Data-driven synthesis based on Motion Graphs

VARSHINI MUTHUKUMAR
MASTER IN VISUAL COMPUTING
MATRICULATION NO. - 2572827
Contents

- Motivation
- Overview
- Construction
- Extracting motion
- Path Synthesis
- Applications
- Conclusion and Future Scope
Motivation

Realistic motion: An important part of media

- Dynamic synthesis
- Realism of motion capture
- User directed motion
- Constraints on desired motion
Overview:

- Detect candidate transitions
 - Identify similar clips
 - Compute difference in poses

- Create transitions
 - Straightforward blending
 - Join motion seamlessly

- Create motion graphs
 - Directed graph
 - Reassemble motion clips

- Motion synthesis
 - Graph walk
 - Select sequence of nodes
Motion capture data

Figure 1.(a) - (d): Example motion clips

Sampling
root position
and joint
rotation
parameters

Figure 1.(b)

Figure 1.(c)

Figure 1.(d)
Identify similar clips:

How to detect similarity?

Figure 2.(a), (b): Example motion clips
Identify similar clips:

How to detect similarity?

Figure 2.(a), (b): Example motion clips

Vector norms
Identify similar clips:

But do vector norms work?

Problems:
- Fail to account for meanings of parameters

Figure 3: Example motion clips

Figure 4: Example motion clips – Rotating Ballerina
Identify similar clips:

But do vector norms work?

Problems:
- Fail to account for meanings of parameters
- Motion defined only up to a rigid 2D co-ordinate transformation

Figure 3: Example motion clips

Figure 4: Example motion clips – Rotating Ballerina
Identify similar clips:

But do vector norms work?

Problems:

- Fail to account for meanings of parameters
- Motion defined only up to a rigid 2D co-ordinate transformation
- No information about joint velocities, accelerations

Figure 3: Example motion clips

Figure 4: Example motion clips – Rotating Ballerina
Metric driven by point cloud

Figure 5: Point cloud created by motion
Metric driven by point cloud

- Use window of frames - create point cloud
- Windows before and after the frames to be compared (Ai and Bj)
- Measure closeness of frames of animation
- Primary advantage: Incorporates derivative information
- User-defined 'k'

Figure 6: Point cloud created by motion
Figure 7: Two example motion clips
Error Metric:

Distance between two frames A_i, B_j

\[D(A_i, B_i) = \min \sum_i w_i \| p_i - T_{\theta, x_0, z_0} p_i' \|^2 \]

Where,
- p_i and p'_i = points in the two point clouds
- w_i = weights
- $T()$ = linear transformation matrix
- I = index in point cloud
Detecting candidate transitions:

Figure 8: Example error function for two motions

Higher error

Lower error
Detecting candidate transitions:

- Local minima
- Choose based on a threshold
- User likes to pick this threshold

Figure 9: Example error function for two motions
Selecting transition points

Figure 10: A simple motion graph

Figure 11: Two example motion clips
Creating transitions: If $D(A_i, B_j)$ meets threshold

- Blend two window of frames
- A_i to A_i+k-1 with frames B_j-k+1 to B_j
- Simple linear interpolation on root positions
- Spherical interpolation on joint rotations

Figure 12: Two example motion clips
Creating transitions: If $D(A_i, B_j)$ meets threshold

Steps:
1. Aligning 2D transformation to motion B
2. On frame p of transition ($0 \leq p < k$),
 \[
 R_p = \alpha(p) R_{A_{i+p}} + [1 - \alpha(p)] R_{B_{j-k-1}}
 \]
 \[
 q_p^i = \text{slerp}(q_{A_{i+p}}^i, q_{B_{j-k+1+p}}^i, \alpha(p))
 \]
 where,
 - R_p = Root position on frame p of transition
 - q_p^i = Rotation of the i^{th} joint P^{th}
 - R_{A_i} = Root position on frame A_i in motion A
 - R_{B_i} = Root position on frame B_i in motion B

Prevent feet sliding !!!

Figure 13: Example motion clip-
Human walking
Creating transitions: If \(D(A_i, B_j) \) meets threshold

Steps:
1. Aligning 2D transformation to motion \(B \)
2. On frame \(p \) of transition \((0 \leq p < k)\), linearly interpolate the root positions and perform spherical linear interpolation on joint rotations
3. Blend weight:
 \[
 \alpha(p) = 2 \left(\frac{p+1}{k} \right)^3 - 3 \left(\frac{p+1}{k} \right)^2 + 1, \quad -1 < p < k
 \]

 Conditions:
 - \(\alpha(p) = 1, \ p \leq -1 \)
 - \(\alpha(p) = 0, \ p \geq k \)
 - \(C^1 \) continuity
Motion graphs

- Arrange clips in directed graph
- Key components:
 - **Dead ends**: not part of any cycle
 - **Sinks**: low connectivity
 - **Strongly connected components**: nodes part of many cycles
- Incoming label doesn't match outgoing label

![Figure 14: A simple motion graph](image1)

![Figure 15: Motion graphs built from initial clips](image2)
Motion graphs

Figure 15: Example of motion synthesis with interpolated frames
Motion extraction:

- Searching for motion
- Optimizing graph walks
- Suitable metric to extract frames
- Metric used is Scalar error function: $g(w,e)$ - Conforming to user specifications
- Total error:
 $$f(w) = f([e_1, e_2, ..., e_n]) = \sum_{i=1}^{n} g([e_1, e_2, ..., e_n], e_i)$$
- Branch and bound to reduce number of graph walks

Figure 16: A simple motion graph
Motion extracted depends on 'g'!

- Key requirements in g:
 - Guidance through motion
 - Not be too restrictive

Figure 17: A generated motion using motion graph with position and orientation difference as a metric
Path Synthesis

- **Error metric – Distance between points in path**
 - Given path – P and actual path P'

 \[g(w, e) = \sum_{i=1}^{n} ||P'(s(e_i)) - P(s(e_i))||^2 \]

- **Where,**
 - \(i \) – frames in edge
 - \(e_i \) – \(i^{th} \) frame of edge
 - \(s(e_i) \) - arc length at \(e_i \)

- **Halting condition:** current total length of \(P' \) ≥ length of \(P \)

Character accumulates zero error by standing still.

Figure 18: A generated motion using path synthesis algorithm.
Path synthesis- with descriptive labels

- All generated motion of single type
- Confine search to relevant sub graphs
- Mixed labels on parts of path: Distinct labels for adjoining parts of path

Figure 19: Motions generated with different labels on different parts of the path
Final Synthesized motion

Figure 20: Original motion clip and its reflection
Figure 21: Motions generated with path synthesis algorithm
Figure 22: Motions generated with path synthesis algorithm
Final Synthesized motion

Figure 23: Results: Motion generated with Kovar et al., 2002 algorithm
Applications

- **Interactive control:** User control over character
- **High-Level Key Framing:** define subsections with required action types
- **Motion Dumping:** Animate non-player characters and interactive environments
- **Crowds:** Practical tool for crowd generation

Figure 24: Randomly walking crowd
Figure 25: Motion dumping in games
Figure 26: High level key framing
Figure 27: Interactive motion synthesis
Conclusion and Future Scope

- Framework for generating realistic, controllable motion
- Encapsulate connections in the database automatically
- Comparing every pair of F frames involves $O(F^2)$
- Major limitation here: Thresholds are user-specified
Thank you!
References

6. GameSprout. FIFA 16 FAIL Compilation. Youtube. 2015. URL: https://www.youtube.com/watch?v=F4MBcGrUdOk&t=16s

7. Rachel Heck, and Michael Gleicher. Parametric Motion Graph. URL: https://www.youtube.com/watch?v=ZepNQHXAcCY&t=7s
A1. Modified parametric equation in path synthesis

- Character standing still has low error
- Require at least small progress on each frame
- Use $t(e_i)$ instead of $s(e_i)$

\[
t(e_i) = \max(t(e_{i-1}) + s(e_i) - s(e_{i-1}), t(e_{i-1}) + \gamma_i)
\]
A2. Slerp

- Shorthand for spherical linear interpolation
- Rotation with uniform **angular velocity** around a fixed rotation axis
A2. Optimised solution of the metric

\[
\begin{align*}
\theta &= \arctan \frac{\sum_i w_i (\bar{x}_i' - \bar{x}_i) - \frac{1}{\sum_i w_i} (\bar{x} - \bar{x}')}{\sum_i w_i (\bar{x}_i + \bar{z}_i') - \frac{1}{\sum_i w_i} (\bar{x} + \bar{z}')}
\end{align*}
\]

\[
\begin{align*}
x_0 &= \frac{1}{\sum_i w_i} (\bar{x} - \bar{x}' \cos(\theta) - \bar{z}' \sin(\theta))
\end{align*}
\]

\[
\begin{align*}
z_0 &= \frac{1}{\sum_i w_i} (\bar{z} + \bar{x}' \sin(\theta) - \bar{z}' \cos(\theta))
\end{align*}
\]

where \(\bar{x} = \sum_i w_i x_i\) and the other barred terms are defined similarly.