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ABSTRACT
A large variety of solutions exists for the problem of coali-
tion formation among autonomous agents, at the theoretical
level within game theory, and at the practical, algorithmic
level, within multi-agent systems. However, one major un-
derlying assumption of algorithmic solutions suggested to
date is that the values of the coalitions are known and are
certain at the time of coalition formation negotiation. In
many practical cases such as in open, dynamically chang-
ing environments this assumption does not hold. In this
paper we propose an algorithmic solution to the coalition
formation problem that overcomes this limitation of previ-
ous solutions. Our solution supports fuzzy coalition values
and allows agents to form stable coalition configurations.
For this, we combine concepts from the theory of fuzzy sets
with the game-theoretic stability concept of the Kernel to
deduce the new concept of a fuzzy Kernel. We further pro-
vide a low-complexity algorithm for forming fuzzy Kernel
stable coalitions among agents.

Keywords
Fuzzy cooperative games, coalition formation, fuzzy kernel

1. INTRODUCTION
Cooperation within coalitions allows agents to perform

tasks that they may otherwise be unable to perform. Co-
operative game theory provides a well developed and math-
ematically founded theory according to which one can de-
termine which coalitions are beneficial and what coalition
configurations are stable and (Pareto) optimal. Game the-
ory itself, however, does not provide algorithms to be used
as a coalition formation process. Such algorithms are inves-
tigated in the field of multi-agent systems. In recent years,
several coalition formation algorithms were proposed, some
concentrating on agents that attempt to maximize group
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utility (e.g., [9]), others addressing self-interested agent that
attempt to maximize individual utilities (e.g., [10]). Some
solutions tried to reduce complexity [6], compromising op-
timality, whereas other, exponential solutions sought opti-
mality, proving that without an exponential complexity the
solution may be far from optimal [8]. All of these solu-
tions assumed that the values of the coalitions are known
for certain before the coalitions are formed and during the
formation process. However, in many real-world environ-
ments, this assumption does not hold, and values may be
known only to a limited degree of certainty. Thus, exist-
ing coalition formation methods are inapplicable. In this
paper, we address exactly this problem. In particular, we
propose a model and an algorithm that allow self-interested
agents to form stable coalitions in the face of uncertain val-
ues. We do so by fuzzifying concepts of cooperative game
theory to allow specification of uncertain coalition values.
In our solution, payoff calculation incorporates fuzzy quan-
tities instead of real numbers. Similar work [7] fuzzified
the core and the Shapely value. Here, we present a fuzzified
version of the Kernel [3], a set-based stability concept which
yields stable solutions for every game. The fuzzified Kernel
has an intuitively similar interpretation as the crisp Kernel
has, however it extends it to contain information about the
degree of certainty to which a fuzzy configuration is Kernel-
stable. We show that the computational complexity of the
fuzzy Kernel is similar to the complexity of the crisp Kernel.
We further show that the originally exponential complexity
can be reduced to polynomial complexity by placing a cap
on the size of coalitions. Finally, we exploit this property
to present a polynomial coalition formation algorithm based
on the fuzzy kernel.

The paper begins with an introduction to cooperative
games and the Kernel (section 2), followed by an introduc-
tion to fuzzy quantities in section 3. It proceeds with fuzzi-
fications of the Kernel and related concepts in section 4, and
then discusses computational complexity issues in section 5.
Sections 6 and 7 present a corresponding fuzzified trans-
fer scheme for side-payments and the algorithm for forming
fuzzy Kernel stable coalitions among agents, respectively.
We conclude the paper with an outline of future work in
section 8.

2. CRISP KERNEL-STABLE GAMES
In order introduce fuzziness to the cooperative game-theoretic

concepts needed for a fuzzified kernel, we briefly remember
their original, crisp definitions here.



Definition 1. A cooperative game in characteristic func-
tion form is a pair (A, v) with the set of agents A and the
characteristic function v : 2A �→ R. v(C) is called the value
of the coalition C ⊂ A. v(∅) := 0.

This value of a coalition C can be viewed as a measure of
the payoff achievable by C by cooperating behaviour of its
members.

Definition 2. A configuration (C, u) for a game (A, v) spec-
ifies a payoff distribution u : A �→ R for a coalition structure
C, a partition of A. u(a), a ∈ A denotes the payoff for agent
a. u is called individually rational iff ∀a ∈ A : u(a) ≥ v(a)
and efficient iff ∀ C ∈ C :

P
a∈C u(a) = v(C)

A solution to a game is given by an individually rational
and efficient configuration which satisfies a chosen stability
concept. In this paper we focus on the stability concept
of the kernel. It is based on the idea that the members
of a coalition should be in an equilibrium regarding their
”power to object” each others payoff. This power is called
surplus of an agent over another. It is measured by regarding
coalitions not in the coalition structure of the configuration
(C, u) in question. The excess of such a coalition is the
additional payoff its members can gain by actually forming
this coalition with respect to their original payoffs according
to u.

Definition 3. The excess e(C∗, u) of a coalition C∗ 
∈ C in
the configuration (C, u) is given by

e(C∗, u) := v(C∗)−
X

a∈C∗
u(a)

The surplus of an agent ai over another agent ak is then
defined as the maximum excess of all coalitions including
agent ai but without agent ak.

Definition 4. The surplus sik of an agent ai over agent ak

with ai, ak ∈ C ∈ C, ai 
= ak, is defined as

sik := max{e(C∗, u) | C∗ 
∈ C, ai ∈ C∗, ak 
∈ C∗}
Please note that this implies the assumption that ai would
be able to gain all of the excess of each considered coalition
if it was realized. This might be considered as not very
realistic, because the other agents in the coalition would be
likely to claim a part of the additional profit for themselves.
However, because in the definition of the kernel the surplus
is used more like an index but an accurate measurement,
this seems to be acceptable.

An agent ai is said to dominate agent ak in the configu-
ration (C, u) iff ai, ak ∈ C ∈ C, sik > ski and u(ak) > v(ak)
hold. The last condition means that agent ak really has to
loose something, i.e. he is better off staying in his current
coalition than acting alone. The kernel is then defined as the
set of configurations in which no agent dominates another.

Definition 5. The kernel K of a game (A, v) is defined as

K :=
n
(C, u) | ∀ai, ak ∈ C ∈ C :

ˆ
(sik = ski)

∨ (sik > ski ∧ u(ak) = v({ak}))
∨ (ski > sik ∧ u(ai) = v({ai}))

˜o
Thus, a configuration (C, u) is called a kernel-stable solu-

tion of a game (A, v) iff u is individually rational and efficient
and (C, u) is an element of the kernel K of (A, v).

3. FUZZY QUANTITIES
The concept of fuzzy subsets was first introduced by Lotfi

A. Zadeh in [13]. It emerged from his idea that it should
be possible for elements of a set to belong to a fuzzy subset
only to a certain degree. The actual meaning of this degree
is application-dependant. For instance, it might be a degree
of truth (”truth value”) or a possibility in the sense of possi-
bility theory. In the following, we assume some possibilistic
interpretation of the fuzziness.

Definition 6. A fuzzy subset F of a set M is defined by its
membership function µF : M �→ [0, 1] where µF (x), x ∈ M
is called the degree of membership or membership value of x
in M .

We define some further fuzzy concepts to be used later.

Definition 7.

1. Let F be a fuzzy subset of some set M , and x ∈ M .
We write x ∈ F iff µF (x) > 0 and define
support(F ) := {x | x ∈ F}

2. Any fuzzy subset of R is called a fuzzy quantity.

3. Let F be a fuzzy quantity.
size(F ) := sup{support(F )} − inf{support(F )}

4. A fuzzy quantity F is called normalized iff
supx∈R

{µF (x)} = 1

5. x ∈ R with µF (x) = maxy∈R(µF (y)) is called a modal
value of F .

6. R
F denotes the set of all fuzzy quantities.

7. rF denotes a fuzzy quantity with

µrF (x) =


1 if x = r
0 otherwise

, r, x ∈ R

8. A fuzzy interval I is a fuzzy quantity with
∀x1, x2, x3 ∈ R, x1 < x2 < x3 : µI(x2) ≥
min(µI(x1), µI(x3))

9. Any fuzzy interval N satisfying (a) there exists
exactly one xm ∈ R : µN (xm) = 1 and (b)
∃x1, x2 ∈ R, x1 < xm < x2 : µN (x) = 0 for all
x ∈ R \ [x1, x2] is called a fuzzy number.

10. A triangular shaped fuzzy number (x, y, z)F ,
x, y, z ∈ R is a fuzzy number with

µ(x,y,z)F (r) =

8<
:

r−x
y−x

if x < r ≤ y
z−r
z−y

if y < r < z

0 otherwise

, r ∈ R

For fuzzy quantities and numbers, arithmetic operations
can be defined following Zadeh’s extension principle. For the
fuzzy kernel, we need the operations of addition, negation,
subtraction and multiplication with a crisp number.

Definition 8. Let F1, F2 ∈ R
F , x, y, z, a ∈ R.

µF1⊕F2(x) := sup{min(µF1(y), µF2(z)) | y + z = x}
µ−F1(x) := µF1(−x)

µF1�F2(x) := µF1⊕(−F2)(x)

µa·F1(x) :=


µF1(x/a) if a 
= 0
µ0 if a = 0



Note that for additions and subtractions on F1 and F2 with
a result F3, we have size(F3) = size(F1) + size(F2).

The extension principle is also used to define the fuzzy
extension of the max function.

Definition 9. Let F1, F2 ∈ R
F , x, y, z ∈ R.

µ gmax(F1,F2)(x) := sup{min(µF1(y), µF2(z)) |max(y, z) = x}
For convenience, let

gmax({x1, · · · , xn} ⊂ RF ) :=gmax(x1, gmax(· · · , gmax(xn−1, xn) · · · )
and gmax({F1}) := F1

From the definition of the crisp kernel, it is clear that we
will need to compare fuzzy quantities to each other in order
to determine whether a fuzzy quantity A is greater than a
fuzzy quantity B. We cannot use gmax for this comparison
because it constructs a new fuzzy quantity out of the mem-
bership functions of its operands rather than choosing one
of the two to be maximal. Thus, we will need a so-called
ranking method for fuzzy quantities. Several of such meth-
ods have been proposed in the literature (see for example
[1]). In section 4, the fuzzy kernel is defined such that con-
figurations are to some degree fuzzy kernel-stable. So we
need a ranking operator R that yields a certain degree of
a possibilistic measure to a comparison between two fuzzy
quantities and thus is a fuzzy subset of R

F × R
F .

Definition 10. Let F1, F2 ∈ R
F and R be a fuzzy subset of

R
F × R

F . R is called a fuzzy ranking operator if µR(F1, F2)
denotes the degree to which F1 can be considered ”greater”
compared to F2. R is called a fuzzy similarity relation if
µR(F1, F2) denotes the degree to which F1 can be considered
”similar” to F2. Further let G be a fuzzy ranking operator
and S a fuzzy similarity relation. We define

(F1 �G F2) := µG(F1, F2)

(F1 ≈S F2) := µS(F1, F2)

In the following, we use the ”possibility of dominance” PD,
which was introduced in [4], as an instance of G. It is defined
as

F1, F2 ∈ R
F : (F1 �PD F2) := sup

x,y∈R,x≥y
{min(µF1(x), µF2(y))}

As an instance of S, we use the analogously defined similar-
ity relation PS with

(F1 ≈PS F2) := sup
x∈R

{min(µF1(x), µF2(x))}

Further we define a set of maximal elements of a set of fuzzy
quantities in the way Mareš did it in [7].

Definition 11. Let X be a set of fuzzy quantities and G
a fuzzy ranking operator. The fuzzy subset XmaxG of X is
given by

∀F1 ∈ X : µX
maxG (F1) := min

F2∈X
(F1 �G F2)

Thus, µX
maxG (F1) denotes the degree to which F1 can be

considered a maximal element of X. For convenience,

maxG X := XmaxG .

Finally, we will need the logical operations ”AND” and
”OR” with operands ∈ [0, 1].

Definition 12. Let x, y ∈ [0, 1] : x ∧ y := min(x, y) and
x ∨ y := max(x, y)

4. FUZZY KERNEL-STABLE GAMES
As we indicated in section 1, negotiation during the coali-

tion forming process might face uncertainties. Such uncer-
tainties could be caused by the possibility of nondeterminis-
tic events that hamper the negotiation process and produce
incomplete information regarding the values of coalitions.
This leads us to the formation of fuzzy-valued coalitions
(see also [7]). Other approaches to introduce fuzziness into
game theory include the formation of fuzzy coalitions, where
agents are members of (multiple) coalitions to a certain de-
gree (see [2]). For fuzzy-valued coalitions, the characteris-
tic function of the game maps to fuzzy values. Thus, the
definitions of the basic game-theoretic concepts as given in
section 2 have to be revised for the fuzzy-valued case.

Definition 13. A fuzzy cooperative game in characteristic
function form is a pair (A, vF ) with the set of agents A and
the fuzzy characteristic function vF : 2A �→ R

F . vF (C) is
called the fuzzy value of the coalition C.

In the following we say just ”fuzzy game” instead of ”fuzzy
cooperative game”.

Example 1. We give a simple example of a fuzzy game
definition with four information agents:

A := {a1, a2, a3, a4}

Let us suppose these agents have accepted a task to de-
liver some information to their respective users. The agents’
evaluation of the relevance of the available information items
to the search tasks is uncertain. The agents now collect as
much possibly relevant information as they are able to ob-
tain. An agent can obtain such information either by looking
it up in its local database, or by cooperation with another
agent. It finally offers the collected information items to its
user, who pays some price to get access to those items which
are relevant to him/her.

The uncertainty of the relevance of information items to
the search task is expressed by the use of fuzzy numbers
to summarize the value of a bundle of information items.
Thus, let Is

d denote the fuzzy value of the information items
which are locally stored by agent s with respect to the search
task of agent d. For example, let’s assume agent a1 has lo-
cally stored some information items which he can sell to
its own user for ”about” 3.5 (monetary units). Further, it
is assumed to be certain that a1 will get no less than 3.0
and no more than 4.0 for them. Thus, we summarize his
local information’s value for his search task with the trian-
gular fuzzy number Ia1

a1 := (3, 3.5, 4)F . The other values
of game-relevant bundles of information items are assumed
to be obtained in a similar way and given in table 1. The
last line of this table states the sum of each agent’s game-
relevant information which gives an easy but very rough
indication of an agent’s ”power” in the upcoming negoti-
ations. For simplicity, we assume that every information
is locally available to at most one agent in the game. We
restrict size of profitable coalitions to max. two agents by
defining vF (C3,4) := 0F for all three- and four-agent coali-
tions C3,4. The fuzzy coalition value of a one- or two-agent
coalition C is defined as the sum of the fuzzy values of all
game-relevant information items available in the coalition:
vF (C) :=

P⊕
a1∈C

P⊕
a2∈C Ia1

a2 , 1 ≤ |C| ≤ 2. The game is



Is
d s = a1 s = a2

d = a1 (3, 3.5, 4)F (3, 3.25, 3.5)F

d = a2 (2, 2.25, 2.5)F (4, 5, 6)F

d = a3 (0.5, 0.65, 2)F (1.6, 1.75, 1.9)F

d = a4 (5, 5.25, 6)F (10, 10.5, 11)F

P⊕ (10.5, 11.65, 14.5)F (18.6, 20.5, 22.4)F

Is
d s = a3 s = a4

d = a1 (0, 0.1, 1)F (7, 7.25, 8)F

d = a2 (0.4, 0.5, 0.6)F (5, 6, 7)F

d = a3 (0.5, 0.75, 1)F (2.5, 2.9, 3.25)F

d = a4 (1, 1.1, 1.25)F (2, 2.5, 4)F

P⊕ (1.9, 2.45, 3.85)F (16.5, 18.65, 22.25)F

Table 1: Fuzzy values of information items

summarized as follows:

vF (a1) = (3, 3.5, 4)F vF (a2) = (4, 5, 6)F

vF (a3) = (0.5, 0.75, 1)F vF (a4) = (2, 2.5, 4)F

vF (a1, a2) = (12, 14, 16)F vF (a1, a3) = (4, 5, 8)F

vF (a1, a4) = (17, 18.5, 22)F vF (a2, a3) = (6.5, 8, 9.5)F

vF (a2, a4) = (21, 24, 28)F vF (a3, a4) = (6, 7.25, 9.5)F

vF (a1, a2, a3)
F = 0F vF (a1, a2, a4)F = 0F

vF (a1, a3, a4)
F = 0F vF (a2, a3, a4)F = 0F

vF (a1, a2, a3, a4)
F = 0F

With the coalition values being fuzzy, it seems plausible to
also fuzzify the payoff distribution: no crisp payoff can be
guaranteed as long as it is not known which coalition values
will be realized.

Definition 14. A fuzzy configuration is a pair (C, uF ) with
the (crisp) coalition structure C and the fuzzy payoff distri-
bution uF : A �→ R

F . With a fuzzy coalition values and
payoff distributions, the concepts of individual rationality
and efficiency also become fuzzy: let G be a fuzzy ranking
operator and S a fuzzy similarity relation.

a ∈ A : µindratG(a) := uF (a) �G vF (a) denotes the de-
gree of fuzzy individual G-rationality of agent a.

µindratG(uF ) :=
V

a∈A{µindratG(a)} denotes the degree

of fuzzy individual G-rationality of uF .

µeffS (uF ) :=
V

C∈C
n P⊕

ai∈C uF (ai) ≈S vF (C)
o

de-

notes the degree of fuzzy S-efficiency of uF .

Example 2. With C := {{a1}, {a3}, {a2, a4}}, uF (a1) =
vF ({a1}), uF (a2) = (8.9, 10.4, 12.4)F , uF (a3) = vF ({a3})
and uF (a4) = (12.1, 13.6, 15.6)F , let (C, uF ) be a fuzzy con-
figuration for the fuzzy game defined in example 1. Here
a2’s and a4’s payoffs are certainly greater than their respec-
tive single-agent coalition values, thus the degree of fuzzy
individual PD-rationality is 1.0. The degree of fuzzy PS-
efficiency is also 1.0 because uF (a2)⊕uF (a4) = vF ({a2, a4}).
Fuzzy coalition stability concepts define a degree to which
given fuzzy configurations are stable. Thus, we define so-
lutions of a fuzzy game as set of fuzzy configurations that
satisfy given minimal requirements on the degrees of stabil-
ity, individual rationality and efficiency.

Definition 15. Let µstableSC (C, uF ) denote the degree to
which a fuzzy configuration (C, uF ) of a fuzzy game (A, vF )
is stable according to some fuzzy stability concept SC. Let
irmin, efmin, stmin ∈ [0, 1], G a fuzzy ranking operator and
S a fuzzy similarity relation. The configuration (C, uF ) is
called a (irmin, efmin, stmin, G, S, SC)-solution of the fuzzy
game (A, vF ) iff µindratG(uF ) ≥ irmin, µeffS (uF ) ≥ efmin

and µstableSC (C, uF ) ≥ stmin

Figure 1: Membership functions of the maximum fuzzy

excesses of agent a2 excluding a4

As we have seen in section 2, the definition of the kernel
is based on the concepts of excess and surplus. For the
definition of a fuzzy kernel, these concepts also need to be
fuzzified. In the case of the excess, this is straight-forward.

Definition 16. The fuzzy excess eF (C∗, uF ) of a coalition
C∗ 
∈ C in the fuzzy configuration (C, uF ) is defined as

eF (C∗, uF ) := vF (C∗)�
X

a∈C∗

⊕
uF (a)

To define the fuzzy surplus, however, we have to keep in
mind that the maximum of a set of fuzzy quantities is a
fuzzy subset. Thus, the fuzzy surplus should be an element
of the (fuzzy) set of maximal fuzzy excesses. However, there
could be more than one excess with maximal membership
value in this set. Therefore, we will define the surplus as thegmax of the maximal excesses.

Definition 17. Let EF
ik be the set of fuzzy excesses of

an agent ai excluding agent ak in the fuzzy configuration
(C, uF ):

EF
ik := {eF (C∗, uF )| C∗ 
∈ C, ai ∈ C∗, ak 
∈ C∗}

Let G be a fuzzy ranking operator. The fuzzy G-surplus sF G

ik

in (C, uF ) of agent ai over agent ak is then defined as

sF G

ik := gmax(maxG(EF
ik))

Example 3. For the fuzzy configuration given in exam-
ple 2, we consider maxPD(EF

24), the set of maximal fuzzy
excesses of agent a2 excluding agent a4, which is illustrated
in figure 1. eF ({a1, a2, a3}) is not included because its sup-
port lies completely to the left of the other three excesses
which overlap pairwise. Then, sF

24 = gmax(maxG(EF
24)) =

eF ({a1, a2})
Now, we are able to give a definition of the fuzzy kernel
by just substituting the crisp terms and operators of the
definition of the crisp kernel to their fuzzy counterparts.

Definition 18. Let G be a fuzzy ranking operator and S a

fuzzy similarity relation. The fuzzy (G, S)-kernel KF G,S

of
a fuzzy game (A, vF ) is defined by its membership function

µF G,S

K : (C, uF ) �→ [0, 1] with

µ
KF G,S (C, uF ) :=

^
ai,ak∈C∈C

n
(sF G

ik ≈S sF G

ki )

∨ (sF G

ik �G sF G

ki ∧ uF (k) ≈S vF ({ak}))
∨ (sF G

ki �G sF G

ik ∧ uF (i) ≈S vF ({ai}))
o



This definition is perfectly in accordance with the definitions
of the crisp kernel; there, the surplus is defined by means
of the maximum excess of possible coalitions. Agents are
further assumed to gain all of the excess, as it was mentioned
above. So the crisp excess could be seen as an amount that
an agent could possibly (but maybe not likely) gain if the
corresponding coalition was realized. Thus, already the crisp
kernel has some kind of possibilistic interpretation. This is
just extended here to the values of the excesses themselves.

Clearly, the actual membership values of configurations in
the fuzzy kernel heavily depend on the actual choice for the
ranking operator G and similarity relation S. Many have
been proposed in the literature and most of them arrive at
questionable results in difficult cases, e.g. if non-normalized
fuzzy quantities are involved. Thus, choosing the ”right”
ranking method should be done with respect to a given fuzzy
game. Even the possible range of µ

KF G,S depends on that
choice and on the membership functions of the coalition val-
ues. For example, if we use PD and PS, and some of the
coalition values are non-normalized, a configuration (C, uF )
with µ

KF PD,P S (C, uF ) = 1 might not exist. For practical
applications it might thus be necessary to allow only nor-
malized fuzzy quantities.

Example 4. Consider the fuzzy configuration of example 2
again. The most interesting fuzzy comparison in this con-

figuration is (sF PD

24 ≈PS sF PD

42 ) ≈ 0.84. It causes the degree
of fuzzy (PD, PS)-kernel-stability to be 0.84. As we have
seen in example 2, the degrees of fuzzy PS−efficiency and
individual PD-rationality are 1.0. Thus, the configuration

is a (1.0, 1.0, 0.84, PD, PS, KF PD,P S

)-solution

For a comparison with the definition of the crisp kernel,
consider a game where all coalition values and the values
of every payoff function are of the form rF , r ∈ R. Then
again take G := PD, and S := R with for fuzzy quantities
F1 = rF

1 , F2 = rF
2 let

(F1 ≈R F2) :=


1 if r1 = r2

0 otherwise

Then the sets of maximal excesses have exactly one element,
with a membership value = 1. Because the result of an
addition or subtraction of fuzzy quantities of the form rF is
still of this form, the fuzzy surpluses are also such. Further,
all of the comparisons involved to calculate the membership
value of a fuzzy configuration in the fuzzy kernel result in
degrees of either 0 or 1, resulting in membership values of
0 or 1. Thus, in such a situation, the fuzzy kernel yields,
roughly spoken, the same result as the crisp kernel if for
every fuzzy quantity rF in the fuzzy game r is used in the
crisp game. If a ”real” fuzzy game is considered and the
fuzziness is interpreted as possibility, the degree to which a
fuzzy configuration is contained in the fuzzy kernel can be
interpreted as the possibility that the configuration is kernel-
stable upon realization of the game. ”Realization” means
that the agents have actually formed coalitions and executed
their strategies so that the actual, non-fuzzy coalition values
are known in the end.

5. COMPLEXITY
It is clear that in the general case, an actual computa-

tion of µK(C, uF ) needs exponential time with respect to
the number of agents in the game because this was already

the case with crisp games. However, it is worth to have a
closer look on the complexity in order to point out the parts
where optimizations and improvements could be made under
certain assumptions.

Lemma 1. For a fuzzy game (A, vF ), a fuzzy configura-
tion (C, uF ) and a fuzzy quantity F ∈ R

F let

nagents = |A|
nfuzzymax = max(max

C∈2A
{size(vF (C))},max

a∈A
{size(uF (a))})

The membership value of (C, uF ) in the kernel K for (A, vF )
can be computed in time

Compkernel = O(22nagents · nagents
5 · nfuzzymax

2)

Sketch of the proof:
The complexity of arithmetic operations and ranking op-

erators on fuzzy quantities F1 and F2 can be assumed to
be O(size(F1) · size(F2)) for approximate calculations with
general fuzzy quantities.

For the calculation of a fuzzy excess e(C,uF ), at most
nagents fuzzy subtractions and 1 fuzzy addition are required.
The maximum size of the fuzzy quantities dealt with during
the calculation can reach (nagents + 1) · nfuzzymax. The
complexity of an operation on fuzzy quantities can thus be
bounded by Compfuzzyop = O((nagents · nfuzzymax)

2).
Then, the complexity of a calculation of a fuzzy ex-

cess can be summarized with Compexcess = O(nagents ·
Compfuzzyop) = O(n3

agents · nfuzzymax
2).

To compute the fuzzy surplus sF
ik, the fuzzy excesses

of an agent will have to be cross-compared. For a set
of fuzzy quantities X of size m = |X|, m2 comparisons
are made. Since the number of excesses is exponential
with respect to nagents, the set of maximal excesses is
found in time O(22nagents · Compfuzzyop). Then, there are
maximum 2nagents−1 gmax operations, which is covered by
O(22nagents · Compfuzzyop). Thus, the complexity for the
calculation of each fuzzy surplus is Compsurplus = 2nagents ·
Compexcess + O(22nagents · Compfuzzyop) = O(22nagents ·
nagents

3 · nfuzzymax
2).

For the fuzzy kernel the complexities of ∨ and ∧ are O(1).
Then, the complexity of a membership value calculation of
fuzzy kernel turns out to be Compkernel ≤ nagents

2 · (2 ·
Compsurplus +5 ·Compfuzzyop) = O(22nagents · nagents

5 ·
nfuzzymax

2).
However, polynomial time can be achieved by limiting the

size of the considered coalitions like it was done by Klusch
and Shehory (see also [6]). This is especially plausible in sit-
uations where communication costs prevent coalitions larger
than a certain size to be profitable.

6. TRANSFER SCHEMES
To actually compute stable configurations, iterative tech-

niques have been developed for the crisp case (see also [11]).
These are called transfer schemes and specify a sequence of
payoff-distributions converging at a stable configuration for
a given coalition structure.

For the kernel of a crisp game (A, v) with the configuration
(C, u), an upper bound tmax

ki for a transfer tki of agent ak ∈
A to agent ai ∈ A in one step of the sequence is thereafter
given by

tmax
ki :=


min((sik − ski)/2, u(k)− v(k)) if sik > ski

0 otherwise



The transfer is sometimes also called side-payment. How-
ever, this term might be confusing because this amount is
never really paid between the agents. It is only used to
compute a stable configuration. In the end, only this stable
configuration is part of the solution, and not the sequence of
configurations to get there. This is especially important to
note when we now come to transfer schemes for fuzzy config-
urations. A transfer in a fuzzy game is assumed to be a fuzzy
quantity, but might be of a crisp form rF , r ∈ R. If a fuzzy
transfer tF with size(tF ) > 0 is applied to its corresponding
configuration, further fuzziness will be introduced into the
game, making the transferring algorithm itself fuzzy. Also,
a later defuzzification might be affected.

We here give a transfer scheme for fuzzy games where
only fuzzy numbers are allowed, and PD and PS are used
as ranking operator and similarity relation. This transfer
scheme then yields a an upper bound for r, r ∈ R of a transfer
which is of the form rF . In this case, we can ensure the
minimum degree of individual rationality of the agent ak

who is the source of the transfer, by examining the rightmost
point where µuF (ak) = irmin and the leftmost point where

µvF ({ak}) = irmin, because if the modal value of uF (ai)

is less than that of vF (ai), uF (ai) �PD vF ({ai}) is given
by the intersection of the right side of uF (ai) with the left
side of vF ({ai}). The crisp transfer scheme can then be
reformulated to operate on the modal values:

Definition 19. Let F̌ denote a real value r such that for
the fuzzy number F , µF (r) is the modal value of F. To

find a (irmin, efmin, stmin, PD, PS,KF P D,P S

)-solution for
a fuzzy game (A, vF ) where only fuzzy numbers are allowed
for vF and uF , given the fuzzy configuration (C, uF ) with
µeffS (uF ) ≥ efmin and µindratPD (uF ) ≥ irmin, for a trans-
fer tki of agent ak ∈ A to agent ai ∈ A which is of the form
rF , r ∈ R an upper bound for r is given by:

trmax

ki :=

8><
>:

min((šF PD

ik − šF PD

ki )/2, trmaxirmin

ki )

if (sF PD

ik �PD sF PD

ki ) > (sF PD

ki �PD sF PD

ik )
0 otherwise

with

uF
Right irmin

(ak) := max{x | x ∈ R, µuF (ak)(x) = irmin}
vF

Left irmin
(ak) := min{x | x ∈ R, µvF ({ak})(x) = irmin}

trmaxirmin

ki := uF
Right irmin

(ak)− vF
Left irmin

(ak)

The definition implies that irmin ≥ stmin, otherwise conver-
gence towards a configuration which holds to both require-
ments cannot be guaranteed.

The termination criterion for the transfer scheme is given
by means of stmin.

If (sF
ik �PD sF

ki) = (sF
ki �PD sF

ik), the transfer scheme

yields 0 as upper bound for both tr
kir

max and trmax

ik . But
then (sF

ki ≈PS sF
ik) = 1.0, and thus the membership of the

respective configuration in the kernel is also 1.0.

7. COALITION FORMATION
To show how the previously defined concepts can be used

as a basis for coalition formation in games with fuzzy pay-
offs, we adopt the the Polynomial Kernel-Oriented Coalition
Algorithm (KCA) which was introduced in [6], adjusting it

to the fuzzy Kernel. This adoption will be simplified in such
a way that only the coalition values are considered in de-
termining the most profitable coalitions and that we do not
take distributed computation into account. However, it can
easily be transformed into a distributed version. We bound
the coalition size in order to obtain polynomial execution
time.

The algorithm is a bilateral coalition formation algorithm,
i.e. new coalitions are formed by merging two previously
existing ones. In each iteration, a configuration which is a
fuzzy solution to the game is formed and contains at most
one new coalition. This is because the merging of two coali-
tions can affect the surpluses, and thus the payoffs, of agents
in other coalitions. The configuration is calculated using the
transfer scheme given in definition 19 and thus the algorithm
is restricted to coalition values which are fuzzy numbers and
the use of PD and PS. The algorithm consists of three main
parts:

1. Configuration proposal generation: each coalition com-
putes possible fuzzy kernel-stable (resp. to stmin) con-
figurations for coalition structures in which the active
and another coalition are merged. If such a config-
urations is preferable to the current configuration by
the active coalition, it is added to the other coalition’s
proposal set.

2. (a) Proposal evaluation: After the first part is com-
pleted, each coalition has a set of proposals from
other coalitions and now evaluates which of these
proposals are preferable for it, again compared
to the current configuration. If a proposal is not
preferable, it is deleted from the set.

(b) Proposal acception: Of the remaining proposals,
each coalition accepts one with a maximum gain
in benefits in the proposed configuration (by means
of PD).

3. Configuration selection: Finally, an accepted configu-
ration is chosen to become the next configuration. If
there are bilateral accepted coalition structures, i.e.
structures in which coalitions C1 and C2 are merged
and both of them accepted the respective proposals,
only their corresponding configuration proposals re-
main in the set to be chosen from. A configuration
with a maximal gain in benefits for the agents in the
new coalition is then selected. If there are no accepted
proposals, the algorithm terminates.

Definition 20. The Fuzzy Polynomial Kernel-Oriented Co-
alition Algorithm (KCA-F) is given by the following pseudo-
code in the context of the fuzzy game (A, vF ) with

• constants SMin, IMin ≥ SMin, EMin: real; the min-
imum requirements on the degrees of fuzzy stability,
individual rationality and effectiveness, respectively,
for a configuration to be a fuzzy solution. The restric-
tion IMin ≥ SMin is required due to the definition
of the transfer scheme.

• constant CSizeMax: integer; the maximum allowed
coalition size (in number of agents).

• operator PrefROp; the fuzzy quantity ranking oper-
ator used to evaluate the preference of a coalition to



merge another. It may be different to that one used
for the evaluation of the fuzzy kernel.

• constant CfgPrefThreshold: real; the minimum de-
gree of preference of a coalition to merge another coali-
tion.

• function Size(C): integer; returns the number of agents
in coalition C.

• function Pref((C, uF ), (C∗, uF∗), C ∈ C): boolean; re-
turns TRUE iff the configuration (C∗, uF∗) is preferred
by coalition C to the configuration (C, uF ). That is iff

min
a∈C

(uF∗(a) �PrefROp uF (a)) ≥ CfgPrefThreshold

• function EvalCfg(C, uF ): boolean; returns TRUE iff

(C, uF ) is a (IMin, EMin, SMin, PD, PS, KF PD,P S

)-

solution where for the evaluation of KF PD,P S

, only
coalitions C with Size(C) ≤ CSizeMax are consid-
ered.

• function ComputeCfg((C, uF ), C1 ∈ C, C2 ∈ C): fuzzy
configuration; returns a configuration (C∗, uF∗) with
C∗ = {C | C = C1 ∪C2 or C ∈ C, C 
= C1, C 
= C2}. If
possible, for the returned configuration

EvalCfg(C∗, uF∗) = TRUE

holds. The payoff distribution is computed using the
transfer scheme given in definition 19.

• function Gain((C, uF ), (C∗, uF∗), C ∈ C): fuzzy num-
ber; returns the summarized gain in benefits of the
agents in coalition C in the configuration (C∗, uF∗)
with respect to the configuration (C, uF ), i.e.X

a∈C

(uF∗(a)− uF (a))

• function Best((C, uF ), CfgGainSet =
{((C1, u

F
1 ), Gain1), · · · , ((Cn, uF

n ), Gainn)}) : (fuzzy con-
figuration,fuzzy number); returns a tuple of a config-
uration and the corresponding gain ((Ci, u

F
i ), Gaini)

with ((Ci, u
F
i ), Gaini) ∈ CfgGainSet, 1 ≤ i ≤ n such

that with GSet := {Gain1, · · · , Gainn},
µmax(GSet)((Gaini)) = maxg∈GSet{µmax(GSet)(g)}

Further, let n = |A|, ai ∈ A, 1 ≤ i ≤ n and uF
init a fuzzy

payoff distribution with uF
0 (ai) := vF (ai), 1 ≤ i ≤ n.

rnum := 0; C0 := {{a1}, · · · , {an}}; uF
0 := uF

init
repeat
rnum := rnum + 1; Crnum := Crnum−1; uF

rnum := uF
rnum−1;

for all Ci ∈ Crnum do
PropSetCi

:= ∅;
end for
for all Ci ∈ Crnum do
for all Ck �= Ci ∈ Crnum, Size(Ci ∪ Ck) ≤ CSizeMax do

PropCfg := ComputeCfg((Crnum, uF
rnum), Ci, Ck);

if EvalCfg(PropCfg) and Pref(Crnum, Prop, Ci) then
CGain := Gain(Crnum, PropCfg, Ci);
PropSetCk

:= PropSetCk
∪ {(PropCfg, CGain)};

end if
end for
end for
UAProps := ∅; BAProps := ∅;
for all Ci ∈ Crnum do
for all (PropCfg, OCGain) ∈ PropSetCi

do
PropSetCi

:= PropSetCi
\ {(PropCfg, OCGain)};

if Pref(Crnum, PropCfg, Ci) then
GainSum := OCGain ⊕ Gain(Crnum, PropCfg, Ci);
PropSetCi

:= PropSetCi
∪ {(PropCfg, GainSum)};

end if
end for
((Ca, uF

a ), Gaina) := Best(Crnum, PropSetCi
);

if ∃((Cpa, uF
pa), Gainpa) ∈ UAProps : Cpa = Ca then

UAProps := UAProps \ {((Cpa, uF
pa), Gainpa)};

BAProps := BAProps ∪ {((Cpa, uF
pa), Gainpa)};

BAProps := BAProps ∪ {((Ca, uF
a ), Gaina)};

else
UAProps := UAProps ∪ {((Ca, uF

a ), Gaina)};
end if
end for
if BAProps �= ∅ then
((CBA, uBA), GainBA) := Best((Crnum, uF

rnum), BAProps);

Crnum := CBA; uF
rnum := uBA;

else if UAProps �= ∅ then
((CUA, uUA), GainUA) := Best((Crnum, uF

rnum), UAProps);

Crnum := CUA; uF
rnum := uUA;

end if
until Crnum = Crnum−1

A remark on complexity: let na denote the number of agents.
In a configuration, there exist at most na coalitions. So for
the first part of the KCA-F, the number of computed con-
figurations is thus bounded by n2

a. Let ncs = 2CSizeMax

(CSizeMax is assumed to be independent from na). For
the transfer scheme, the complexity for computing a fuzzy
surplus was given in section 5, wherein 2nagents is to be re-
placed by ncs: Compcs

surplus = O(ncs ·na
3 ·nfuzzymax

2), with
nfuzzymax as in lemma 1. All further calculations in a trans-
fer step are less complex than this. So the complexity of a
transfer step is bounded by Compcs

surplus. The termination
criterion for the transfer scheme is given by means of SMin,
which, together with PD and PS, plays a similar role as an
allowed error in the crisp scheme. The crisp theme termi-
nates within na log(e) iteration steps (see [11]), where e is
the quotient of the initial and the allowed error of the config-
uration of the first step. This na-independence of the loga-
rithm is maintained in the fuzzy version. Thus O(na) trans-
fer steps are made per agent for at most na agents. The over-
all complexity for part one is thus O(n2

a ·n2
a ·Compcs

surplus) =

O(ncs · na
7 · nfuzzymax

2).
Similarly, the complexity of Eval(Cfg) is O(ncs · na

5 ·
nfuzzymax

2) (see section 5). All other operations in the al-
gorithm are of less complexity, thus the complexity of the
algorithm is given by O(ncs · na

7 · nfuzzymax
2).

Example 5. For the game given in example 1 and with
SMin = 0.9, IMin = 0.95, EMin = 1.0, CSizeMax = 4,
CfgPrefThreshold = 0.9 and PrefROp = PD , the al-
gorithm might proceed as follows (we say ”might” because
the transfer scheme inherits some nondeterminism due to
the tolerances that are given by the choices of SMin and
IMin). In the first iteration of the repeat loop each agent
makes a proposal to every other agent. {a2} and {a4} are
chosen to merge because they get the maximum gain in
benefits and accept the respective proposals bilaterally. In
the second iteration, {a1} and {a3} propose a merge mutu-
ally. They are not able to compute any beneficial propos-
als for a merge with {a2, a4} (and vice-versa) because the
value of all three- and four-agent coalitions is 0F . Thus,
{a1} and {a3} bilaterally accept their proposals and merge.
The complete procedure from the perspective of a1 together
with the resulting configurations is illustrated in figure 2.
As we can see there, a3 ”risks” his individual rationality
(µindratPD (a3) ≈ 0.98) and thus his increase in benefits.



Figure 2: KCA-F coalition formation from the perspec-

tive of a1

This is possible because the respective minimum require-
ments were set 0.95 and 0.9. This can be interpreted as
an optimistic decision, because there still is a possibility
that a3 is better off with this merge than staying alone.
All other individual rationalities are 1.0. Further, we have

(sF PD

13 ≈PS sF PD

31 ) ≈ 0.98 and (sF PD

24 ≈PS sF PD

42 ) ≈ 0.96.
Thus, the final configuration (in the third iteration, no pro-
posals at all are made, and the algorithm terminates) is

a (0.98, 1.0, 0.96, PD, PS, KF PD,P S

)-solution. The payoffs
resemble the agents’ abilities quite intuitively. Although a4

has slightly less game-relevant information available than a2,
a4’s threat to coalize with a1 instead is considerably larger
than a2’s. a1 and a3 clearly have much less game-relevant in-
formation, thus their coalition value and consequently their
payoffs are much smaller. However, both a1’s game-relevant
information and coalitional possibilities are much more valu-
able than those of a3, which explains the payoff-distribution
in favor of a1 very well.

8. CONCLUSION
In the setting of fuzzy-valued cooperative game theory,

we fuzzified some game-theoretic concepts such as configu-
rations, individual rationality and efficiency to introduce the
concept of fuzzy kernel-stable coalitions. With these defini-
tions, it is possible to specify cooperative games involving
uncertain information and to find good candidates of fuzzy
configurations to be a solution for the game by evaluating
their membership value in the fuzzy kernel. It has been
pointed out that the choice of a fuzzy ranking method is
an essential aspect of this procedure. A transfer scheme to
calculate fuzzy kernel-stable configurations, and a coalition
formation algorithm, the KCA-F, have been provided. The
procedure of coalition formation of the KCA-F was illus-
trated with the help of an explanatory example. The com-
plexities of an evaluation of a configuration’s membership
value, the calculation of fuzzy kernel-stable configurations
and the KCA-F as a whole have been shown to be exponen-
tial, but could be reduced to polynomial time by limiting
the size of considered coalitions. Because a precondition of
our approach was that all agents in a game share the same
understanding about the fuzziness of the data, further work
includes the identification of suitable methods to compute

the game-wide accepted membership functions from agent-
specific beliefs. Also, proper defuzzification methods for
the fuzzy payoff-distribution, which will be needed once the
coalitions performed their tasks and got their actual (crisp)
payoffs, will have to be found. To sum it up more generally,
exact specifications of environments for applications of fuzzy
valued cooperative games need to be developed.
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