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Abstract. The WSMO-MX service matchmaker applies different matching filters to retrieve Semantic Web services written in a
dialect of the prominent service description language WSML-Rule. For this purpose, WSMO-MX recursively computes logic-
based and syntactic similarity-based matching degrees and returns a ranked set of services that are semantically relevant to a
given query. The matching filters perform ontology-based type matching, logical constraint matching, and syntactic matching.
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the test collection WSML-TC2.
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1. Introduction

Service discovery is the process of locating existing
Web services based on the description of their func-
tional and non-functional semantics. Discovery sce-
narios typically occur when one is trying to reuse
an existing piece of functionality (represented as a
Web service) in building new or enhanced business
processes. A Semantic Web service, or in short seman-
tic service, is a Web service which functionality is de-
scribed by use of logic-based semantic annotation over
a well-defined ontology. In the following, we focus on
the discovery of semantic services. Semantic service
discovery can be performed in different ways depend-
ing on the service description language, the means of
service selection and its coordination by means of a
broker, matchmaker or mediator [23], or in a peer-to-
peer fashion.

*Corresponding author. E-mail: klusch@dfki.de. Partial support
provided by BMBF (German Ministry for Education and Research)
grants MODEST 01-IWO-8001 and SCALLOPS 01-IW-D02.

Service selection encompasses semantic matching
and ranking of services to select one or more most rel-
evant services to be invoked, starting from a given set
of available services. Semantic service matching is the
pairwise comparison of an advertised service with a
desired service (query) to determine the degree of their
semantic match. This process can be non-logic-based,
logic-based or hybrid depending on the nature of rea-
soning means used by the matchmaker.

Non-logic-based matching can be performed by
means of, for example, graph matching, data mining,
linguistics, or content-based information retrieval to
exploit semantics that are either commonly shared (in
XML namespaces), or implicit in patterns or relative
frequencies of terms in service descriptions. Logic-
based semantic matching of services like those written
in the prominent service description languages OWL-S
(Ontology Web Language for Services), WSML (Web
Service Modeling Language) and the W3C recommen-
dation SAWSDL (Semantically Annotated WSDL)
exploit standard logic inferences.

In line with the recently started shift of Semantic
Web research towards more scalable and approxima-
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tive rather than computationally expensive logic-based
reasoning with impractical assumptions [10], we claim
that the quality of semantic service selection can be
significantly improved by combining both logic-based
only and syntactic matching where each of them alone
would fail. One example of a hybrid semantic ser-
vice matchmaker for services in WSML is our match-
maker WSMO-MX. It applies different logic-based
and non-logic-based semantic matching filters to re-
trieve WSML services that are semantically relevant
to a given query [14]. For a survey and classification
of semantic service matchmakers for different service
description formats, we refer to [16].

In this paper, we focus on hybrid matching of
WSML services. We first informally introduce the se-
mantic service description language WSML including
its variant WSML-Rule, and then the WSML-Rule di-
alect WSML-MX used by our matchmaker WSMO-
MX in section 2. This is followed by an overview of
the hybrid semantic matching algorithm of WSMO-
MX together with an example in section 3. The im-
plementation of WSMO-MX is briefly described in
section 4. The experimental setup of the performance
evaluation and its results are described in section 5.
Related work on semantic matchmakers for WSML
services is summarized in section 6; we conclude in
section 7.

2. Semantic service description

In this section, we informally introduce the reader
to the basic elements of semantic service description
in the Web Service Modeling Language (WSML) and
its variant WSML-MX that is used by the matchmaker
WSMO-MX.

2.1. Service description in WSML

WSMO. The WSMO (Web Service Modeling Ontol-
ogy) framework1 provides a conceptual model and a
formal language WSML (Web Service Modeling Lan-
guage) 2 for the semantic markup of Web services to-
gether with a reference implementation WSMX (Web
Service Execution Environment). WSMO offers four
key components to model different aspects of Seman-
tic Web services in WSML: Ontologies, goals, ser-
vices, and mediators. Goals in goal repositories spec-

1http://www.wsmo.org/TR/d2/v1.4/20061106
2http://www.wsmo.org/TR/d16/d16.1/v0.21/20051005/

ify objectives that a client might have when searching
for a relevant Web service. WSMO ontologies provide
the formal logic-based grounding of information used
by all other modeling components. Mediators bypass
interoperability problems that appear between all these
components at data (mediation of data structures), pro-
tocol (mediation of message exchange protocols), and
process level (mediation of business logics) to "allow
for loose coupling between Web services, goals (re-
quests), and ontologies". Each of these components,
called top-level elements of the WSMO conceptual
model, can be assigned non-functional properties to
be taken from the Dublin Core metadata standard by
recommendation.

WSML. The Web service modeling language WSML
allows to describe a Semantic Web service in terms
of its actual functionality (service capability) and the
interface through which it can be accessed for or-
chestration and choreography. The formal semantics
of elements are specified as logical axioms and con-
straints in ontologies using one of five WSML variants:
WSML-Core, WSML-DL, WSML-Flight, WSML-
Rule and WSML-Full. Though WSML has a spe-
cial focus on annotating Semantic Web services like
OWL-S it tries to cover more representational aspects
from knowledge representation and reasoning under
both classical FOL and non-monotonic LP semantics.
For example, WSML-DL is a variant of the descrip-
tion logic SHIQ (D) with frame-syntax and expres-
sivity close to the description logic SHOIN (D), that
is the variant OWL-DL of the standard ontology web
language OWL. WSML-Rule is a fully-fledged logic
programming language with function symbols, com-
plex rules 3, inequality and non-monotonic negation,
and meta-modeling facilities such as treating concepts
as instances, but does not feature arbitrary use of ex-
istential quantifiers, disjunctions in rule heads, strict
(monotonic) negation, and equality reasoning. The se-
mantics of WSML-Rule is defined through a mapping
to a logic programming variant of F-Logic [19] with
inequality and default negation under Well-Founded
Semantics (WFS) [33]. Only fragments of WFS are
(semi-)decidable with respect to query evaluation [6].

F-Logic. F-Logic is an object-oriented extension of
first-order predicate logic with objects of complex

3Unsafe Datalog/Horn rules and FOL rules which can be rewritten
into those by means of Lloyd-Topor-transformations [27]
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internal structure, class hierarchies and inheritance,
typing, and encapsulation in order to serve as a ba-
sis for object-oriented logic programming and knowl-
edge representation. For modeling ontologies, it al-
lows to define, for example, is-a object class (or
type) hierarchies through subclass relationships like
person::human denoting class "person" as a sub-
class of "human", a class of objects with structured
properties/relations (object type signature) like per-
son[hasName ⇒ string, hasChild ⇒ person], and in-
stances of classes (typed objects) like john:person
as well as rules like (∀ X,Y X[hasParent→→ Y] ←
Y:person[hasChild→→ X].), denoting the inversion of
relation "hasChild", i.e. if person "Y" has a child "X"
than "Y" is parent of "X".

F-Logic is primarily a syntactic extension of pred-
icate logic and, in principle, could be used in combi-
nation with a classical FOL language and semantics.
However, beside an object-oriented syntax, F-Logic
has a logic programming connotation. But since nei-
ther logic programming in general nor F-Logic in par-
ticular are clearly standardized syntax and semantics
are dependent on the respective reasoner used. Most
F-Logic reasoners like OntoBroker, Flora-2 and Florid
operate under (or allow among several) a paradigm
based on Van Gelder’s well-founded semantics [33].
For more details on the syntax and semantics of F-
Logic, we refer to [1,19,35].

Services in WSML. The semantic description of ser-
vices and requests (goals) in WSML is structured into
so-called service capability, service interface used for
orchestration and choreography, and shared variables.
A WSML service capability describes the state-based
functionality of a service. Therefore a distinction in an
information space (of the exchanged data) and the real
world (background knowledge) is made. The WSML
service capability modeling elements precondition (as-
sumption) and postcondition (effect) describe the con-
ditions over the information space (real world state)
before and after service execution, respectively. The
capability also specifies non-functional properties and
all-quantified shared variables (with service capability
as scope) for which the logical conjunction of precon-
dition and assumption entails that of the postcondi-
tion and the effect. The syntax of WSML in general,
and WSML-Rule in particular is mainly derived from
F-Logic extended with more verbose keywords (e.g.,
"hasValue" for→, "p memberOf T" for p:T etc.), and
has a normative human-readable syntax, as well as
an XML and RDF syntax for exchange between ma-

chines.

Example of service capability in WSML-Rule. The
functionality of a ticket reservation service can be de-
fined in WSML-Rule using F-Logic with shared vari-
ables ?creditCard, ?initialBalance, ?trip, ?reservation-
Holder, ?ticket as follows. The service precondition
specifies that a reservation request for a trip has to be
made by a reservation holder with a credit card that is
initially balanced before service execution:

precondition definedBy
reservationRequest[reservationItem hasValue ?trip,
reservationHolder hasValue ?reservationHolder]
and ?creditCard[balance hasValue ?initialBalance]
memberOf po#creditCard.

It is further assumed that the given credit card is valid
and of a certain type before the service is executed:

assumption definedBy
po#validCreditCard(?creditCard) and
(?creditCard[type hasValue "PlasticBuy"] or
?creditCard[type hasValue "GoldenCard"] ).

The service postcondition specifies that the reservation
holder obtains the ticket for the trip requested:

postcondition definedBy
?reservation memberOf tr#reservation[

reservationItem hasValue ?ticket,
reservationHolder hasValue ?reservationHolder]
and
?ticket[trip hasValue ?trip] memberOf tr#ticket.

The world state effect of executing the service is that
the reservation holder’s credit card balance is reduced
by the amount of the ticket price:

effect definedBy
ticketPrice(?ticket, "euro", ?ticketPrice) and
?finalBalance= (?initialBalance - ?ticketPrice) and
?creditCard[po#balance hasValue ?finalBalance.

2.2. Service description in WSML-MX

The matchmaker WSMO-MX pairwisely matches
services in an extension of WSML-Rule called
WSML-MX. As a service-IOPE (input, output, pre-
condition and effect) matchmaker, it focuses on match-
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ing service profiles or capabilities but not process mod-
els; goals are described as desired services in WSML-
MX.

WSML-MX. The basic idea behind WSML-MX is
to extend the WSML variant WSML-Rule such that
the user can specify preferences and relaxation con-
straints about the way semantic matching of desired
service capability elements shall be performed by a
matchmaker. For this purpose, WSML-MX introduces
an additional language element to WSML-Rule, the
so-called derivative of an F-Logic class which is an
extended version of the object set introduced by Klein
and König-Ries [22].

A derivative DT in WSML-MX encapsulates an or-
dinary concept T (in this context called type) with re-
lation (type) signature logically defined in a given on-
tology by attaching meta-information mainly about the
way how T can be matched with any other type. This
meta-information is defined in terms of different meta-
relations of the derivative DT . In services, these meta-
relations concern the use of service parameters as input
(param⇒⇒in) or output parameters (param⇒⇒out)
and logical constraints (constraint⇒⇒c). The type T
itself is defined to be either atomic or a complex type
with relations. By default the derivative DT does not
inherit the relations from T and can have a set of re-
lations different from T . However, by means of rules
it is possible to propagate the type relations from T to
DT , though with respective derivatives instead of plain
classes like T in the ranges of the relations.

A state is a set of state parts, which are derivatives
each defined as atomic, or as complex by means of re-
lations with derivatives as range. Hence, any seman-
tic service in WSML-MX can be represented as a di-
rected object-oriented graph with derivatives consid-
ered as nodes and relations between them as edges, as
shown in Figure 1.

As mentioned above, WSML-MX allows con-
straints on both relations and derivatives formulated
in full F-logic. Let D be a derivative, C an F-Logic
rule body and XD a free variable in C, then we
call c a constraint of D, if D[constraint→→c] and
∀XD.satCons(XD, c) ← C holds. Variable XD is
bound with potential instances of D, and satCons ver-
ifies whether such an instance satisfies c. A derivative
can have zero or many constraints including a special
constraint for nominals; the respective meta-relation
oneOf denoted as D[oneOf→→{i1, . . . , im}] means
that an instance of D has to be one of i1, . . . , im.

Fig. 1. Service derivative in WSML-MX

Hence, WSML-MX constraints are as expressive
and, in general, only semi-decidable as WSML-Rule
axioms are. However, the WSMO-MX matchmaker
approximates query containment through means of
so-called relative query containment for constraint
matching (cf. section 3.4.3). Moreover, the matching
of parts of WSML-MX expressions represented as
acyclic object-oriented graphs without constraints is
decidable in polynomial time.

The emphasis of WSML-MX on these parts of ser-
vice modeling is motivated not only by (a) a clear sep-
aration of computationally tractable elements but (b)
the option of providing a more detailed explanatory
feedback to the user and more differentiated matching
valuations by a matchmaker. This is a lesson learned
from previous matchmaking approaches relying on
pure query containment which requires high ontologi-
cal homogeneity and results in single match predicates
based on overall and undifferentiated logical implica-
tion between goal and service descriptions.

Service derivative in WSML-MX. An example of
a service derivative in WSML-MX is shown in Fig-
ure 2. The functionality of the service (derivative)
WebserviceD2 is described by means of its capability
including the postcondition to hold on structured input
and output parameters in terms of the logical constraint
c2.

This constraint (the F-Logic rule at the bottom of the
figure) on the output parameter derivative T icketD5

(with meta-relation param→→out; constraint→→c2)
ensures that the service returns tickets for any trip be-
tween any two German towns, but if the departure is
from Berlin, the destination must be Hamburg. The
service has a nested (input) relation signature:
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Fig. 2. Example service in WSML-MX

Ticket_D5[ departure⇒⇒ GermanTown_D1;
arrival⇒⇒ GermanTown_D2;
date⇒⇒ Date_D4;
client⇒⇒ Client_D1[livesAt⇒⇒ Town_D8] ].

Goal derivative in WSML-MX. A goal derivative in
WSML-MX is described in the same way as a ser-
vice derivative extended with meta-relations that al-
low specifying relaxations for syntactic, parameter, re-
lation, constraint and ontology-based type matching of
(part of) the derivative with (part of) a given service
derivative. Examples of such meta-relation signatures
of a goal derivative DG for its matching with a service
derivative DS are

– DG[typeSimRel→→ TSR] specifying the re-
quested type TSR of ontology-based logical simi-
larity relation between DG and DS such as equiv-
alence, subsumption, superclass, sibling etc.;

– DG[synSimMetric→→M ] specifying which
text similarity metric M to use for syntactic
matching of DG with DS ;

– DG[synSimMinDegree→→α] with threshold
α ∈ [0, 1] specifying the minimum degree of
syntactic similarity of DG with DS ;

– DG[missingStrat@(Sµ)→→MSµ], w. MSµ ∈
{assumeEquivalent, assumeFailed, ignore}
specifying a strategy for missing relation Sµ of
DG in DS for the matchmaker in terms of ei-
ther ignoring this fact, or assuming the existence
(equivalence), or non-existence of an equivalent
relation (failure) for the matching result.

An example of a goal derivative together with more
matching related meta-relations for its parts are given
in section 3.4 where we demonstrate the hybrid match-
ing process of the WSMO-MX matchmaker with the
service example above.

3. WSMO-MX Overview

In the following, we summarize the functionality of
the WSMO-MX matchmaker in general and through
a simple example in particular. For further details of
WSMO-MX, we refer the interested reader to [14].

3.1. Service matching degrees

The result of matching a derivative DG from a goal
description with a derivative DW from a service de-
scription is a vector v ∈ R7 of aggregated similar-
ity valuations of (a) logical ontology-based concept
matching, (b) logical constraint matching, (c) recursive
relation matching (identified by name), and (d) syn-
tactic similarity-based matching. In this respect, the
semantic service matching of WSMO-MX is hybrid.
Each real-valued entry in the so called service match-
ing valuation vector

v = (π≡, π�, π�, π�, π∼, π◦, π⊥)

with πi ∈ [0, 1] (i ∈ {≡,�,�,	,∼, ◦,⊥}) and∑
πi = 1, denotes the extent (also called the seman-

tic similarity score) to which both derivatives DG and
DW match with respect to the hybrid semantic match-
ing degrees πi. As shown in Table 1, the logic-based
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semantic matching degrees are computed as the logical
relations equivalence (or exact), subsumption, inter-
section and disjunction (fail). If the precondition of a
goal implies the precondition of a service or/and if the
postcondition of a service implies the postcondition of
the goal, then subsumption is called plug-in as known
from software component retrieval [36] or the similar
rule of consequences from Hoare logic [13]. Otherwise
subsumption is called inverse-plugin indicating that
goal and service would be a plug-in match if their roles
were inverted. For a service requester, this is a more
precise indication than intersection and a likely easier
adjustment to the offered service. The degree of fuzzy
similarity refers to a (implicit semantic) match not ex-
pressible in discrete logic or set-theoretical predicates
such as syntactic similarity or numeric path-length dis-
tance in the ontology (excluding parent-child paths),
while the degree neutral stands for neither match nor
fail, hence declares the tolerance of matching failure.

The set-theoretic semantics of these hybrid match-
ing degrees (cf. Table 1) base on the computed rela-
tions between the maximum possible instance sets of
the derivatives DG and DW , denoted by G andW . We
use the heuristic relative query containment for logical
constraint matching restricting these sets to the finite
sets of known instances in the matchmaker knowledge
base which satisfy the given logical constraints in F-
Logic.

Please note that, in general, it cannot be taken for
granted that a semantic service matchmaker does pos-
sess instances for every service or query derivative in
its knowledge base (instance store) to check their sat-
isfiability with respect to given constraints. For exam-
ple, independent third-party matchmakers not hosted
by any service provider or consumer might not have
such specific object knowledge. However, sets of rep-
resentative service instances could be obtained from
the respective providers at the time of their registering
of services at the matchmaker, through tracking of ser-
vice executions (only in case of additional brokerage
by the matchmaker), and sampling descriptions of ser-
vices without real-world effects, or - regarding goal-
derivative instances - by conducting systematic ques-
tionnaires with users. Furthermore, logic-based con-
straint matching could be ignored (which is a configu-
ration option of WSMO-MX) and only used when such
instances are available to the matchmaker.

3.2. Hybrid semantic service matching

In order to compute the degrees of hybrid seman-
tic matching of given goal and service derivatives in
WSML-MX, WSMO-MX recursively applies differ-
ent filters of so-called IOPE (input, output, precondi-
tion, effect) matching to their preconditions and post-
conditions inherently including service inputs and out-
puts as in WSML (but with an explicit parameter flag
similar to the variables in [21]), and returns the ag-
gregated matching valuation vector. In addition, it pro-
vides annotations of the matching process results as a
kind of explanatory feedback to the user. That facili-
tates a more easy iterative goal refinement by the user
in case of insufficient matching results. These match-
ing process annotations have a generic format and can
be employed for several purposes. In the current ver-
sion, WSMO-MX uses them to generate explanation
text about the respective matching deviations in Eng-
lish. In the future the annotations could also be used
for graph-based visualizations of the matching result.

More concrete, the state of the goal is matched with
that of the service by matching their state part deriv-
atives and then recursively by the pairwise matching
of derivatives in the range of equally named service
and goal relations. Subsequently, WSMO-MX com-
putes the maximum weighted bipartite graph match,
where nodes of the graph correspond to the goal and
service state parts. The respectively computed valua-
tion vectors act as weights of edges existing between
the two state parts to be matched.

At each step in the recursion, the parameter match-
ing filter is applied first, since its result, an anno-
tation record, is not valuated for any of the hybrid
matching degrees. Then each of the logic-based se-
mantic matching filters is applied as follows. While
type (or concept/class) matching bases on the logi-
cal subclass relations and path distance between types
(or concepts) in the matchmaker ontology, the F-logic
constraint matching is computed by means of rela-
tive query containment restricted to the set of known
facts and objects asserted in the knowledge base of the
matchmaker. Relation matching recursively matches
the ranges of equally named relations with each other.
Syntactic matching is performed in case one of these
filters fails (compensative), or complementary in any
case, if not specified differently. The user can also ask
for just a first coarse-grained filtering by means of full-
text syntactic matching without any logic-based se-
mantic matching.
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order symbol degree of match pre post

1 ≡ equivalence G = W
2 � plugin G ⊆ W W ⊆ G
3 � inverse-plugin G ⊇ W W ⊇ G
4 � intersection G ∩W 
= ∅
5 ∼ fuzzy similarity G ∼ W
6 ◦ neutral by derivative specific definition

7 ⊥ disjunction (fail) G ∩W = ∅
Table 1

Degrees of hybrid semantic matching of WSML service and goal
derivatives

The computed hybrid matching degrees for pre- and
postconditions of goal and service derivatives are to-
tally sorted in descending order (cf. Table 1) with the
logic-based matches exact > plug− in > inverse−
plug − in > intersection followed by the non-logic-
based ones fuzzy > neutral and Fail. The result
of type, constraint, and relation (with missing relation
strategy valuation) matching is associated to one of
these hybrid matching degrees by means of a binary
matching valuation vector (cf. Tables 2, 3, 4).

Finally, all valuation vectors computed during re-
cursive relation matching of goal and service deriva-
tives are aggregated into one single valuation vector
by means of average. Each individual valuation vector
can also be weighted with respect to some matching
filter for this purpose by the user in the request; these
weights are assumed to be of equal value by default.
Optionally, this weighted average of hybrid matching
degrees can be recomputed with respect to the inten-
tions of the considered derivatives (cf. section 3.4.6).

The overall result of the matching process is a
ranked list of services with their hybrid matching val-
uation vector and the matching process annotations for
explanation. Services are ranked with respect to the
maximum value of hybrid semantic matching degrees
in descending order (cf. Table 1), starting with π≡.

In the following, we describe each of the aforemen-
tioned matching filters of WSMO-MX in more detail,
and then show an example of their application.

3.3. Hybrid semantic matching filters

3.3.1. Type matching
The matching of types TG and TW of the goal

and service derivative DG and DW is performed
by means of computing the degree of their seman-
tic relation in the matchmaker ontology according
to one or more requested (accepted) type similar-

ity relations TSR defined as meta-relation values in
DG[typeSimRel→→TSR]. WSMO-MX offers the
following matching relations between service and goal
derivative types (subclass relationships) in F-Logic:

– equivalent: TW = TG ∨ TW :: TG ∧ TG :: TW .
– sub: TW :: TG (TW subtype of TG)
– super: TG :: TW

– comAnc (common ancestor):
∃TP .TG :: TP ∧ TW :: TP .

– comDes (common descendant):
∃TC .TC :: TG ∧ TC :: TW .

– relative: exists a path in the undirected ontology
graph between TG and TW .

To further restrict the TSR a maximum distance
TD ∈ N (TD = 0 ≡ ∞) between derivative types (or
classes) in the matchmaker ontology can be specified
in terms of DG[typeDistance→→TD]. TD is the path
length between both types in the undirected ontology
graph. For the type relations comAnc and comDesc
it must hold that the addition of the path lengths from
both derivatives to their nearest common child/parent
type is at most TD. Optionally, the same restriction
can be imposed on the type relations sub and super
with TD greater or equal the path length from DG to
DW .

There exist two further type similarity relations
spouse and sibling which abbreviate TD = 2 for
comAnc and comDesc, respectively:

– spouse:
∃TC .TC :: TG ∧ TC :: TW ∧ ¬(∃TX .∃TY .TX ∈
{TG, TW } ∧ TC :: TY ∧ TY :: TX); types with one
immediate common descendant (child).

– sibling: ∃TP .TG :: TP ∧TW :: TP∧
¬(∃TX .∃TY .TX ∈ {TG, TW } ∧ TX :: TY ∧ TY ::
TP ); types with one immediate common ancestor
(parent).
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The valuation of the type matching of DG and DW

for each of the hybrid semantic matching degrees of
WSMO-MX is listed in Table 24. If more than one type
similarity relation TSR is specified in the goal, the
maximum of the valuation vectors is selected as a re-
sult.

3.3.2. Relation matching
Given that the DG and DW are complex, the hy-

brid semantic matching must continue recursively with
comparing their relations. Let the relation signatures of
DG and DW be defined as follows: DG[R1⇒⇒E1; ...;
Rk⇒⇒Ek; S1⇒⇒F1; ...; Sl⇒⇒Fl; ...; Sm⇒⇒Fm], and
DW [R1⇒⇒G1; ...; Rk⇒⇒Gk; T1⇒⇒H1; ...; Tn⇒⇒Hn],
where R1, ..., Rk, S1, ..., Sm, T1, ..., Tn are unique
relation names with

⋃
i∈[1,m] Si ∩

⋃
j∈[1,n] Tj =

∅ and derivatives E1, ..., Ek, G1, ...Gk, F1, ..., Fm,
H1, ..., Hn the respective ranges of the relations.

The relations R1, ..., Rk of the goal derivative DG

for which equally named relations do exist in DW are
valuated for the hybrid degree of matching by recur-
sively matching their ranges with each other. That is,
WSMO-MX attempts to match the (goal) derivatives
Eτ with the (service) derivatives Gτ for all τ ∈ [1, k]
and compute the respective valuation vectors.

We assume that for all relations Sµ, µ ∈ [1, l]
in DG that cannot be paired with an equally named
relation in DW (under unique name assumption for
shared namespaces) there exist one so called miss-
ing strategy which indicates the matchmaker how
to cope with this problem. Such a missing rela-
tion strategy is specified in the goal in terms of
DG[missingStrat@(Sµ)→→MSµ], with MSµ ∈
{assumeEquivalent, assumeFailed, ignore}.

The valuations for relations with missing strategies
are given in Table 3. It lists also the valuations for
the relations without missing strategy (Sl, . . . Sm and
T1, . . . , Tn), which depend on whether they are part of
a pre- or postcondition.

The final valuation vector for the recursive relation
matching between DG and DW is an equally weighted
average of all valuation vectors computed for the miss-
ing relations, and those for the relation range derivative
matchings.

3.3.3. Constraint matching
In WSMO-MX, the matching of logical constraints

of goal and service derivatives in F-Logic is performed

4Please note that we switched the valuation for comAnc and
comDesc compared to previous work [14]

by means of so-called relative query containment. That
is, any logical clause A is relatively contained in clause
B, or A relatively implies B with respect to a given
knowledge base KB, denoted by A �KB B, if the an-
swer set QKB(A) of querying KB with A, is a sub-
set of QKB(B). Under the open world assumption,KB
does not contain all possible instances of a query (uni-
versal closure), hence relative query containment can
only be considered as an approximation of logical im-
plication (query containment) which is, in general, un-
decidable for many logic programming dialects [7]. An
alternative would be to restrict constraints to conjunc-
tive clauses and/or approximate logical implication by
means of clause theta-subsumption which is, in gen-
eral, NP-complete decidable [12]. Since fast determin-
istic algorithms for partial testing of theta-subsumption
are also known [30], the correct but incomplete theta-
subsumption relation is used as a consequence rela-
tion in many ILP systems [28], and the matchmaker
LARKS [32].

However, for pragmatic reasons of implementation
and relying on available reasoners for the main infer-
ence procedures, WSMO-MX uses relative query con-
tainment for matching constraints over the instances
stored in the matchmaker ontology. For each derivative
D of type T , WSMO-MX determines a set of potential
instances against which its constraints are evaluated as
queries. This set comprises all instances of the concept
T and instances of derivatives of type T :

∀D, XD. potentialInstance(D, XD)←
∃T. D[type→→T ]∧
(XD : T ∨ (∃DT . DT [type→→T ] ∧XD : DT )).

The constraint matching filter then returns only
those instances of this set which satisfy all constraints
of D:

∀XD, D. satAllCons(XD, D)←
potentialInstance(D, XD)∧
(∀C. D[constraint→→C]→ satCons(XD, C))∧
((∃X. D[oneOf→→X ])→ D[oneOf→→XD]).

The valuation of constraint matching is determined
by the type of the set relation ρ, which is defined
as IKB(DG) ρ IKB(DW ) over the set IKB(D) :=
{XD|satAllCons(XD, D)} of matching instances of
derivative D with respect to the given knowledge base
KB of the matchmaker (cf. Table 4).
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type valuation vector

similarity valpre valpost

relation ( π≡,π�,π�,π�,π∼,π◦,π⊥ ) ( π≡,π�,π�,π�,π∼,π◦,π⊥ )

equivalent ( 1 , 0 , 0 , 0 , 0 , 0 , 0 ) ( 1 , 0 , 0 , 0 , 0 , 0 , 0 )

sub ( 0 , 0 , 1 , 0 , 0 , 0 , 0 ) ( 0 , 1 , 0 , 0 , 0 , 0 , 0 )

super ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ( 0 , 0 , 1 , 0 , 0 , 0 , 0 )

comDes ( 0 , 0 , 0 , 1 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 1 , 0 , 0 , 0 )

comAnc ( 0 , 0 , 0 , 0 , 1 , 0 , 0 ) ( 0 , 0 , 0 , 0 , 1 , 0 , 0 )

relative ( 0 , 0 , 0 , 0 , 1 , 0 , 0 ) ( 0 , 0 , 0 , 0 , 1 , 0 , 0 )
Table 2

Valuation of type matching for hybrid matching degrees

missing valuation vector

strategy valpre,webservice/valpost,goal valpost,webservice/valpre,goal

( π≡,π�,π�,π�,π∼,π◦,π⊥ ) ( π≡,π�,π�,π�,π∼,π◦,π⊥ )

assumeEquivalent ( 1 , 0 , 0 , 0 , 0 , 0 , 0 ) ( 1 , 0 , 0 , 0 , 0 , 0 , 0 )

none ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ( 0 , 0 , 1 , 0 , 0 , 0 , 0 )

ignore ( 0 , 0 , 0 , 0 , 0 , 1 , 0 ) ( 0 , 0 , 0 , 0 , 0 , 1 , 0 )

assumeFailed ( 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ( 0 , 0 , 0 , 0 , 0 , 0 , 1 )
Table 3

Valuation of relation matching with missing strategies for hybrid matching degrees

set valuation vector

relation valpre valpost

IKB(DG) ρ IKB(DW ) ( π≡,π�,π�,π�,π∼,π◦,π⊥ ) ( π≡,π�,π�,π�,π∼,π◦,π⊥ )

IKB(DG) = IKB(DW ) ( 1 , 0 , 0 , 0 , 0 , 0 , 0 ) ( 1 , 0 , 0 , 0 , 0 , 0 , 0 )

IKB(DG) ⊇ IKB(DW ) ( 0 , 0 , 1 , 0 , 0 , 0 , 0 ) ( 0 , 1 , 0 , 0 , 0 , 0 , 0 )

IKB(DG) ⊆ IKB(DW ) ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ( 0 , 0 , 1 , 0 , 0 , 0 , 0 )

IKB(DG) ∩ IKB(DW ) 
= ∅ ( 0 , 0 , 0 , 1 , 0 , 0 , 0 ) ( 0 , 0 , 0 , 1 , 0 , 0 , 0 )

IKB(DG) ∩ IKB(DW ) = ∅ ( 0 , 0 , 0 , 0 , 0 , 0 , 1 ) ( 0 , 0 , 0 , 0 , 0 , 0 , 1 )
Table 4

Valuation of constraint matching for hybrid matching degrees

3.3.4. Syntactic matching
The filter of WSMO-MX for syntactic matching of

goal and service derivatives, DG and DW , is intended
to complement those for semantic matching as de-
scribed above. For this purpose, it transforms the de-
scription of each derivative into a weighted keyword
vector as known from information retrieval, and ap-
plies one of the selected syntactic similarity metrics
cosine, extended Jaccard, loss-of-information (LOI),
and weighted LOI [25]. Similarity metrics and other
syntactic matching parameters can be specified as in-
stances of the following meta-relations of a goal deriv-
ative DG.

– DG[synSimUsage→→U ]
with U ∈ {alternative, compensative,
complementary} specifies whether syntactic

matching shall be performed either as an exclu-
sive alternative to semantic matching, or only in
case of semantic matching failure, or in any case.

– DG[synSimScope→→S] with S ∈ {scpType,
scpRelation, scpDescription} denotes whether
only the types, or the relations, or the whole text
of the description of the derivatives are used for
syntactic matching. In case of scpType, all type
names (no relation names) of the derivative are
recursively unfolded in the matchmaker ontol-
ogy and the resulting set of primitive components
is used to compute a weighted keyword vector,
whereas for scpRelation only the relation names
of the derivative are used for this purpose. If re-
lations are organized in relation hierarchies like
classes the unfolding is done as well. Any combi-
nation of scopes is allowed.
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– DG[synSimMetric→→M ] with M ∈ {cosine,
loi, loiWeighted, jaccard} specifies which IR
similarity metric to use. For details of computa-
tion, we refer to [25].

– DG[synSimMinDegree→→α] with α ∈ [0, 1]
specifies the minimum degree of syntactic simi-
larity required (threshold).

For the valuation of syntactic matching π∼ is set to
the value of the computed syntactic similarity value
and π⊥ = 1 − π∼. If the similarity value does not ex-
ceed α, then π∼ = 0 and π⊥ = 1.

3.3.5. Parameter matching
A derivative can be tagged to be an input and/or out-

put parameter by the meta-relation param. The para-
meter matching filter checks whether goal and service
derivative are differently tagged and returns no valua-
tion vector but an annotation indicating the deviations.
This allows the service requester to understand the in-
terface of the service and if needed to adjust the inter-
face as it was expected and denoted by the parameters
tags in the goal description.

3.3.6. Intentional matching
Optionally, WSMO-MX does perform a kind of

intentional matching of goal and service derivatives.
For this purpose, we adopt the approach proposed
by Keller et al. [18]. In particular, the semantics
of their notions of ∃-intention and ∀-intention cor-
respond with the evaluation of our meta-relation
existentialIntention to true and false, respec-
tively. The valuation vector of hybrid semantic match-
ing can be "intentionally recomputed" by its multipli-
cation with the transformation matrix that corresponds
to the requested combination of intended provision of
relevant instances as it is declared for the goal and
the service derivative by the requester and provider,
respectively.

The case in which ∀-intentions are declared for
both derivatives, DG and DW , is equal to not us-
ing intentions at all, hence can simply be ignored by
WSMO-MX. As a consequence, there remain three
cases for each pre- and postcondition matching. These
are computed by means of six intentional matching
matrices (to be multiplied with the valuation vector)
of which we show only those for the postcondition
matching cases (for precondition matching the lines
and columns for π� and π� in the matrices have to be
inverted): (1) Ipost,∃G,∀W : only DG has an ∃-intention,
(2) Ipost,∀G,∃W : only DW has an ∃-intention, (3)
Ipost,∃G,∃W : both derivatives have ∃-intentions. The

matrices are defined as follows.

Ipost,∃G,∀W =

�
���������

1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

�
���������

Ipost,∀G,∃W =

�
���������

1
2

1
2

0 0 0 0 0
0 1 0 0 0 0 0
1
5

1
5

1
5

1
5

0 0 1
5

0 0 1
3

1
3

0 0 1
3

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

�
���������

Ipost,∃G,∃W =

�
���������

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1
3

0 1
3

0 0 0 1
3

1
3

0 1
3

0 0 0 1
3

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

�
���������

3.4. Example of service matching with WSMO-MX

Suppose the user defines a goal derivative as a de-
sired service derivative Ticket_D4 as shown in Figure
3. That is, she is looking for any ticket for a trip be-
tween two arbitrary towns, but if it starts in Berlin,
then it must not end in Bremen. Please note, that the
user may specify matching relaxations for any object
of the goal as exemplified, but also different weights
for the matching filters to be applied. In this exam-
ple, we assume the filters to be equally weighted. Fur-
ther, the derivatives T_D are of equally named types
(T_D[type→→T]) that are defined in the matchmaker
ontology and not explicitly shown in the example.
The part of the type hierarchy in the matchmaker on-
tology and all instances used in this example are shown
in Figure 4.

In this example, the service derivative Ticket_D5
given in section 2 will be matched against the goal
derivative Ticket_D4 as follows. Since the capabilities
of both goal and service derivatives do not include
any precondition, their hybrid semantic matching is
restricted to the matching of their postcondition states.

1. Type matching: The goal derivative type
"Ticket_D4" is logically equivalent to the ser-
vice derivative type "Ticket_D5" according to
the matchmaker ontology. Therefore, the valua-
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Fig. 3. Example goal in WSML-MX

Fig. 4. Example ontology (type hierarchy and instances)

tion vector for type matching is
v1 = (1,0,0,0,0,0,0).

2. Parameter matching: Both derivatives are
marked as output parameters. No annotation nec-
essary.

3. Relation matching Sorted pairs of equally
named relations of goal and service derivatives
are recursively matched as follows.

Relation departure: The range of the relation
"departure" of goal derivative "Ticket_D4" is
the derivative "Town_D3" of type "Town" for
which a subtype matching is allowed (meta-

relation Town_D3[typeSimRel→→sub]). Since
the type "GermanTown" of the derivative "Ger-
manTown_D1" as range of the equally named
relation "departure of the service derivative
"Ticket_D5" is not equivalent to but a subtype of
"Town" according to the ontology, we get a type
matching valuation in terms of a logical plug-in
match, that is v2 = (0,1,0,0,0,0,0).

Relation via: There is no equally named re-
lation in the service derivative "Ticket_D5",
hence "via" is a missing relation. However,
since the user specified a missing relation strat-
egy for this relation in the goal (Ticket_D4[
missingStrat(@via) →→ assumeEquivalent]) the
matchmaker assumes an equivalent relation for
"via" in the service and returns a missing relation
strategy matching valuation in terms of logical
equivalence: v3 = (1,0,0,0,0,0,0).

Relation arrival: Since the type "GermanTown"
of the range derivative of the relation arrival in
the service is a subtype of the type "Town" of
the same relation of the goal derivative accord-
ing to the ontology, we obtain a type matching
valuation in terms of a logical plug-in match, i.e.
(0,1,0,0,0,0,0). But with the existential intention
declaration of the derivative, the requester ex-
plicitly states to be satisfied with every subset
of the actual requested derivative. Hence, by in-
tentional re-computation the valuation is: v4 =
(1,0,0,0,0,0,0).
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Relation date: The range types of this relation
are equivalent in both goal and service which
yields a type matching valuation in terms of log-
ical equivalence: v5 = (1,0,0,0,0,0,0).

Relation purchaser: Since the type "Customer"
of the range derivative of this relation is a sib-
ling of the type "Client" of the matched re-
lation in the service derivative, they do not
logically match, hence the matching of "Cus-
tomer_D1" and "Client_D1" fails. However,
the user allowed a relaxed matching of deriv-
ative "Customer_D1" by means of a compen-
sative syntactic matching of its type "Cus-
tomer" (Customer_D1[synSimScope →→ scp-
Type]). For this purpose, the loss-of-information
(LOI) metric shall be applied to the weighted
keyword vector representations of type defin-
itions "Customer" and "Client" logically un-
folded in the matchmaker ontology. These vec-
tors are (Customer:1, Town:1, Person:1, Loca-
tion:1, Town:1), respectively, (Client:1, Town:1,
Person:1, Location:1, Town:1) with LOI-based
similarity degree 0.75. Since this syntactic sim-
ilarity value exceeds the given threshold (Cus-
tomer_D1[synSimMinDegree →→ 0.7]), this
yields a syntactic type matching valuation for
fuzzy matching: v6 =(0,0,0,0,.75,0,.25).

The overall result of this relation matching of
goal derivative "Ticket_D4" with service deriva-
tive "Ticket_D5" is the average of the individual
matching valuations in terms of the seven match-
ing degrees:
v7 = v2+...+v6

5 = (0.6, 0.2, 0, 0, 0.15, 0, 0.05).

4. Constraint matching: Any instance of the goal
derivative "Ticket_D4" has to satisfy the logi-
cal constraint c1 (Ticket_D4[constraint→→ c1).
This is satisfied by the instances t1, . . . , t5 of
the matchmaker knowledge base. On the other
hand, the constraint c2, which is imposed on in-
stances of the service derivative "Ticket_D5" is
satisfied by the instances t3, . . . , t5 of the same
knowledge base. That is, the answer set of in-
stances for "Ticket_D5" is included in that for
"Ticket_D4" which means that the service (out-
put) constraint implies that of the goal yielding a
constraint matching valuation in terms of a logi-
cal plug-in match: v8 = (0,1,0,0,0,0,0).

Finally, the aggregated matching valuations of service
and goal derivatives in terms of the seven matching de-
grees of WSMO-MX is

v9 = v1+v7+v8
3 = (.53 .4, 0, 0, .05, 0, .02)

Informally, that means that the service is semantically
relevant to the goal according to 53% equivalence,
40% plug-in and 5% fuzzy matching while only 2%
can not be matched at all. Though, it has to be re-
called that the vector elements are valuation scores and
(partially) based on heuristics. The ranking of multiple
matching services is described in the following.

3.5. Ranking of matched services

While valuation vectors are the final outcome of the
semantic service matching process, WSMO-MX pro-
vides the user with a flexible service ranking mech-
anism based on the matching results and user prefer-
ences. Suppose the matching of a given goal yielded
two relevant services s and t with valuation vectors
vs = (πs,1, ..., πs,7) and vt = (πt,1, ..., πt,7), respec-
tively. Furthermore, rank(x, y, z) denotes a generic
and polymorphic ranking function (denoted as pred-
icate with its last argument being the return value)
which takes two services x and y and binds z to
the one ranked higher. A trivial ranking function is
rankrand(x, y, z) which randomly binds z to either x
or y.

The first versions of WSMO-MX (until WSMO-
MX v0.5) provide a strict lexicographic ranking based
on the total order of the seven matching degrees of
returned valuation vectors. That means, valuation vec-
tors are compared from left to right, and as soon as one
element is greater in one vector the respective service
is ranked higher; if the values of all matching degrees
are equal for both services, one of them is randomly
ranked higher than the other:

ranklex(s, t, s)⇔
∃k.∀i < k.(πs,i = πt,i) ∧ (πs,k > πt,k)

ranklex(s, t, t)⇔
∃k.∀i < k.(πs,i = πt,i) ∧ (πs,k < πt,k)

ranklex(s, t, r)⇔ ∀i.(πs,i = πt,i)∧rankrand(s, t, r)

The idea was to prefer services of which some parts
at least match with strong logic-based matching de-
grees like semantic equivalence or plug-in over those
which have only significant fuzzy similarity. How-
ever, this kind of ranking can yield counter-intuitive
results, even if no fuzzy similarity is involved. As-
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sume services s and t are rated with valuation vec-
tors vs = (.1, 0, ..., 0, .9) and vt = (0, 1, 0, ..., 0), re-
spectively. While only very few parts of s did equiva-
lently match with the corresponding ones of the given
goal, every part of the service t semantically plug-in
matches with the goal, hence received a 100% plug-
in valuation. However, the lexicographic ranking of
both yields ranklex(s, t, s), that is, service s is ranked
higher than t.

The current version v0.6 of WSMO-MX provides an
alternative ranking mechanism which (a) fully exploits
the differentiation enabled by hybrid matching degrees
of valuation vectors, and (b) allows flexible adjustment
by the user. This is achieved by weighting each valu-
ation with an individual real-valued matching degree
weight vector w = (w≡, w�, w�, w�, w∼, w◦, w⊥),
where wi ∈ [0, 1] and

∑
wi ≤ 7. The ranking func-

tion rankwesca is defined through the user-specified
weighting scheme w with real-valued scalar ranking
value rv(s) (rv(t)) as a result as follows:

rankwesca(s, t, s)⇔ vs · wT > vt · wT

rankwesca(s, t, t)⇔ vs · wT < vt · wT

rankwesca(s, t, r)⇔
vs · wT = vt · wT ∧ rankrand(s, t, r)

This rather simple preference-based ranking also al-
lows to express ranklex by restricting πi to d dig-
its (d − 1 decimals or 1.00) and using the weight-
ing scheme wlex = (1, 10−1∗d, 10−2∗d, ..., 10−5∗d, 0).
For convenience, WSMO-MX offers the following
predefined weighting schemes with different kinds of
matching degree preferences:

– wplugin = (1, 1, 0, 0, 0, 0, 0) (plug-in or exact
matches prefered)

– wlogic−dec = (1, 6
7 , 5

7 , 4
7 , 0, 0, 0) (logic-based

matching degrees prefered with decreasing
weights)

– wfuzzy−dec = (1, 6
7 , 5

7 , 4
7 , 3

7 , 0, 0) (logic-based
and fuzzy matching degree prefered with decreas-
ing weights)

– wfuzzy = (1, 1, 1, 1, 1, 0, 0) (no preferences)

Increasing the weight for fault-tolerance, that is
w◦, can be considered as an orthogonal option. On
the other side, there should not be any good reason
to set the weight for failure, that is w⊥, to a value
greater than 0. Reconsidering the above example, the
preference-based ranking rankwesca ranks service t
higher than service s for each of the above weight-
ing schemes. In particular, the ranking value of t for

wplugin and wfuzzy is rv(t) = 0.9, and for wlogic−dec

and wfuzzy−dec it is rv(t) = 0.86. The ranking value
for service s is the same for all these schemes: rv(s) =
0.1.

4. Implementation

WSMO-MX has been implemented in Java and
F-Logic, and its software architecture is divided in
two main parts, WSMO-MX-Core and WSMO-MX-
Tapestry. WSMO-MX-Core comprises the basic func-
tionality including the matching algorithm, several
tools for the analysis of matching results, and an on-
tology manager interface for WSML-MX ontology
management. The ontology manager abstracts reason-
ers and language (F-Logic) specifics into a common
space. So far only a plugin module for OntoBroker is
available. WSMO-MX-Tapestry is a service-oriented
Web application on top of WSMO-MX-Core, Apache-
Tapestry and Apache-Hivemind, and can be run by a
JEE container like Apache-Tomcat. Tapestry and Hive-
mind are included in the version WSMO-MX 0.4.
For future releases of WSMO-MX, it is intended to
make WSMO-MX-Core also accessible by Web ser-
vice communication protocols and/or agent communi-
cation languages.

Although the matchmaker is designed to work with
different F-Logic reasoners, the current version neces-
sitates the deployment of the commercial Ontobroker
reasoner, which is not part of this WSMO-MX version,
but can be obtained including appropriate (research)
licences from Ontoprise GmbH, Karlsruhe. One alter-
native is to obtain the open source ontology manager
system Flora-2.

WSMO-MX comes with a convenient Web based
user interface. Among other features, it allows to flex-
ibly configure the matchmaker, shows which ontol-
ogy manager (reasoner) is plugged in (as a HiveMind
service), disconnects and synchronizes ("reload ontol-
ogy") with it, and also provides a rudimentary natural
language explanation of returned matches. WSMO-
MX version 0.4 is available under MPL license at the
open software portal SemWebCentral5.

5. Evaluation of performance

The experimental evaluation of the retrieval perfor-
mance of WSMO-MX focuses on measuring its recall

5http://projects.semwebcentral.org/projects/wsmomx/
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Fig. 5. Architecture of the WSMO-MX matchmaker

and precision based on an extension of our test collec-
tion WSML-TC2. The performance measures are de-
fined as follows:

Recall = |A∩B|
|A| , Precision = |A∩B|

|B| ,

where A is the set of all relevant documents for a re-
quest, and B the set of all retrieved documents for a
request. The so-called F1-measure equally weights re-
call and precision and is defined as:

F1 = 2×Precision×Recall
Recall+Precision .

We adopt the prominent macro-averaging of precision.
That is, we compute the mean of precision values for
answer sets returned by the matchmaker for all queries
in the test collection at standard recall levels Recalli
(0 ≤ i < λ). Ceiling interpolation is used to estimate
precision values that are not observed in the answer
sets for some queries at these levels; that is, if for some
query there is no precision value at some recall level
(due to the ranking of services in the returned answer
set by the matchmaker) the maximum precision of the
following recall levels is assumed for this value. The
number of recall levels from 0 to 1 (in equidistant steps
n/λ, n = 1..λ) we used for our experiments is λ =
10. Thus, the macro-averaged precision is defined as
follows:

Precisioni = 1
|Q| ×

∑

q∈Q

max{Po|Ro ≥

Recalli ∧ (Ro, Po) ∈ Oq},
where Oq denotes the set of observed pairs of re-
call/precision values for query q when scanning the
ranked services in the answer set for q stepwise for true

positives in the relevance sets of the test collection.
For evaluation, the answer set is the set of all services
registered at the matchmaker which are ranked by the
matchmaker with respect to their (totally ordered) hy-
brid matching degree.

5.1. Testing environment

At the time of writing, there is no service retrieval
test collection for WSML available. As a consequence,
for testing the performance of WSMO-MX, we devel-
oped our own collection, called WSML-TC.

Service Retrieval Test Collection WSML-TC2. Our
first initial test collection WSML-TC1 has been built
upon domain ontologies, services and queries devel-
oped in the DIANE project [21]6. We transformed ser-
vices and queries from the project-specific F-DSD for-
mat into WSML-MX, and subjectively determined bi-
nary relevance sets for each query in the collection
WSML-TC1. The results of our first experimental test-
ing of WSMO-MX over this WSML-TC1 are pre-
sented in [17]. Meanwhile, the test collection has been
updated and extended to a second version WSML-TC2
which contains 97 services and 22 queries with 325
concepts (types) and 810 instances in a given ontology
together with relevance sets and over 2200 derivatives
used by service and query descriptions in WSML-MX.

Software. For the retrieval performance test runs,
we used our open-source tool SME2 (Semantic Web
Service Matchmaker Evaluation Environment) which

6http://hnsp.inf-bb.uni-jena.de/wiki/index.php/DSD
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is available at SemWebCentral7. The SME2 was de-
signed as an extensible tool with a plugin design for
different Web service matchmakers that allows to run
retrieval performance tests over different test collec-
tions not restricted to a specific format. It is also uti-
lized in the international S3 (Semantic Service Selec-
tion) contest8.

Hardware. For the performance tests, OntoBroker
v5.0, SME2 and WSMO-MX v0.5 were deployed on
a machine with Windows 2000, Java 6, CPU 1,7 GHz
and 2 GB RAM.

5.2. Experiments

On the basis of version WSML-TC2 of our test col-
lection, we conducted the following five experiments
to investigate the matchmaker behavior with respect
to different configurations of its semantic, syntactic
and hybrid matching. The retrieval performance of
WSMO-MX is classically measured in terms of its re-
call, precision and F1-values well-known from infor-
mation retrieval [2]. The preprocessing of derivatives
for syntactic matching is done online for each match-
ing request but not persistently indexed such that the
time efforts for syntactic and logic-based matchings
remains comparable. In practice, however, all services
can easily be indexed in prior which would reduce the
time for one matching process to some milliseconds.

5.2.1. Logic-based semantic matching
In the first experiment, we investigated the perfor-

mance of logic-based only matching of WSMO-MX.
For this purpose, we consider service matching devia-
tions from goal derivative types with increasing degree
of relaxation as follows:

– default: Only service derivative type deviations
that are explicitly granted in the goal derivative
are allowed.

– subSuper: Service derivatives which types have a
logical subclass relationship with the goal deriva-
tive are allowed.

– relative-3: Service derivative types are only re-
quired to have a maximum distance of three in the
ontology.

The logical subtype relations are implemented di-
rectly in F-Logic and type deviations are classified by
OntoBroker. OntoBroker also manages the integration

7http://projects.semwebcentral.org/projects/sme2/
8http://www.dfki.de/-klusch/s3/

Fig. 6. Logic-based type matching

of service related domain ontologies into one match-
maker ontology. As shown in Figure 6, the logic-based
matching configuration subSuper yields highest preci-
sion at all recall levels, since the test collection still re-
lies on rather flat and homogenous domain ontologies.
Not surprising, the configuration default is too restric-
tive in general which results in lower precision than
subSuper for top-ranked results but it performs almost
as good as subSuper for high recall values. The most
relaxed logic-based matching configuration relative-3
performs worse than each of the above with impracti-
cal average query response time of 24 seconds (subSu-
per and default require 8, respectively, 2.5 seconds).

5.2.2. Syntactic similarity-based matching
In this experiment, we compared the R/P perfor-

mance of four selected token-based IR metrics for
syntactic matching by WSMO-MX, that are Jac-
card, Extended-Jaccard, Multiset-Jaccard and Co-
sine/TFIDF with syntactic similarity threshold of 0.6
and structural unfolding of service (and goal) deriva-
tive types and relations in the ontology. As shown in
Figure 7, for this setting, all metrics except Extended-
Jaccard perform almost as good as logic-based seman-
tic matching by WSMO-MX in significantly less com-
putational time most of which spent for unfolding and
index generation per query (which can be done in prior
for practical applications of WSMO-MX). Regarding
the top-ranked results (corresponding to the leftmost
part of the R/P curve), the Jaccard similarity metric
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Fig. 7. Syntactic similarity-based matching (Jaccard, Cosine, Ex-
tended Jaccard, Multiset Jaccard)

Fig. 8. Influence of structural service unfolding depth on syntactic
similarity matching performance

performed best and is exclusively used for syntactic
matching in the following experiments.

5.2.3. Syntactic matching with varying depth of
structural service unfolding

The performance of both syntactic and logic-based
matching depends on how much information about the
given goal and service derivative can be taken into ac-

count by the matchmaker. In particular, for syntactic
similarity measurement, this information is determined
by the structural unfolding of a derivative type T , that
is the maximum depth of the (nested) relational struc-
ture of T the matching algorithm (of WSMO-MX) is
allowed to inspect for processing T into a weighted
keyword vector.

Intuitively one would expect that the more complete
the matching of T ’s structure, the better the result of its
syntactic matching with any other service (goal) deriv-
ative type. However, this largely depends on the details
to which services and goals are described in terms of
their nested relation and type signatures with subtypes
and relations defined in the ontology.

In this experiment, we successively increased the
depth of service derivative structures to which the syn-
tactic matching is allowed to unfold relations and types
in the ontology for text similarity measurement from
0 (only the service derivative type itself, no relations
and respective types of derivatives as ranges of these
relations) to 3, that is the maximum depth of relational
structures of service and goal derivatives in WSML-
TC2. As shown in Figure 8, a value of 2 yields the
best recall/precision result compared to the results for
structural unfolding depths of 0 or 1 caused by too
much of the derivative structures, hence information
for semantic matching, being cut off. Computational
time of structural unfolding and syntactic matching
of derivatives is linearly dependent on the unfolding
depth.

5.2.4. Syntactic matching with varying scope of
structural service unfolding

In the last experiment the limited structural unfold-
ing of service (and goal) derivatives covered both the
complete (logical) unfolding of reached types and re-
lations in the ontology. This scope of structural unfold-
ing can be varied by means of logically unfolding ei-
ther types or relations but not both in the ontology as
follows:

– types: Only the set of all types of a complete ser-
vice (or goal) derivative structure are logically un-
folded in the matchmaker ontology and the result-
ing set of primitive components used for weighted
keyword-based syntactic matching.

– relations: Only the names of all relations of a
complete service (or goal) derivative structure
are used for weighted keyword-based syntactic
matching.
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Fig. 9. Syntactic matching with different scopes: types, relations,
both

For example, the logical unfolding of derivative
Customer_D1 (Fig. 3 in section 3.4) with types as
scope yields the weighed keyword vector (Customer:1,
Person:1, Town:1, Location:1). If relations are the
scope of the unfolding of this derivative, the resulting
term vector is (residence:1). The combination of both
would result in a vector containing all of the above
weighted keyword entries. Not surprisingly, as shown
in Figure 9, only syntactic matching with combined
scope of structural unfolding of derivatives performed
best with reasonable tradeoff between recall and pre-
cision, and average computational time twice as much
as for only one of both scopes.

5.2.5. Hybrid vs. logic-based semantic matching
In this experiment, we compared the recall-

precision performance of logic-based only, syntactic
and hybrid semantic matching. For this purpose, we
used matching configurations that performed best in
the experiments above: (a) logic-based only subSu-
per matching, (b) syntactic matching with the Jaccard-
metric, similarity threshold of 0.6 and combined scope
of structural unfolding of derivatives to a maximum
depth 2. The hybrid matching configuration combines
both matching configurations and uses compensative
syntactic matching.

As shown in Figure 10, all matching variants of
WSMO-MX perform reasonably well in terms of pre-
cision and recall over the test collection WSML-TC2.
Figure 11 shows the corresponding F1-values with

Fig. 10. Recall/Precision of logic-based, syntactic and hybrid seman-
tic matching

Fig. 11. F1 graph of semantic, syntactic and hybrid matching vari-
ants

equally weighted importance of recall and precision.
The hybrid matching variant of WSMO-MX performs
best since it avoids false-positives and false-negatives
of both its syntactic and logic-based only match-
ing. For example, logic-based only false-negatives
can be avoided by compensative syntactic similarity
measurement, while syntactic matching only false-
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positives can be avoided by logic-based only subSu-
per matching. A more detailed false-positive/false-
negative analysis is given in the following section. The
hybrid matching variant of WSMO-MX over WSML-
TC2 took four minutes to complete its run, that is
slightly more than its logic-based only matching vari-
ant but significantly slower than its syntactic similarity
matching which took only 47 seconds to complete.

5.3. Analysis of false-positives and false-negatives

In the following, we briefly discuss selected cases
of logic-based false-positives (FP), that are irrelevant
services classified as relevant, and logic-based false-
negatives (FN), that are relevant services classified
as irrelevant by logic-based only service matching
of WSMO-MX. Many of these cases are avoided by
WSMO-MX through complementary or compensative
syntactic similarity-based matching.

5.3.1. Logic-based false positives
Main reasons for logic-based false positives re-

turned by WSMO-MX are (a) its closed-world con-
straint matching by means of relative instance-based
query containment, and (b) the ignorance of miss-
ing parameters by default in case there are no related
missing-relation-strategies specified by the user in the
goal.

Constraint matching by relative query containment.
For example, consider the logical constraint in F-Logic
of goal derivative "Ticket_D4" in Figure 3 which, in-
formally, restricts the set of potential tickets (instances
of X) for a trip between two arbitrary towns such that
if the trip starts in Berlin, then it must not end in Bre-
men:

∀X, X.satCons(X, c1)←
(X [departure→→berlin]→
¬X [arrival→→bremen]).

A service offer that is considered irrelevant to this goal
is a service with logical constraint c2 defined as

∀X, X.satCons(X, c2)←
(X [departure→→berlin]→

X [arrival→→bremen]).

which requires that, in contrast to c1, if the trip starts
in Berlin, then it must end in Bremen.

However, logical constraint matching by WSMO-
MX can fail to detect this difference and return the ser-
vice as relevant. The reason is that constraint match-

ing relies on the computation of instance set relations
(relative query containment). For example, if the in-
stance sets of both constraints are empty, hence triv-
ially equal, the constraint matching filter returns the
top matching degree of logical equivalence not check-
ing any valid but lower degree, hence fails to detect a
logical failure (cf. Table 4). Similarly, if there are in-
stances in the knowledge base that satisfy the goal but
the instance set of the service constraint is empty, the
(postcondition) constraint matching filter wrongly de-
termines the constraint relationship between goal and
service as logical inverse-plugin.

On the other hand, in case of non-empty instance
sets of both goal and service constraints as shown in
Figure 4, the constraint matching filter detects that
the intersection of instance sets {t1, t2, t3, t4, t5} and
{t6} satisfying c1, respectively, c2 is empty, hence
correctly valuates the logical constraint relationship as
fail. One general solution to this problem would be
to apply alternative means of approximating logical
implication such as checking of theta-subsumption be-
tween logical constraints [32].

Missing input and output parameters tolerated by de-
fault. WSMO-MX ignores the fact of missing input
or output parameters by default if the user did not spec-
ify a respective missing relation strategy by returning
logical plugin or inverse-plugin by default (cf. Table
3, "none"). In cases where the logically defined types
of these parameters are key for a semantic mismatch
between goal and service this default matching leads
to false-positives. Similar cases arise when the speci-
fied missing relation strategy appears too relaxed (with
values "assumeEquivalent or "ignore").

The matching process annotation produced by the
parameter and relation matching filter may help the
user to overcome this problem by refining the origi-
nal goal description. The additional use of syntactic
matching to mitigate logic-based false-positives is pro-
posed in [25].

5.3.2. Logic-based false-negatives
The relaxation of logic-based matching by means

of compensative or complementary syntactic match-
ing can avoid logic-based false negatives. This holds
for cases where the ontology modeling is too coarse-
grained such that logical type matching would fail.
One example are class or type siblings in the ontology
with similar real-world semantics and sufficient syn-
tactic similarity.
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5.3.3. False-positives of hybrid matching
Syntactic matching can also produce false-positives

due to its inherent ignorance of the logical definition of
the semantics of service and goal elements to be com-
pared. In fact, the additional (compensative or com-
plementary) use of syntactic matching by WSMO-MX
may wrongly override the correct result of its logic-
based matching.

6. Related work

Other implemented approaches to WSML service
discovery are rare. To the best of our knowledge,
these are the logic-based matchmaker GLUE (Della
Valle et al., 2005)[8,9] and the syntactic search en-
gine (part of the WSMO studio) for QoS-enabled
WSML service discovery in P2P networks (Vu et al.,
2006)[34]. In addition, approaches to logic-based se-
mantic matching of so-called rich functional service
descriptions (WSML-oriented) in abstract state spaces
based on concurrent transaction logic are proposed
in (Keller et al., 2005; Stollberg et al., 2006)[18,31],
though it is unclear to what extent they have been
implemented. WSMO-MX has been the first imple-
mented general and hybrid matchmaker for WSML-
oriented services. In particular, other mediator-based
discovery approaches such as those presented in [20,
9,26] do not allow for general goal-service matching,
but require problem-specific mapping, or construc-
tion rules. Hybrid matchmakers for services in formats
different from WSML are in particular available for
OWL-S such as the matchmakers OWLS-MX [25,24],
ROWLS [11], FC-MATCH [3], and iMatcher [15]. Of
those only OWLS-MX and iMatcher have been ex-
perimentally evaluated against a service retrieval test
collection for OWL-S services, called OWLS-TC2.
In summary, these results also show that the perfor-
mance of logic-based only matching of semantic ser-
vices can be improved by syntactic similarity-based
matching. DIANE [22,21] inspired WSMO-MX in
terms of its object-graph-driven matching and strate-
gies for declaring mismatch tolerance. However, its
graph-matching-based service selection does not per-
form any logic-based reasoning nor is it related to
prominent logic-based semantic service description
models like OWL-S or WSML. A comprehensive sur-
vey and classification of semantic service matchmak-
ers for different service description formats is provided
in [16].

7. Conclusions

The matchmaker WSMO-MX performs hybrid se-
mantic service matching based on both logic program-
ming in F-Logic and syntactic similarity measurement.
WSMO-MX applies different matching filters to re-
trieve services that are semantically relevant to a given
query with respect to seven, totally ordered degrees of
matching. These degrees are recursively computed by
aggregated valuations of ontology-based type match-
ing, logical constraint, recursive relation matching, and
syntactic similarity-based matching. WSMO-MX v0.4
is available at the open software portal SemWebCen-
tral and requires a license for using the ontology man-
agement system OntoBroker.

The results of our experimental evaluation of the
performance of WSMO-MX over an extended ver-
sion of our initial test collection WSML-TC1, namely
WSML-TC2, showed in particular that (a) hybrid se-
mantic matching can outperform logic-based only
matching, and that (b) syntactic matching - if parame-
trized appropriately - can easily keep up with logic-
based matching regarding recall/precision, and signif-
icantly outperforms it in terms of computation time.

We are currently working on an extension of the
test collection WSML-TC2 and further experimental
evaluation, as well as an updated version of WSMO-
MX with an additional ontology manager plugin for
the open-source F-Logic reasoner Flora-2. Further-
more we are preparing a Web demo of WSMO-MX at
http://www.wsmo-mx.net.

Acknowledgement. We would like to thank Patrick
Kapahnke at DFKI for helping with the experimental
evaluation and software maintenance of WSMO-MX.

References

[1] J. Angele, G. Lausen: Ontologies in F-logic. In: Handbook on
Ontologies, eds. S. Staab, R. Studer, Springer, 2004.

[2] R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Re-
trieval. ACM Press, Addison-Wesley. pages 75ff, 1999.

[3] D. Bianchini, V. De Antonellis, M. Melchiori, D. Salvi:
Semantic-enriched Service Discovery. Proceedings of IEEE
ICDE 2nd International Workshop on Challenges in Web Infor-
mation Retrieval and Integration (WIRI06), Atlanta, Georgia,
USA, 2006.

[4] A. Bernstein, C. Kiefer: Imprecise RDQL: Towards Generic Re-
trieval in Ontologies Using Similarity Joins. Proceedings ACM
Symposium on Applied Computing, Dijon, France, ACM Press,
2006.



20 M. Klusch and F. Kaufer / WSMO-MX: A Hybrid Semantic Web Service Matchmaker

[5] L. Botelho, A. Fernandez, B. Fries, M. Klusch, L. Pereira, T.
Santos, P. Pais, M. Vasirani: Service Discovery. In M. Schu-
macher, H. Helin (Eds.): CASCOM - Intelligent Service Coor-
dination in the Semantic Web. Chapter 10. Birkhäuser Verlag,
Springer, 2008.

[6] Natalia Cherchago, Pascal Hitzler, Steffen Hölldobler Decid-
ability Under the Well-Founded Semantics In Massimo Mar-
chiori, Jeff Z. Pan, Christian de Sainte Marie, Proceedings of
the First International Conference on Web Reasoning and Rule
Systems, RR2007, Innsbruck, Austria, June 2007, volume 4524
of Lecture Notes in Computer Science, pp. 269-278. Springer,
June 2007.

[7] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov: Complexity and
expressive power of logic programming. ACM Computing Sur-
veys, 33(3), 2001.

[8] E. Della Valle, D. Cerizza, I. Celino: The Mediators Centric Ap-
proach to Automatic Web Service Discovery of GLUE. Pro-
ceedings of 1st International Workshop on Mediation in Seman-
tic Web Services (MEDIATE), CEUR Workshop proceedings,
168, 2005.

[9] E. Della Valle, D. Cerizza: COCOON Glue: a prototype of
WSMO Discovery engine for the healthcare field. Proceedings
of the WIW 2005 Workshop on WSMO Implementations, CEUR
Workshop Proceedings, 134, 2005.

[10] D. Fensel, F. van Harmelen: Unifying reasoning and search to
Web scale. IEEE Internet Computing, March/April 2007.

[11] A. Fernandez, M. Vasirani, C. Caceres, S. Ossowski: A role-
based support mechanism for service description and discovery.
In: Huang et al. (eds.), Service-Oriented Computing: Agents, Se-
mantics, and Engineering. LNCS 4504, Springer, 2007.

[12] G. Gottlob, A. Leitsch: On the efficiency of subsumption algo-
rithms. Journal of the ACM, 32(2), 1985.

[13] C.A.R. Hoare: An axiomatic basis for computer programming.
Communications of the ACM, 12(10), 1969.

[14] F. Kaufer, M. Klusch: WSMO-MX: A Logic Programming
Based Hybrid Service Matchmaker. Proceedings of the 4th IEEE
European Conference on Web Services (ECOWS 2006), IEEE
CS Press, Zurich, Switzerland, 2006.

[15] C. Kiefer, A. Bernstein: The Creation and Evaluation of iS-
PARQL Strategies for Matchmaking. Proceedings of European
Semantic Web Conference, Springer, 2008.

[16] M. Klusch: Semantic Web Service Coordination. In: M. Schu-
macher, H. Helin, H. Schuldt (Eds.), CASCOM - Intelligent Ser-
vice Coordination in the Semantic Web. Chapter 4. Birkhäuser
Verlag, Springer, 2008..

[17] M. Klusch, F. Kaufer: Performance of Hybrid WSML Service
Matching with WSMO-MX: Preliminary Results. Proceedings
of the 1st Intl. Joint Workshop on Semantic Matchmaking and
Resource Retrieval, at Intl. Semantic Web Conference, Busan,
Korea, 2007.

[18] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel: Auto-
matic Location of Services. Proceedings of the 2nd European
Semantic Web Conference (ESWC), Heraklion, Crete, LNCS,
3532, Springer, 2005.

[19] M. Kifer, G. Lausen, J. Wu: Logical Foundations of Object-
Oriented and Frame-Based Languages. Journal of the ACM,
42(4), 1995.

[20] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen,
D. Fensel: A Logical Framework for Web Service Discovery.
Proceedings of the ISWC 2004 Workshop on Semantic Web Ser-

vices: Preparing to Meet the World of Business Applications,

CEUR Workshop Proceedings, 119, 2004.
[21] U. Küster, B. König-Ries, M. Stern, M. Klein: DIANE: an in-

tegrated approach to automated service discovery, matchmaking
and composition Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007. ACM 2007.

[22] M. Klein, B. König-Ries: Coupled Signature and Specification
Matching for Automatic Service Binding. Proceedings Euro-
pean Conference on Web Services (ECOWS 2004), Erfurt, 2004.

[23] M. Klusch, K. Sycara: Brokering and Matchmaking for Coor-
dination of Agent Societies: A Survey. In: Coordination of In-
ternet Agents: Models, Technologies and Applications. Springer,
2001.

[24] M. Klusch, B. Fries, P. Kapahnke: Hybrid Semantic Web Ser-
vice Retrieval: A Case Study with OWLS-MX. Proceedings of
2nd IEEE International Conference on Semantic Computing,
USA. IEEE Press, 2008.

[25] M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Ser-
vice Discovery with OWLS-MX. Proc. 5th Intl. Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), Hako-
date, Japan, ACM Press, 2006

[26] R. Lara, M. Angel Corella, P. Castells: A flexible model for
Web service discovery. Proceedings of the 1st International
Workshop on Semantic Matchmaking and Resource Retrieval:
Issues and Perspectives, Seoul, South Korea, 2006.

[27] , J. Lloyd and R. Topor: Making Prolog More Expressive. Jour-
nal of Logic Programming, 1(3), pp. 225-240, 1984.

[28] S. Muggleton and L. De Raedt: Inductive Logic Programming:
Theory and Applications. Logic Programming, 19(20), 1994.

[29] J.A. Robinson: A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM, 12(1), 1965.

[30] T. Scheffer, R. Herbrich, F. Wysotzki: Efficient Algorithms for
theta-Subsumption. Inductive Logic Programming, 6th Interna-
tional Workshop, Selected Papers, LNAI 1314, pp. 212-228,
Springer Verlag Berlin, 1996.

[31] M. Stollberg, U. Keller, H. Lausen, S. Heymans: Two-phase
web service discovery based on rich functional descriptions.
Proceedings of European Semantic Web Conference, Buda,
Montenegro, LNCS, Springer, 2007.

[32] K. Sycara, S. Widoff, M. Klusch, J. Lu: LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cy-
berspace. Autonomous Agents and Multi-Agent Systems, 5(2),
2002.

[33] A. van Gelder, K. Ross, J. S. Schlipf: The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620-
650, 1991.

[34] L.H. Vu, M. Hauswirth, F. Porto, K. Aberer: A Search Engine
for QoS-enabled Discovery of Semantic Web Services. Ecole
Politechnique Federal de Lausanne, LSIR-REPORT-2006-002,
Switzerland, 2006. Also available in the Special Issue of the In-
ternational Journal of Business Process Integration and Manage-
ment (IJBPIM) (2006).

[35] G. Yang and M. Kifer: Well-Founded Optimism: Inheritance
in Frame-Based Knowledge Bases. Proceedings of 1st Interna-
tional Conference on Ontologies, Databases and Applications
of Semantics (ODBASE), Irvine, California, 2002.

[36] A. Zaremski, J. Wing: Specification Matching of Software
Components. Proceedings of the 3rd ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, 1995.


