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Abstract— Automated bilateral agent negotiation under un-
certainty, that is with imprecise or uncertain information about
preferences, utilities and strategies of the opponent is known to
be hard. In this paper, we present the first adaptive solution that
bases on multistage fuzzy decision making. The modelling of
individual preferences as fuzzy goal and fuzzy constraints, and
observed strategic concession behaviour of opponents during
negotiation as a fuzzy Markov decision process allows the agent
to adapt their negotiation strategies and implied behaviour
to improve its individual payoffs. In particular, we show that
such adaptive bilateral negotiation strategies can be efficiently
derived by an agent from negotiation threads of only two
reference cases in its respectively maintained fuzzy transition
matrix. Finally, we demonstrate the benefit of applying this
solution to different soft-constrained negotiation settings by an
initial comparative experimental evaluation.

I. INTRODUCTION

Automated n-agent negotiation can be considered a multi-
stage decision process where individual rational agents seek
to find the best course of actions towards an agreement under
the presence of conflicting goals and preferences [1], [2], [3],
[4]. Particular attention has been paid to negotiation mech-
anisms between two agents each of which having their own
decision making process with individual utility structures
and negotiation strategies, and their application to different
domains such as electronic commerce [5], resource allocation
and recently service-oriented computing [6]. The problem
of bilateral agent negotiation with imprecise or uncertain
information about utilities and strategies of the opponent is
known to be hard, and many solution approaches have been
proposed to cope with it ranging from simple If-then rules,
heuristic tactics to more advanced learning and reasoning
techniques [4]. Such adaptive negotiation mechanisms mostly
assume agents to steadily explore their environment and other
agents’ behaviour to gain experience from past interactions,
or maintain explicit beliefs about utilities, constraints and
decision models of their opponents.

In this paper, we present the first adaptive solution based
on modelling the bilateral negotiation process as an optimiza-
tion problem using a multistage fuzzy decision approach.
Individual agent preferences are expressed in terms of a
fuzzy goal and time-based fuzzy constraints whilst the dy-
namics of the negotiation is modelled as a fuzzy Markov
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decision process which represents the relation between the
strategic concession behaviour between both agents involved.
In this case, agents’ offers and counteroffers correspond
to state-action pairs in the negotiation process such that
individual fuzzy (possibilistic) instead of probabilistic state
transitions enable an agent to utilize uncertain knowledge
or beliefs about the concession behaviour of its opponent,
and, eventually, obtain a solution in form of state-action
policies by fuzzy dynamic programming. We show that the
resulting negotiation strategies of an agent successfully adapt
to different negotiation behaviours of its opponent based on
only two observed reference cases from past interactions that
are required to derive its individual fuzzy transition matrix.

A first comparative experimental evaluation of our adap-
tive solution for different soft-constrained negotiation set-
tings with deadlines revealed that on average agents may gain
higher individual utilities compared to the use of traditional
heuristic-based mixed strategies.

The remainder of the paper is structured as follows. The
next section briefly recalls concepts of multistage fuzzy con-
trol deriving the concept of fuzzy state transitions from the
stochastic case. Section III details how negotiation strategies
are modelled using this approach while Section IV outlines
the decision algorithm for a negotiation agent. We present
experimental results of a comparative evaluation between
heuristic-based mixed negotiation strategies in Section V.
Related work is discussed in Section 5, and finally, we
conclude in Section VII.

II. MULTISTAGE FUZZY CONTROL

In this section we recall concepts and notations of multi-
stage decision making in fuzzy environments [7], [8] deriving
a system with fuzzy state transitions from the stochastic case.
According to [7], [8] a fuzzy decision problem is defined as
D = C1?Cm?. . .?G1?Gn where D is the fuzzy decision in
a fuzzy environment specified by n fuzzy goals G1, . . . , Gn
and m fuzzy constraints, C1, . . . , Cn. Both, fuzzy goals and
constraints, are fuzzy sets in the set of options X . The ?-
operator represents the aggregation between two fuzzy sets
while the optimal decision x∗ ∈ X satisfies all constraints
and goals such that D with the membership function µD(x)
is maximized with

µD(x
∗) = max

x∈X
µD(x). (1)

Assume now, we have a stochastic system under control
whose state transitions are governed by the conditional
probability function

p(xt+1|xt, ut), (2)



where xt, xt+1 ∈ X = {σ1, . . . , σn} are the states and
ut ∈ U = {α1, . . . , αm} are the controls of the system at
stages t and t+1 with t = 0, 1, . . . , N − 1.This corresponds
to a Markov decision process where the fuzzy goals and
constraints, imposed at the respective stages of the process,
represent the fuzzy environment in which a decision is to
be found given the time-invariant transition function and
the fixed termination time. We consider the case where the
final outcome at the last stage N is of most importance
so that only one fuzzy goal GN is imposed. Using the
time-dependent fuzzy constraints at the control stages, the
above fuzzy decision problem becomes D(x0) = C0 ? . . . ?
CN−1 ? GN , where the fuzzy sets Ct and Gt are specified
by membership functions µGt(x) and µCt(x), respectively.
According to [7], the problem then is to find an optimal
sequence of controls u∗0, . . . , uN−1 that maximizes the fuzzy
decision D given the initial state x0:

µD(u
∗
0, . . . , u

∗
N−1|x0) =

max
u0,...,uN−1

[µC0(u0) ∧ . . . ∧ µCN−1(uN−1) ∧ EµGN (xN )].

(3)

In this paper, we use the min-operation (∧) as aggregation
operator, though any other t-norm can be used for this
purpose as well. The expected goal EµGN (xN ) is the
probability of attaining the fuzzy goal µGN given the control
uN−1 and state xN−1 of the previous stage given by

EµGN (xN ) = EµGN (xN |xN−1, uN−1) =∑
xN∈X

p(xN |xN−1, uN−1)µGN (xN ). (4)

The fuzzy goal µGN (xN ) can be regarded as a fuzzy event
in X and the expected goal as the non-fuzzy probability
of that fuzzy event. Given this goal at stage N and the
constraint at stage N − 1, the fuzzy decision at stage N − 1
selects the optimal actions for each state xN−1. In particular,
the fuzzy decision for each state at stage N − 1 may be
regarded as a fuzzy goal µGN−1 at stage N − 1 induced
by the fuzzy goal µGN that is used for the next iteration
in order to find the optimal actions at stage N − 2. This
backward iteration is repeated until we find all optimal
actions uN−1, uN−2, . . . , u0. Using Eq. (2) to (4), a dynamic
programming solution for this multistage decision problem
is given by the following recurrence equations [8], [7]:

µGN−i(xN−i) =

maxuN−i
[µCN−i(uN−i) ∧ EµGN−i+1(xN−i+1)]

(5)

EµGN−i+1(xN−i+1) =∑
xN−i+1∈X

p(xN−i+1|xN−i, uN−i) · µGN−i+1(xN−i+1),

(6)

for i = 1, . . . , N . The solution is expressed in terms of a
policy function with a∗t : X → U being the optimal policy
at stages t = 0, 1, ..., N − 1 and u∗t = a∗t (xt). The set A∗ =
{a∗0, . . . , a∗N−1} then forms the optimal control strategy. For

computing such a solution the dynamics of the system under
control, i.e. the state transition function has to be known.

However, in many scenarios these state transitions might
not be obtainable by an agent due to limited and uncertain
information. In this paper, we therefore consider a fuzzy
system under control where the state transition function is
a conditional fuzzy relation with the membership function

µ(xt+1|xt, ut) (7)

with µ : X × U × X → [0, 1], assigning for each xt ∈ X
and ut ∈ U a fuzzy value to the consecutive state xt+1 ∈
X . The fuzzy state transitions can also be interpreted from
the viewpoint of possibility theory [9] in that the possibility
degree of a particular state transition reflects how plausible it
is to attain a succeeding state given the state and action at the
current stage [10]. As a result, given such a fuzzy transition
matrix the recurrence equation (7) can be rewritten using the
max-min composition as

EµGN−i+1(xN−i+1) =

max
xN−i+1∈X

[µ(xN−i+1|xN−i, uN−i) ∧ µGN−i+1(xN−i+1)],

(8)

for i = 1, . . . , N . Any other s-t norm composition such as
the above max-product composition could be used here [8].
Since the expected goal is conditioned on states and actions
at stage N − i it represents a fuzzy relation between xN−i
and uN−i giving the maximum expected possibility over next
states xN−i+1. The correct notation for the expected goal
is hence EµGN−i+1(xN−i, uN−i). In this paper, however,
we also use the simplified notation introduced by Kacprzyk
[8] interchangeably. In the next section, we will adapt this
model to the bilateral negotiation process in order to optimize
the course of counteroffers an agent proposes to achieve its
desired outcome.

III. MODELLING NEGOTIATION STRATEGIES

This section shows how to model the decision mechanism
of an individual agent for its bilateral negotiation according
to the model of multistage fuzzy decision making we in-
troduced in the previous section. Before actually presenting
the respective decision algorithm to use by an agent, we
introduce the underlying negotiation model as well as the
creation of the state and action spaces, the fuzzy transition
matrix, and the preferences in form of fuzzy goal and
constraints.

A. Negotiation Model

For modelling the process of bilateral multi-issue nego-
tiation in which two agents a and b propose offers and
counteroffers okna and okn+1

b at discrete time points kn, kn+1

on a continuous real-valued issue such as price or delivery
time, we adopt the prominent model by Faratin et al. [11]
with slight modifications in notation in order to make it
compliant with our multistage fuzzy decision approach. For
each issue under negotiation, each agent has a negotiation
interval [mina,maxa] defined by its initial and reservation



value; if the intervals of both agents overlap an agreement
is generally possible. The sequence of all offers that are
exchanged until a given time k is denoted as the negotiation
thread

NTkn = (ok1a , o
k2
b , o

k3
a , o

k4
b , . . . , o

kn
b ) (9)

with n ∈ N and oknb being the last offer of this thread at
time step kn. Besides, each agent has a scoring function Vaj :
[minaj ,maxaj ]→ [0, 1] associated to each issue j assigning
a score to the current value of j within its negotiation
interval. The additive scoring function for all issues under
negotiation is denoted as: Va(o) =

∑
1≤j≤p waj · Vaj(o)

where the weight wa represents the relative importance of
issue j for agent a with

∑
j waj = 1. For simplicity, we as-

sume the additive scoring function to be either monotonically
increasing or decreasing. The utility functions of negotiating
agents usually correspond to such kind of scoring functions
possibly with discounts or negotiation costs. Offers are
exchanged alternately between agents during their bilateral
negotiation until one agent accepts or withdraw from the
encounter, or the negotiation deadline is reached:

responsea(kn+1, o
kn
b ) =

withdraw if kn+1 > kamax
accept(oknb ) if Va(oknb ) ≥ Va(okn+1

a )

offer(o
kn+1
a ) otherwise,

(10)

where okn+1
a is the counterproposal of agent a given agent

b’s offer oknb at time step kn. This negotiation model allows
agents to actually employ different decision models (tactics,
strategies) for proposing their offers and counteroffers[12].

B. State and Action Space

For this purpose, we refer to agent actions instead of
controls in the following. Both, the state and action space,
need to be in discrete form, where the former covers the
complete negotiation range and the latter the negotiation
interval of the agent for the issue under negotiation. The
discretization method for space X is given by

X =

{
(l − 1)(uB − lB)

n− 1
+ lB|l = 1, . . . , n

}
. (11)

where n is the total number of discrete points, and uB and
lB represent the upper and lower boundary of the space,
respectively. For example, if we assume that agent a applies
this model, and agent b makes the first proposal, then for
the state space, the boundaries uB and lB correspond to the
first offers ok1b and ok2a , respectively. For the action space, the
upper boundary of agent a is given by its reservation value
RVa while the lower boundary is the first offer of agent a.
For simplicity, we use the same discretization factor for both
spaces such that the cardinality m of the action space is given
in relation to the total number of states:

m =
|RVa−ok2a | · n
|ok1b −o

k2
a |

(12)

where a can be a buyer or seller agent. Since the classical
bilateral negotiation model in Section III-A and the multi-
stage fuzzy decision model in Section II use different time
intervals, the sequence of offers in the negotiation thread
is mapped into a state-action form such that offers and
counteroffers at time k and k + 1 correspond to states and
actions at stage t. The resulting trajectory of states and ac-
tions written as TR = (x0, u0, x1, u1, . . . , xt−1, ut−1, xt) is
then equivalent to the offers exchanged during the encounter
(ok1b , o

k2
a , . . . , o

kn−2

b , o
kn−1
a , oknb ) with o

kn+1
a being the next

offer of agent a responding to the last offer oknb of agent
b. Thus, the action ut (offer okn+1

a ) is the action sought at
stage t. Since the state and action space are in discrete form
and offers may be proposed in a different (continuous) space,
offers are mapped to states xt and actions ut with

xt = argmin
σ∈X

|okns − σ|

ut = argmin
α∈U

|okn+1

b − α|.
(13)

Agent a needs at least one offer from its opponent to make
a decision according to the responsive negotiation model in
Section 2 while the course of actions determined by its policy
function then represents its adaptive negotiation strategy in
response to its opponent’s strategic concession behaviour.

C. Fuzzy State Transitions

The fuzzy transition matrix of an individual agent a
encodes its fuzzy knowledge about the opponent’s strategic
concession behaviour and the responses of a that may lead
to an agreement. Only a small number of reference cases
(e.g. from past negotiations) is sufficient to obtain the fuzzy
state transitions. Such reference cases reflect the range of
actions over time as a response to the proposed offers of the
opponent and, in that sense, define the dynamic negotiation
strategy over agent a’s possible offers.

In this paper, we focus on the scenario where only two
reference cases are available, and their similarity is used to
create and update the agent’s fuzzy transition matrix. Let
NT [h] be the negotiation thread of case h, then the thread
can be transformed into the state-action form (cf. Section
III-B) obtaining the trajectory TR[h]:

TR[h] = (σl0[h], αv0[h] . . . , αvN[h]−1[h], σlN[h][h]) (14)

where N [h] is the last stage, and σli[h] and αvi[h] are states
and actions at stages i = 1, . . . , N [h] of case h, respectively.
The indices li[h] ∈ {1, . . . , n} and vi[h] ∈ {1, . . . ,m}
correspond to the number of the states and actions of case
h at stage i. We also write the trajectory of all states of
case h as TRX [h] = (σl0[h], . . . , σlN[h][h]) and, respectively,
of all actions as TRU [h] = (αv1 , . . . , αvN[h]

). As described
in Section II, the policy function recommends at least one
action for each state in the state space. In order to create the
necessary state transitions, we therefore need to interpolate
the trajectory of each case, such that it contains all states of
the state space and each state is assigned a particular action.
This implies, that also the last state σlN[h]

is assigned an



action αvN[h]
since it represents the agreement of case h

with σlN[h]
= αvN[h]

. We choose linear interpolation, and
obtain the interpolated states σli,j [h] and actions αvi,j [h] for
all i = 0, . . . , N [h]− 1 with

li,j [h] =

{
li[h] + j for li[h] < li+1[h]

li[h]− j for li[h] > li+1[h],
(15)

vi,j [h] =

{
vi[h] + bj · δ[h]e for vi[h] < vi+1[h]

vi[h]− bj · δ[h]e for vi[h] > vi+1[h],
(16)

where j = 0, . . . , |li[h]− li+1[h]| − 1 and δi[h] is the inter-
polation factor for two consecutive actions in the trajectory:

δi[h] =
|vi[h]− vi+1[h]| − 1

|li[h]− li+1[h]| − 1
. (17)

Index j hence depends on the number of interpolated states
between two consecutive states in the state trajectory TR[h].
The interpolated state and action trajectories T̃RX [h] and
T̃RU [h] can then be written as

T̃RX [h] = (σl0,0[h], . . . , σl0,j [h], . . . , σl1,0[h], . . . , σlN[h],0[h])

T̃RU [h] = (αv0,0[h], . . . , αv0,j [h], . . . , αv1,0[h], . . . , αvN[h],0[h]).

(18)

For the state transitions, we use the similarity between the
trajectory of case h and the current behaviour of the opponent
represented by the current trajectory TRX [curr] at time t:

simt(TRX [h], TRX [curr]) =

1

t+ 1

t∑
i=0

1− |σli[h] − xi|
(maxh∈H(σli[h])−minh∈H σli[h])

(19)

for i ≤ N [h] and H being the set of all cases. The similarity
values provide the necessary fuzzy transitions for each case
in comparison to the current negotiation and are updated at
each negotiation round. If during the negotiation the current
stage exceeds the last stage from a particular case its last offer
is used instead. The transition matrix is then created based on
an initially zero transition matrix µ(xt+1, xt, ut) = 0n,m,n
for all m actions and n states using the similarity values:

µ(σli+1[h]|σli,j [h], αvi,j [h]) =
max[simt(TRX [h], TRX [curr]), µ(σli+1[h]|σli,j [h], αvi,j [h])]

(20)

for all i = 1, . . . , N [h]−1. In scenarios, where only reference
cases are used for the state transitions, the expected fuzzy
goal at each stage can be derived directly from all cases:

EµGi+1(xi+1|x′i[h], ui[h]) =
max
h∈H

(simt(h) ∧ µGi+1(xi+1[h])),
(21)

for i = t, t + 1, . . . , N [h] − 1, where t is the stage in the
current negotiation.

This simplifies the recalculation of the expected goal at
each stage with respect to the current similarity value. Thus,
the computational effort is reduced, especially in scenarios
where the fuzzy transition matrix is sparse due to a small

number of cases. To enable inference between the expected
goal and the fuzzy constraint, the actions holding zero value
in the possibility distribution over all actions need to be
interpolated for each state σl as follows:

EµGt+1(xt+1|σl, αv) = EµGt+1(σl, αv) =

EµGt+1(σl, αv2)− EµGt+1(σl, αv1)

v2 − v1
∗ (v − v1) + αv1 ,

(22)

with v, v1, v2 ∈ {1, . . . ,m} under the condition that v1 <
v < v2 and EµGt+1(σl, αv1), EµGt+1(σl, αv2) > 0. If,
however, the boundary actions α1 or αm are zero, we can
replace them by very small values greater zero before apply-
ing the interpolation method to obtain a non-zero possibility
distribution over the whole actions space. The rationale
behind is that a limited number of cases may be sufficient
to propose an agent’s response. Since the expected goal then
holds values for all states and actions after the interpolation,
the model can also propose actions not covered by any
of the reference cases. Therefore, this approach provides a
great flexibility towards the creation of adaptive negotiation
strategies. It should be noted that other methods can be used
to create and update the transition matrix, depending on the
pre-existing knowledge or beliefs about the opponent.

D. Preferences as Fuzzy Goal and Constraints

The fuzzy goal and the set of fuzzy constraints represent
the preferences of an agent over its opponent’s offers (states)
and its own offers (actions), respectively. Due to the qualita-
tive nature of the multistage fuzzy decision making model,
the goal specifies the agent’s preferred ordering of all states
in the state space for the decision process. In the context
of negotiation, the degree of membership in the fuzzy goal
increases for states closer to the initial value of the agent as
they are more preferable to states close to the initial offer
of the opponent. Thus, membership degrees for all states
in the fuzzy goal have to be non-zero, as otherwise, a state
might never be reached as a final or intermediate state. Whilst
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Fig. 1. Example Fuzzy Goal and Constraint

the fuzzy goal represents a time-independent preference over
states, the constraints constitute a time-dependent preference
over the range of possible offers of the modelling agent (an
example for both a fuzzy goal and fuzzy constraint is shown
in Figure1). The effect of a constraint can vary depending
on the shape and the support of its fuzzy set. In general,
the larger the support and area of the fuzzy constraint the
stronger the influence of the cases on the actions and vice



versa. For simplicity and easy specification, constraints are
typically normalized. However, in a negotiation, the other
agent may choose states close to its initial offer in the
beginning with small membership degrees in the fuzzy goal,
such that membership degrees for all state-action pairs in
the expected goal relation (Eq. 8) become also small. As a
result, constraints may have a low effect on the actions as
they are normalized and may completely overlay the expected
goal distribution over the actions for a particular state. The
influence is increased by scaling the fuzzy constraints down,
e.g. to the maximum of the expected goal, before it is applied
(cf. Eq. 5):

µ̂Ct(α) = µCt(α) · max
α∈U,σ∈X

(EµGt+1(σ, α)) (23)

for all α ∈ U . This method ensures a high effect of the
individual constraints on the transition matrix and therefore
on the cases during the encounter. The scaling factor for the
constraints depends on the preference of the agent and can
be different form the one shown above.

Algorithm 1 Decision algorithm of the buyer agent b

1: Exchange first offers ok1s (= x0) and ok2b (= u0)
2: Create Action and State Space from x0 and u0 . cf. Eq.
3: for all reference cases h ∈ H do
4: T̃R[h]← Transform TR[h] into state-action form
5: end for
6: end→ False
7: t← 1
8: while end 6= True do
9: if t > tbmax or timeout then

10: Withdraw from negotiation
11: end← True
12: else
13: xt ← Next offer from opponent s
14: if s accepts last offer ut−1 of agent b then
15: end← True
16: else
17: a∗ ← GETPOLICY(t, TRX [curr])
18: u∗t ← a∗t (xt)
19: if Ua(xt) ≥ Ua(u∗t ) then
20: Accept last offer xt of s
21: end← True
22: else
23: Propose counteroffer u∗t
24: end if
25: end if
26: end if
27: t← t+ 1
28: end while
29: end algorithm

IV. DECISION ALGORITHM

The question remains of how an individual agent applies
the multistage fuzzy decision model from previous sections
to specify its negotiation strategy. In the following, we

provide the appropriate decision algorithm for a buyer agent b
negotiating with a seller agent s assuming that s proposes the
first offer. Algorithm 1 details the communication mechanism
with the opponent in terms of the offer exchange during
negotiation (lines 9 to 33) according to Section III-A after
the agent created its state and action space and transformed
the reference cases into the respective form (cf. Section III-B
and III-C) using first offers of both parties (lines 1 to 5). For
simplicity, the agent uses the number of negotiation rounds
to specify its negotiation deadline (tbmax) for its withdrawal
instead of using a real time measure. A negotiation round
consists of one offer proposal of both agents and thus
corresponds to one stage in the multistage fuzzy decision
process. However, the agent may abort the negotiation after
a timeout period (line 9), where it receives no response after
a predefined threshold time. This timeout period naturally
depends on the conditions and preferences of the system and
the agent.

Algorithm 2 Get action policy at stage t
1: procedure GETPOLICY(t, TRX [curr])
2: EµGN (xN−1, uN−1)← 0n,m
3: k ← N
4: while k > t do
5: k ← k − 1
6: for all cases h ∈ H do
7: sim[h]← simt(TRX [h], TRX [curr])
8: for all i = 1, . . . N [h]− 1 do
9: g ← min(sim[h], µGk+1(σli+1[h])

10: for all j = 0, . . . , |li[h]− li+1[h]| − 1 do
11: EµGk+1(σli,j [h], αvi,j [h])← . . .
12: . . .max(EµGk+1(σli,j [h], αvi,j [h]), g)
13: end for
14: end for
15: end for
16: µ̂Ck(uk)← µCk(uk) · . . .
17: . . .maxα∈U,σ∈X(EµGk+1(σ, α))
18: for all l = 1, . . . , n do
19: Interpolate EµGk+1(σl, uk)
20: µσl

(uk)← . . .
21: . . .minα∈U (µ̂Ck(α), EµGk+1(σl, α))
22: µGk(σl)← maxα∈U (µσl

(α))
23: a∗k(σl)← argmaxα∈U (µσl

(α))
24: end for
25: end while
26: a∗ ← {a∗k, . . . , a∗N−1}
27: Return a∗

28: end procedure

Algorithm 2 details how the multistage fuzzy decision
model is applied to obtain action policies throughout all
stages of the negotiation encounter for the agent. It repre-
sents the fuzzy dynamic programming method including the
creation of the expected goal matrix form the reference cases
(line 2 to 15) and its interpolation. It should be noted that the
linear interpolation to transform the reference cases into the



state-action form (line 4, Algorithm 1) and in the expected
goal matrix (line 19, Algorithm 2) is straightforward (cf. Sec-
tion III-C) and therefore not detailed here due to limitations
in space.

V. EXPERIMENTAL EVALUATION

In the evaluation we test our approach against static mixed
strategies in a bilateral, single-issue negotiation environment
proposed in [13] and [11] with partial overlap of negotiation
intervals. The tactics employed by the mixed strategies
are the time- or behaviour-dependent tactics introduced by
Faratin et al [12]. The set of all possible strategies is

TABLE I
EXPERIMENT SETTINGS

Mixed Strategies
Time-dependent Boulware: B = {β|β ∈ {0.1, 0.3, 0.5}}

Linear: L = {β|β ∈ {1}}
Conceder: C = {β|β ∈ {4, 6, 8}}

Behaviour-dependent Absolute TFT: a: δ = 1, R(M) = 0

Relative TFT: r: δ = 1

Weights Small: γ ∈ {0.1, 0.2, 0.3}
Medium: γ ∈ {0.4, 0.5, 0.6}
Large: γ ∈ {0.7, 0.8, 0.9}
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Fig. 2. Reference cases

constructed with ST = (C ∪L∪B)×{a, r}× (S ∪M ∪L)
using the settings in Table I. We compare our multistage
fuzzy decision strategy with a random selected strategy of
the set ST from the viewpoint of a buyer agent while the
opponent (seller) plays a particular subset of static mixed
strategies. In that sense the buyer with the random selected
strategy plays all strategies of the set ST against one subset of
ST (seller) where the average gained utility is compared with
the utility of the agent using the adaptive strategy. We use
simple negotiation environment settings where deadlines are
equal for both agents with kbmax = ksmax = 20. Negotiation
intervals are equal for both agents with θ = maxb−minb =
maxs − mins = 15 and have a partial overlap with φ ∈
{0.5}. With minb = 10 and maxb = 25 the seller’s interval
values can be calculated as mins = minb + φθ = 15 and
maxs = mins+θ = 30. In order to measure the performance
of our agents we use the cost-adjusted utility cost(t) =
tanh(t ∗ c) with a small communication cost c = 0.01. This
takes negotiation time into account. Scoring functions are
assumed to be linear and result in a value of 0.1 for the
agent if an agreement is reached at its reservation value, e.g.
with Vb(x) = 0.9 ∗ (maxb − x)/(maxb − minb)+0.1 for

the buyer. Thus, successful negotiations are scored higher
as failed negotiations. In order to create a scenario where
limited information about the opponent is available we use
two reference cases. For simplicity, a discretization factor of
0.2 is applied to create the action and state spaces. Figure
2 shows the chosen cases for this experiment. All fuzzy
constraints are specified by an isosceles triangle membership
function where, similar to the polynomial time-dependent
tactics, three types of constraints behaviour over time are
used in the experiment: conceder (β = 3), linear (β = 1)
and boulware (β = 0.3). Figure 3 shows all three types of
constraint behaviour including the spread of each fuzzy con-
straint (i.e. the upper and lower boundaries). The membership
function of the fuzzy goal represents the scoring function,
but, as explained in Section III-D, goal values for states
above the reservation value can not be zero and therefore
further decrease. The experimental results without and with
communication costs are shown in Figure 3 below the
corresponding applied constraints. The light bars represent
the average value of utility of a negotiation agent using
the random selected strategy and the opponent playing a
particular strategy group. The dark (blue) bars show the gain
in utility for the agent using the multistage fuzzy decision
model. As we can see our adaptive strategy performs better
than the random strategy selection in almost all scenarios,
whereas the improvement is higher when the seller chooses
linear or boulware mixed strategies. The reason for that is
that the multistage fuzzy decision strategy is able to adapt
to the behaviour of the opponent over time whereas the
static mixed strategy is behaviour-dependent based on the
weight and the pre-defined imitative tactic. As the two cases
represent a weak boulware and conceder behaviour of the
agent, it is able to choose a different course of actions when
the opponent changes its behaviour.

It should be noted that the gain in utility depends to a
high degree on the choice of the reference cases as they
constitute the course of actions that can possibly lead to an
agreement. The agents can adjust or add reference cases in
future negotiations in order to increase their utility gain or the
number of agreements. The main advantage is the flexibility
of adding new negotiation patterns to the transition matrix
and adjusting the fuzzy constraints to achieve a large range
of different adaptive behaviours.

VI. RELATED WORK

The subject of adaptive negotiation in general, and how
to create negotiation strategies that adapt to the opponent
behaviour in particular is not new to the field of AI.
For example, Matos and Sierra [14] present a case-based
reasoning-driven approach that lets agents use past successful
interactions to negotiate similar agreements by respectively
(case-based) adjusting combined decision function parame-
ters. In fact, alongside the negotiation thread of each case
the parameter values of the applied strategies are required.
However, that inhibits the use of cases by agents with
different individual decision models.
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Fig. 3. Evaluation results for different fuzzy constraints

Similar to our approach, Wong et al [15] use observed
concessions to capture past negotiation cases and apply
certain filters to select the best one. It differs from our
approach in that they do not allow for reasoning on and
interpolation between the cases and the preferences of an
agent. For reasons of space, we omit to cover relevant work
more comprehensively, but in general, most of them require
an agent to extensively explore the behaviour of partners
during negotiation, or assume that it has been equipped
with prior knowledge about the opponent such as its utility
structure and decision model [4].

The application of possibility theory to negotiation has
been proposed in, for example, [16] where the decision
on potentially beneficial negotiation partners bases on the
expected qualitative utility but without modelling the ne-
gotiation process itself as a fuzzy (or possibilistic) Markov
decision process. In fact, only a few approaches exist so far.
For example, Narayanan and Jennings [17] model the agent’s
behaviour by defining the states in terms of resource avail-
ability, deadlines and reservation values where counteroffers

are proposed based on the opponent’s offers and changes
in those three realms. It is shown that agreements can be
achieved much faster when both agents use this algorithm,
but no results for cases are provided where only one agent
uses this strategy. Similar to our method, Teuteberg [18]
models the behaviour of the opponent, but uses a probabilistic
approach to generate the transition matrix based on a prede-
fined set of opponent tactics. The major disadvantage of such
an approach is the large number of negotiations required to
obtain sufficient empirical data for reliable state transitions.

Negotiation has also been modelled as a fuzzy constraint
satisfaction problem [19] where constraints, preferences and
objectives are represented uniformly as fuzzy sets which are
distributed among the agents and iteratively relaxed during
the exchange of offers [4]. The search process is guided
by ordering and pruning the search space but still requires
negotiation strategies for proposing offers [20]. Based on the
seminal paper of Bellmann and Zadeh [7] decision making in
fuzzy environments has been studied and extended by many
researchers, such as Kacprzyk [8], Iwamoto [21] and Dubois



et al [22], and has been applied in many areas including
resource allocation, planning or scheduling [8].

However, to the best of our knowledge, multistage fuzzy
decision making has not been used to model bilateral agent-
based negotiation strategies so far.

VII. CONCLUSIONS

We have presented the first adaptive solution to bilateral
negotiation under uncertainty that bases on multistage fuzzy
decision making, where agents preferences are expressed by
a fuzzy goal and fuzzy constraints. A fuzzy Markov decision
process represents the uncertain and limited knowledge of
an gent about the strategic concession behaviour of its
opponent. Our initial experimental evaluation revealed that
the respective agent decision algorithm successfully adapts
to different negotiation behaviours of opponents and achieves
on average higher utilities than the traditional heuristic tactic-
based negotiation strategies. The multistage fuzzy decision
making-based negotiation model can be applied to many
real world scenarios with where available information about
agents’ behaviours, preferences and constraints are soft.
Future work includes multistage fuzzy decision-based negoti-
ation with fuzzy or implicit termination times, and evaluation
of scenarios where both agents use this decision model.
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