ing improves each of them individually. The approximated
logical matching results by iSeM can also be exploited for
explanation-based interaction with the user during the selec-
tion process, if required, though in its initially implemented
version iSeM remains non-obtrusive in this respect.
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