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Based on Lee, Y., et al ,“Motion Fields for Interactive Character Animation”



Motivation
Motions Graphs were great!

… but they only “played” predefined clips of animation.

We want something more flexible!

That works in a continuous setting! 
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Outline
- What are Motion Fields?

- Crash Course on Reinforcement learning

- Guiding the motion synthesis with the motion field

- Further Remarks

- Results and discussion
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Motion Space
AKA “Phase Space” or “State Space”

A point in the motion space represents the state (pose + velocity) of the 
character.
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Motion Space
𝑥’’(𝑡) = −

𝑘

𝑚
𝑥(𝑡)

Point in phase space: 𝑥, 𝑣 , 𝑥′ = 𝑣

Simple Example: Spring

𝑥

𝑣

0

𝑚

𝑥
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Motion Space
𝑥 = (𝑥𝑟𝑜𝑜𝑡, 𝑝0, 𝑝1, … , 𝑝𝑛)

v = 𝑣𝑟𝑜𝑜𝑡 , 𝑞0, 𝑞1, … , 𝑞𝑛

𝑚 = (𝑥, 𝑣)

We can define “addition” and “subtraction” of poses:

𝑥′ ⊕𝑥 = (𝑥𝑟𝑜𝑜𝑡
′ + 𝑥𝑟𝑜𝑜𝑡, 𝑝0𝑝0

′ , 𝑝1𝑝1
′ , … , 𝑝𝑛𝑝𝑛

′ )

𝑥′ ⊖𝑥 = 𝑥𝑟𝑜𝑜𝑡
′ − 𝑥𝑟𝑜𝑜𝑡 , 𝑝

′
0𝑝0

−1, 𝑝1
′𝑝1

−1, … , 𝑝𝑛
′ 𝑝𝑛

−1

𝑣 is computed via finite differences:
◦ 𝑚𝑖 = 𝑥𝑖 , 𝑥𝑖+1 ⊖𝑥𝑖 , for the i-th frame in the database

◦ 𝑦𝑖 = 𝑥𝑖+2 ⊖𝑥𝑖+1
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Motion Space
Distance metric:

𝛽 are adjustable parameters
𝛽𝑟𝑜𝑜𝑡 = 0.5, 𝛽0 = 0.5, 𝛽𝑖 is set to the length of bone i
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Motion Field
𝐴(𝑚) = set of actions

𝑎1, 𝑎2, … , 𝑎𝑘 = 𝑎 ∈ 𝐴 𝑚

σ𝑖=1
𝑘 𝑎𝑖 = 1, 𝑎𝑖 ≥ 0

The vector 𝑎 describes the influence of each of the k nearest neighbors

(It’s a convex combination)
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Motion Synthesis
𝐼(𝑚, 𝑎) = (𝑥 ⊕ 𝑣’, 𝑦’)

𝑣’ = σ𝑖=1
𝑘 (𝑎𝑖𝑣𝑖)

𝑦’ = σ𝑖=1
𝑘 (𝑎𝑖𝑦𝑖)
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Motion Synthesis

We add a tug that pulls toward closest state ഥ𝑚

𝐼(𝑚, 𝑎) = (𝑥 + 𝑣’, 𝑦’)

𝑣’ = 1 − 𝛿 σ𝑖=1
𝑘 𝑎𝑖𝑣𝑖 + 𝛿( ҧ𝑥 ⊕ ҧ𝑣 ⊖ 𝑥)

𝑦’ = (1 − 𝛿)σ𝑖=1
𝑘 (𝑎𝑖𝑦𝑖) + 𝛿 ത𝑦
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Motion Synthesis
How do we choose the action 𝑎?

Should we set 𝑎𝑖 = 𝑤𝑖?

(Where 𝑤𝑖 are the similarity weights, 𝑤𝑖 =
1

𝜂

1

𝑑 𝑚,𝑚𝑖
2)

𝜂 =

𝑖

1

𝑑 𝑚,𝑚𝑖
2
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Reinforcement Learning
We have states…

And our motion field describes the actions…

That cause our state to transition to another state…

While fulfilling a certain goal (i.e.: maximizing a reward)

We want to find the best action (policy)

These 4 key items define a Markov Decision Process
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Markov Decision Process
States:

◦ m is not enough!

◦ We need to represent how well the state is fulfilling our task

◦ We consider the state 𝑠 = (𝑚, 𝜃𝑡), 

𝜃𝑡 is the vector of task parameters
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Markov Decision Process
Actions:

◦ We discretize the set of possible actions

◦ Instead of considering all possible actions, we simply consider k different 
actions (if we have k nearest neighbors):

𝑎𝑛 =
(𝑤1,…,𝑤𝑛−1,1,𝑤𝑛+1,…,𝑤𝑘)

σ𝑖=1,𝑖≠𝑛
𝑘 𝑤𝑖 + 1
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Markov Decision Process
Transitions:

𝑠𝑖+1 = 𝐼𝑠 𝑠𝑖 , 𝑎𝑖

Note: The indices here represent the “timestep” in which we generate 
the state, not their position in the original animation here.

𝐼𝑠 𝑠, 𝑎 = 𝑚′, 𝜃′

= (𝐼 𝑚, 𝑎 , 𝜃 𝑚′ )
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Markov Decision Process
Reward Function:

◦ 𝑅(𝑠, 𝑎)

Examples: 

𝑅𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑠, 𝑎 = −|𝜃𝑐|

𝑅𝑙𝑖𝑛𝑒 𝑠, 𝑎 = − 𝜃𝑐 − 0.05|𝑑𝐿|
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Reinforcement Learning
Greedy Policy:

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑚 𝑅 𝑠, 𝑎
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Reinforcement Learning
Lookahead Policy:

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑚 [𝑅 𝑠, 𝑎 + max
{𝑎𝑡}

σ𝑡=1
∞ 𝛾𝑡𝑅(𝑠, 𝑎)]

𝛾 is the discount factor.
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Reinforcement Learning
𝑉 𝑠 = max

{𝑎𝑡}
σ𝑡=0
∞ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)

𝑉 𝑠 = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝑉(𝐼𝑠 𝑠, 𝜋 𝑠 )

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑚 [𝑅 𝑠, 𝑎 + 𝛾𝑉 𝐼𝑠 𝑠, 𝑎 ]

Value Iteration Algortihm:
◦ Initialize 𝑉 to zero

◦ While (𝑉 changes)
◦ Compute 𝜋 𝑠

◦ Update 𝑉 𝑉 𝐼𝑠 𝑠, 𝑎 is computed via 

interpolation

𝑉 is evaluated at points of
the form (𝑚𝑖 , 𝜃𝑗), where 𝑚𝑖

are the motion states 
associated with the data, 
and  𝜃𝑗 are sample points in 

the task parameters (i.e.: a 
regular grid) 
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Motion Synthesis (again)
Given a current task state s

Compute k states 𝑠𝑖 = 𝐼𝑠 𝑠, 𝑎𝑖 , 𝑎𝑖 is the action that favors the i-th
nearest neighbor.

For each action, compute the reward + value of next state:

𝑅 𝑠, 𝑎𝑖 + 𝛾𝑉(𝑠𝑖)

Choose the action that maximizes that sum.
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Going Further
- Foot skate clean up

- Temporal Compression

- Response to perturbation
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Foot-skate cleanup
For every motion state 𝑚𝑖 , store if the left foot is in contact 
(𝑙𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑚𝑖) = 1) or not (𝑙𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑚𝑖) = 0)

At any given motion state, we have that

If 𝑙𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑚𝑖 > 0.5, we hold the foot in place and pose the leg bones 
with an IK solution. Otherwise, we blend out of the IK solution in 0.2 
seconds.

We do the same for the right foot.
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Temporal Compression
If we have too many task parameters, the size of the value function may 
quickly grow!

Solution: states that follow each other in the motion database should 
be similar enough. Compute and store V only for every N-th frame 
(anchor states), interpolate in time for the other frames.
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Response to Perturbation
At any given point in time, blend into a dynamics simulation:

When the blending stops, go back to the normal integration function.
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Results
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Results Perturbation response
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Results Comparison to motion
graphs: 
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Results
Temporal Compression
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Results Temporal Compression
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In practice...
Is this used?

YES!

Example: Ubisoft uses a derivative of this method (highly simplified)

in their most recent videogames!

https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-
Road

https://www.gdcvault.com/play/1023478/Animation-Bootcamp-
Motion-Matching-The
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https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://www.gdcvault.com/play/1023478/Animation-Bootcamp-Motion-Matching-The
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The end
Limitations?

The character can’t stray too far from data.
It’s harder to analyze and edit motion fields.
ANN search is too costly. 
K-NN may not provide enough variety.

How can we improve?
Motion Matching heavily simplifies this method, and it has in turn 
inspired more complex ideas for control of interactive characters, like 
Phase Functioned Neural Networks.
Using different features for the motion space and better distance 

metrics is crucial.
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Questions?
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Extra

https://en.wikipedia.org/wiki/Slerp
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Extra

PARK, S. I., SHIN, H. J.,ANDSHIN, S. Y. 2002. On-line locomotion generation based on motion 
blending. Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer 
Animation,

Markley, F.L., Cheng, Y., Crassidis, J.L., Oshman, Y., Quaternion Averaging

See also:

The averaged quaternion is given by the eigenvector 
of M corresponding to the largest eigenvalue
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Extra

For more on reinforcement learning:

Ernst, D., Geurts, P., Wehenkel, L., and Littman, L., 2005, Tree-Based 
Batch Mode Reinforcement Learning, jornal of Machine Learning
Research 6

36


