
QSMat: Query-Based Materialization for
Efficient RDF Stream Processing

Christian Mathieu1, Matthias Klusch2, and Birte Glimm3

1 Saarland University, Computer Science Department, 66123 Saarbruecken, Germany
2 German Research Center for Artificial Intelligence, 66123 Saarbruecken, Germany

3 University of Ulm, Institute of Artificial Intelligence, 89069 Ulm, Germany

Abstract. This paper presents a novel approach, QSMat, for efficient
RDF data stream querying with flexible query-based materialization.
Previous work accelerates either the maintenance of a stream window
materialization or the evaluation of a query over the stream. QSMat ex-
ploits knowledge of a given query and entailment rule-set to accelerate
window materialization by avoiding inferences that provably do not af-
fect the evaluation of the query. We prove that stream querying over the
resulting partial window materializations with QSMat is sound and com-
plete with regard to the query. A comparative experimental performance
evaluation based on the Berlin SPARQL benchmark and with selected
representative systems for stream reasoning shows that QSMat can sig-
nificantly reduce window materialization size, reasoning overhead, and
thus stream query evaluation time.

1 Introduction

In many applications, such as machinery maintenance or social media anal-
ysis, large volumes of continuously arriving data must be processed in near-
realtime. These data streams stem from sources such as thermometers, humidity
or flow sensors, social media messages, price updates, news feeds and many oth-
ers. Often, it is not only necessary to select and filter information from these
streams, but also to infer implicit information with the aid of additional do-
main knowledge. This process of deriving implicit information (reasoning) and
filtering (querying) is called stream reasoning. Inferences are drawn using a set
of inference rules. While there exist increasingly mature solutions for reason-
ing in static ontologies, stream reasoning poses additional challenges due to the
large volume and frequently unreliable and noisy nature of stream data and its
transient nature. Stream data is often considered relevant only during a small
time interval, called the stream window. Data leaving the window and inferences
drawn from said data may thus become invalid over time, and newly arriving
data may entail new inferences. A standard query language in this context is
Continuous SPARQL (C-SPARQL[1]), an extension of SPARQL for continuous
queries over streams of RDF data.

Both reasoning and querying of the resulting materialized stream window
can become significant runtime bottlenecks. Due to the practical relevance of

the problem, there are many existing approaches to speed up either of these two
components.

Incremental materialization approaches such as IMaRS [2] or SparkWave [7]
attempt to speed up materialization by eliminating redundant recomputation
between subsequent stream windows. As a result, they spend less time materi-
alizing each stream window, but they still materialize the window completely.
The materialization might depend on the stream window interval defined by the
query (or queries) being posed, but usually not on the specific query itself. This
materialized window still contains all inferences that follow from window con-
tent (and static assertions) under the given entailment scheme. Many of these
inferences might never be necessary to answer a concrete query, yet they are
derived to guarantee completeness with regard to any query.

Query rewriting techniques such as StreamQR [4] exploit this, and compile
ontological information into one or more rewritten queries. This has the advan-
tage that window materialization is entirely avoided by encoding entailments
directly into the query. To allow static rewriting (i.e. the rewriting happens up-
front and not while stream data is processed), these approaches usually require
that stream data does not contain schema knowledge.

Similar to query rewriting, our approach QSMat attempts to speed up rea-
soning by exploiting knowledge of the specific query, thus bridging querying and
reasoning. In contrast to query rewriting, we retain the added flexibility and
expressivity of explicit reasoning and we support custom, user-definable infer-
ence rules. To reduce window materialization overhead, we analyze background
knowledge and the aforementioned provided inference rule-set during a static
preprocessing step per query, and discard ontological information and rules that
are provably never needed to satisfy a given query. This promises to reduce
the problem size for subsequent materialization of each stream window. Query
evaluation over each window then only requires the creation of a partial materi-
alization, for which we prove completeness with regard to the query.

The remainder of this paper is structured as follows. Section 2 introduces
QSMat, a novel approach to query based stream materialization. A comparative
experimental evaluation is then presented in Section 3. Section 4 discusses related
work, before we conclude in Section 5.

2 Query-Based Stream Materialization

In the following we give a broad overview of the idea, followed by the formal
presentation of the algorithm itself in Section 2.2. Noteworthy properties of the
algorithm are discussed in Section 2.3.

2.1 Overview

QSMat4 is an approach for continuous query evaluation over RDF streams under
reasoning. Its goal is accelerating reasoning for each stream window by suppress-

4 Github: https://github.com/cmth/qsmat

Fig. 1: The QSMat architecture

ing inferences during window materialization that are not necessary to answer
the query. In other words, it generates incomplete partial window materializa-
tions that are still sufficient to maintain completeness with respect to the query.
Figure 1 illustrates the QSMat architecture. QSMat is given a query, a static ontol-
ogy (in the form of triples) expressing background knowledge, and an inference
rule-set. The algorithm extracts all triple patterns from the query’s where clause,
to analyze which triples of a future window materialization are potentially rele-
vant. For each triple pattern, the algorithm guarantees that if a complete window
materialization would have generated a triple matching the pattern, then the par-
tial window materialization still generates that triple to maintain completeness.
In a one-time per query preprocessing step, QSMat performs a backward search
over inference rules to find all rules and all triples of the materialized static on-
tology (also called static materialization) that could be needed during window
materialization to deduce query-relevant conclusion triples. Since schematic in-
formation is usually provided by background knowledge, but not from stream
data (e.g. the stream usually does not define new subclasses), the user can tag
rule premises that can only match schematic information. Such premises are
called cut-premises. Using this cut-information, QSMat can restrict the relevance
search further, since it can exclude inference trees which are not possible with
the given background knowledge. This restricted search results in a more ag-
gressive filtering that can exclude more unneeded inferences during subsequent
partial window materializations.

Afterwards, the algorithm has a triple and rule subset sufficient to material-
ize the triples needed for a triple pattern. By merging all of these per-pattern
subsets, a set of triples and rules sufficient to answer the entire query is formed.
Subsequently, the stream window is materialized partially using this combined
triple and rule-set and the query is evaluated over the result.

2.2 The QSMat Technique

The main procedure QSMat is shown in Algorithm 1. At the highest level, a
query string (Qstr), a static ontology (O, interpreted as a set of triples), and a set

Algorithm 1 The main procedure of QSMat

1: procedure QSMat
2: Input: Query string Qstr, rule-set R, static ontology O, stream S
3:
4: Query Q ← parse(Qstr)
5: (M ′, R′)← filterForQuery(Q, R,O)
6:
7: for each stream window w ∈ S do
8: Mw ← materialization of (M ′ ∪ w) under R′

9: Q.eval(Mw)
10: end for
11: end procedure

of inference rules (R) are passed to QSMat. Each rule r ∈ R may have premise
patterns tagged as a cut-premise, r.Pcut; other patterns are referred to as live-
premises, denoted r.Plive. Both r.Pcut and r.Plive are treated as lists of patterns.
The stream S is also treated as a parameter to ease notation. The procedure
first parses the query string, yielding Q, a representation of the abstract query
tree. It then calls filterForQuery (cf. Algorithm 2). This function handles
the relevance filtering and extracts a set M ′ of relevant triples from the mate-
rialization of the static ontology O, and a subset R′ of relevant rules from the
rule-set R needed for the query Q. The algorithm then listens to the stream
and partially materializes each stream window w with M ′ and R′, yielding Mw.
Afterwards, Mw contains all triples potentially necessary to answer the query.
The procedure then evaluates Q over Mw, handling the result as appropriate for
the given query type.

The function filterForQuery (Algorithm 2) first computes the material-
ized schema M using the static ontology O and rule-set R. It then traverses
the abstract query tree Q to find all triple patterns of the query. For each such
triple pattern p, the function filterForPattern (Algorithm 3) then extracts
all triples from M and all rules from R that are (transitively) necessary to sat-
isfy p, i.e. to create a partial materialization that still contains all triples of
a complete materialization which match p. After filterForPattern returns,
filterForQuery aggregates the newly extracted relevant triples (in M ′) and
rules (in R′). After all query triple patterns are processed, filterForQuery
returns M ′ and R′, which now contain all triples and rules necessary to satisfy
any pattern of the query.

The function filterForPattern (Algorithm 3) finds all triples in M and
all rules in R necessary during window materialization to fulfill a given pattern
pgoal. It does this by recursively backtracking over rules and finding the sets of
triples that could match a rule premise in such a way that the rule can produce
relevant output. Note that a pattern can be visualized as the (possibly infinite)
set of all triples that match this pattern. By restricting a rule premise with a
variable binding consistent with the rule conclusion, this restricted premise then
subsumes all triples that potentially fulfill it during a rule application yielding

Fig. 2: filterForQuery concept

Algorithm 2 Extracts static ontology triples and rules relevant for a query

1: function filterForQuery
2: Input: Query Q, rule-set R, static ontology O
3: Output: Filtered static materialization M ′, filtered rule-set R′

4:
5: M ′ ← ∅, R′ ← ∅
6: M ← materialization of O under R
7: for each triple pattern p ∈ Q do
8: (M ′′, R′′)←filterForPattern(R,M, p)
9: M ′ ←M ′ ∪M ′′

10: R′ ← R′ ∪R′′

11: end for
12: return (M ′, R′)
13: end function

a conclusion that matches the goal pattern (i.e. a potentially relevant pattern).
A cut-premise can be thought of as the set of schema triples that may lead to
relevant rule firings given the provided ontology, which in turn allows restricting
live-premises to match only those triples from a stream that can possibly become
relevant given the schema information. Since the latter is statically derivable, it
is already explicitly contained in M and can be exhaustively enumerated.

The function maintains a set P of patterns already processed for the current
query triple pattern to avoid infinite recursion. If the current pattern pnext was
not already processed before, then the function iterates over all rules that might
yield triples matching pnext. Rules with no live-premises are skipped since they
cannot fire due to triples derived during window materialization by definition.
It then binds all variables in cut-premises of the rule r (r.Pcut) to matching
ground terms in pnext and calls the function groundRule (Algoritm 4), which
exhaustively backtracks over all restrictions of this rule given the triples in M

matching the rule’s cut-premises. In other words, it finds all ways this rule can
be relevant during window materialization to produce a triple matching pnext,
and thus transitively pgoal.

(a) goal pattern variable binding
(filterForPattern)

(b) rule grounding and premise restriction (groundRule)

Fig. 3: filterForPattern rule predecessor search

The function groundRule (Algorithm 4) is responsible for finding all ways
a rule r can fire yielding a relevant conclusion consistent with a supplied variable
binding b. It then returns both the relevant triples from the static materializa-
tion and the transitive predecessor patterns needed in the derivation. In other
words, it guarantees that all triples matching the goal pattern are still derivable
during partial window materialization. It iterates over all combinations of static
triples that consistently match all cut-premises, i.e. all ways the rule can fire
given the static schema. To do so, it first finds all triples t in M matching the
first cut-premise. It then extends the variable binding to be consistent with this
triple and then subsequently processes the following cut-patterns in the same
manner. Due to the refined variable binding, each following cut-pattern only
matches static triples consistent with all previous patterns. For each consistent
grounding, i.e. each way to satisfy all cut-patterns without disagreeing on vari-
able bindings, a restricted live-pattern p′ is generated for each live-premise by
applying the variable binding. The pattern p′ is then added to Q′. Each t in-
volved in a consistent grounding is added to T ′. Afterwards, T ′ and Q′ contain
the predecessors needed to guarantee relevant rule firings of r. The set T ′ con-
tains all static triples needed for cut-premises of r, while Q′ contains patterns
subsuming all triples that may fulfill a live-premise of r after being newly derived
during window materialization. Both T ′ and Q′ are then returned.

Algorithm 3 Finds triples and rules relevant for a triple pattern

1: function filterForPattern
2: Input: Static materialization M , rule-set R, goal pattern pgoal
3: Output: Relevant triples M ′′, relevant rules R′′

4:
5: P ← ∅, Q← ∅, M ′′ ← ∅, R′′ ← ∅
6: Q.append(pgoal)
7: while Q not empty do
8: pnext ← Q.pop()
9: if pnext 6∈ P then

10: P ← P ∪ {pnext}
11: M ′′ ←M ′′ ∪ {t ∈M | t matches pgoal}
12: for each rule r ∈ R, |r.plive| > 0 do . Skips static-only rules
13: Binding b← bind(r.pc, pnext)
14: if b 6= ⊥ then . otherwise r cannot produce triples matching pnext
15: (T ′, Q′)← groundRule(M, r, b, 0)
16: if Q′ 6= ∅ then . Q′ empty ⇒ r cannot yield t ∈ pnext given M
17: Q← Q ∪Q′

18: M ′′ ←M ′′ ∪ T ′

19: R′′ ← R′′ ∪ {r}
20: end if
21: end if
22: end for
23: end if
24: end while
25: return (M ′′, R′′)
26: end function

2.3 Correctness of QSMat

We next show that the partial materialization computed by QSMat is indeed suf-
ficient to answer the given query. Since DESCRIBE queries are implementation
dependent, we do not consider them here.

Theorem 1. Let Q be any (non-DESCRIBE) C-SPARQL[1] query, R a mono-
tonic inference rule-set, O a static ontology, and S a stream. Then O and S
entail an answer to Q under R iff QSMat computes this answer given Q, R, O,
and S as input.

Proof (Sketch). The if direction corresponds to the soundness of QSMat: Note
that the complete window materialization is the transitive closure of an inference
rule-set on the union of static and window triples. Since the inference rules are
monotonic and the filtered ontology and rule-set created by QSMat are subsets
of O and R, respectively, soundness is trivial.

The only if direction corresponds to the completeness of QSMat: Since all
C-SPARQL query types depend solely on triples matching query triple patterns
(QTPs), we focus, w.l.o.g., on single QTPs. A QTP can be visualized as the set of
all triples that would match this pattern. A triple of the complete materialization

Algorithm 4 Finds predecessors necessary for a rule to fire and create relevant
conclusions during partial window materialization

1: function groundRule
2: Input: static materialization M , rule r, variable binding b, premise index i
3: Output: relevant static triples T ′, relevant predecessor patterns Q′

4:
5: if i < |r.Pcut| then
6: pcut ← apply b to r.Pcut[i]
7: T ← {t ∈M | t matches pcut}
8: for t ∈ T do
9: b′ ← b ∪ bind(pcut, t)

10: (T ′′, Q′′)← groundRule(M, r, b′, i + 1)
11: if Q′′ 6= ∅ then . Q′′ empty ⇒ grounding failed
12: T ′ ← T ′ ∪ T ′′ ∪ {t}
13: Q′ ← Q′ ∪Q′′

14: end if
15: end for
16: else . consistent grounding
17: for each plive ∈ r.Plive do
18: p′ ← apply b to plive
19: Q′ ← Q′ ∪ {p′}
20: end for
21: end if
22: return (T ′, Q′) . Note that Q′ is empty if r cannot yield relevant output
23: end function

matching a QTP can only come from one or more of the following three sources:
(i) It can be contained in the stream window directly, (ii) it can be entailed purely
from static ontology triples, or (iii) it can be derived transitively from at least one
stream triple and zero or more static triples. For (i), the QTP matches the triple
since it is contained in the partial materialization because of Line 8 of QSMat. For
(ii), the triple is marked by QSMat in Line 11 of filterForPattern. Case (iii)
covers newly derived query-relevant triples. If one such triple was missing from
the partial window materialization, then there must have been at least one rule
application that fired during complete materialization, but not during partial
materialization. Hence, either (a) a rule was not marked or (b) a triple matching
a rule premise was not contained in the partial materialization. For (a), the rule
can only have fired during complete window materialization if it had at least one
live-premise, by definition of live-premises.5 Since the rule must have fulfilled all
cut-premises to fire during complete window materialization, it has at least one
consistent grounding using the complete static materialization, thus it created
at least one live-pattern in groundRule6. This means filterForPattern

5 Otherwise the stream would have to contain or imply schematic information that
was specified as cut in the rule-set, which is a design error.

6 That is why rules that never produced any restricted live-pattern during static search
are not needed to satisfy the query, hence are safely removed by QSMat.

added it to the set of relevant rules in Line 19. For (b), the only way to have a
query-relevant triple missing from the partial materialization is if a rule entailed
it, and was missing a premise triple. This premise triple matched either a cut-
premise or a live-premise (or both, which is subsumed by the former two cases).
If it was a cut-premise, the triple must have been part of a consistent grounding,
and was contained in the complete static materialization. Thus it was added to
the set of relevant triples by groundRule in Line 12. If it was a live-premise,
it was subsumed by the live-premise created by groundRule in Line 18 and
added to the set of relevant patterns in Line 19. In this case, the premise triple
can either be a static triple, a window triple, or newly derived in the window
materialization. The same argument above can be applied to the created live-
pattern instead of the query triple pattern, which leads to a proof by structural
induction over all possible inferences trees. This proof must terminate, since
an inference tree that completed during complete materialization can only have
finite depth and width. Either way, we have a contradiction with the assumption
that the partial materialization employed by QSMat was not complete with regard
to the query triple pattern. Since this holds for all query triple patterns, QSMat
is complete with regard to the query.

3 Comparative Performance Evaluation

In this section we present a comparative experimental evaluation between QSMat

and the selected state-of-the-art approaches C-SPARQL using Jena for material-
ization, SparkWave and StreamQR.

3.1 Experimental Setting

The core idea behind QSMat is avoiding unnecessary inferences by calculating a
partial materialization that is sufficient to answer a given query. This can only
yield noteworthy performance benefits if the query is independent of many infer-
ences generated by a complete materialization7 and if this is statically provable
by QSMat. Conceptually, QSMat is similar both to query rewriting approaches,
which attempt to speed up evaluation by analysis of the query, and to optimized
reasoners, which attempt to reduce runtime overhead of the reasoning step.

Competitive approaches. To evaluate the feasibility of QSMat’s query rele-
vance filtering, we compare its performance to several state-of-the-art approaches
with C-SPARQL [1, 3] serving as a baseline. Since the C-SPARQL engine does not
offer reasoning support as of the time of this writing, we extended it with a com-
plete materialization step using Jena as a back-end. As a competitive reasoning
approach, SparkWave [7] was chosen, a fast stream reasoning engine using RETE-
based inference [5] (the so-called epsilon network) and query pattern matching.
Query rewriting approaches are represented by StreamQR [4], a stream reason-
ing engine that uses ontological background knowledge to translate the original

7 As a pathological counterexample take a query with the where clause (?s ?p ?o):
since the query matches all derivable triples, none can be excluded.

query into a union of conjunctive queries, which explicitly express all ways query
triple patterns can be satisfied under reasoning.8

Testing environment. The dataset used for testing is derived from the
Berlin SPARQL Benchmark (BSBM). While BSBM is a SPARQL benchmark,
and thus not stream oriented, it features a flexible data generator that allows
for creating variable-size problem instances simulating e-commerce use-cases in
the context of vendors offering products. To adapt these datasets to a suitable
stream setting, offers and the underlying product data are treated as stream data,
while the concept hierarchy of product types and all information not directly
related to products and offers are used as background knowledge. To allow for
comparable measurements between approaches, a test framework using Jena

was created, where the triples contained in each window are first aggregated,
and the complete window is then passed to a stream-enabled reimplementation
of each approach. While this does effectively process data in a one-shot fashion
per window, instead of an admittedly more natural streaming scheme, it allows
much more transparent performance measurements on equal footing.

The BSBM benchmark defines parametric query templates, which are used
to create concrete, randomized benchmark queries by sampling template param-
eters (e.g. %ProductFeature1%) over the corresponding input data (e.g. product
features). For each such query instance, all algorithms are evaluated on identical
background knowledge and identical stream window content, and for an equiv-
alent query in the respective query language. This avoids sampling noise due
to differing problem sizes or real-time-dependent window semantics. It further
allows a direct measurement of the elapsed wall-clock time spent during query
evaluation, is independent of triple arrival rate, and also offers scaling informa-
tion for problem sizes where e.g. a throughput metric might reach the point of
saturation first for given window sizes. Before the actual evaluation, a warm-up
phase is performed. This gives the system time to stabilize, and reduces sam-
pling noise e.g. due to initialization effects or at-runtime optimizations from the
Java Just-In-Time compiler. The result times for individual query instances are
averaged per query template. All tests were run on a system using an Intel Xeon
W55990 3.33GHz CPU with 32GB of DDR3-1333 RAM.

3.2 Evaluation Results

Scalability with regard to ontology size and query. As mentioned above,
performance of QSMat depends on the reasoning demands of the specific query.
Product information generated by BSBM is classified in a product type hierarchy.
Leaf products in this hierarchy are classes without subclasses, and class mem-
bership of instances cannot be derived in any way except by explicit assertion,
while product types further toward the root of the product type hierarchy have
increasing numbers of subclasses and larger reasoning demands. As end-points

8 To give an example: Assume a query matches (?x rdf:type A), and A has subclasses
B and C. If no other way to derive membership in A, B or C exists, then it is sufficient
to find all (?x rdf:type A), (?x rdf:type B) and (?x rdf:type C).

of this, the root product type offers the least, while leaf product types offer the
most opportunity for optimization, both for QSMat and for StreamQR. Deeper
product hierarchies further increase the reasoning demands for product types
near the root, while the opportunity for optimization in more shallow hierar-
chies is expected to be lower. A query template chosen to verify this assumption
is shown in Listing 3.1.

The results of the static scaling test based on the query template in Listing 3.1
for the Jena-based implementations is shown in Figure 4a and Figure 4b for
leaf and for root product types respectively. Both QSMat and StreamQR result
in a substantial speedup compared to the completely materializing reference
implemenation C-SPARQL, especially for leaf types. This is because for leaves,
the complete materialization needs to derive all superclasses of each type in the
product type hierarchy, although none of them are ever relevant to the query.
Noteworthy is the extremely similar performance of QSMat and StreamQR. This
is no coincidence. For this type of query, both QSMat and StreamQR converge
to the same behavior: QSMat excludes all inference rules for this type of query,
avoids materialization entirely, and then evaluates the query over the raw stream
window content. StreamQR creates a trivially rewritten query that is identical
to the original query, since there are no relevant schematic dependencies to
be compiled into the query. While they arrive at this result differently, both
algorithms evaluate the original query over the raw stream window, resulting in
almost identical performance.

For root types, the performance of C-SPARQL is comparable to the leaf case,
which is to be expected, since the cost of the complete materialization does not
depend on the specific product type queried. QSMat still outperforms C-SPARQL,
but to a lesser degree than for the leaf case, especially for large type hierar-
chies and thus higher reasoning demand per stream triple. While QSMat can
still exclude most rules not needed for the query, all product types are relevant
for this type of query. This means that QSMat cannot exclude any part of the
product type hierarchy and needs to derive all superclass memberships. As a
consequence, a higher fraction of inferences in C-SPARQL’s complete materializa-
tion is relevant to the query, which is why QSMat’s advantage compared to the
complete materialization is less dramatic.

It is also apparent that the performance of StreamQR is far more sensitive
to ontology size for this type of query instance. Since all product types are

relevant when querying instances of the root type, a larger type hierarchy implies
that StreamQR must create a larger number of sub-queries to encode subclass
relations, which results in increasingly costly query evaluation. These sub-queries
need to replicate triple patterns even if they are not related to the rewritten
rdf:type pattern, which becomes quite costly for very large and deep hierarchies.
As a consequence, its runtime increases with ontology size to a much larger
degree than for the leaf case.

(a) Leaf type (low reasoning demand) (b) Root type (high reasoning demand)

(c) Root type (excl. indexing overhead)

Fig. 4: Query evaluation time with regard to hierarchy size (Jena-based implementa-
tions, 100k stream triples / window)

The indexing of stream triples employed by our Jena-based query processor
dominated query evaluation time for small ontologies, which masked differences
between the evaluated algorithms for small ontology sizes and thus low reasoning
demands. To emphasize these differences, Figure 4c shows the results for the more
interesting root product type while excluding indexing overhead. This reveals
that low hierarchy sizes are most beneficial to StreamQR, which then needs to
create only a small number of sub-queries, leading to a performance advantage
over the algorithms employing explicit reasoning. Results of the same static
scaling test for a SparkWave-based reasoning backend with and without query-
relevance filtering of background knowledge with QSMat are shown in Figure 5a
and Figure 5b for leaf and root type products respectively. Since inference rules
are fixed for SparkWave, the rule-set was not subjected to relevance-filtering. As
above, leaf type queries allow QSMat to exclude more of the type hierarchy than

root type queries, which translates into a larger performance benefit compared
to regular SparkWave for leaf types. The fairly small performance benefit for
root types can be explained by QSMat discarding background knowledge that is
irrelevant to the query even for root types.

(a) Leaf product type (low reasoning de-
mand)

(b) Root product type (high reasoning
demand)

Fig. 5: Query evaluation time with regard to hierarchy size (Sparkwave-based Imple-
mentations, 100k stream triples / window)

(a) Small type hierarchy (10 products in
7 product types)

(b) Large type hierarchy (10k products
in 329 product types)

Fig. 6: Query evaluation time with regard to hierarchy size (Sparkwave-based Imple-
mentations, 100k stream triples / window)

Scalability with regard to stream window size. Another important con-
sideration is scaling with regard to window size. While a larger ontology and more
complex type hierarchy can require more reasoning overhead per stream triple,
a larger window contains more stream triples triggering said reasoning. Since
this benchmark solely requires independently classifying streamed instances in a
static schema, reasoning demands per window triple do not depend on window
size. The query template from above was reused for this test, but product types
were sampled uniformly both among hierarchy levels and among types in each
level, instead of the more pathological root and leaf types above. Figure 6a and
Figure 6b show the results for a small and a large static ontology and thus hierar-
chy size. The cost per stream triple varies between algorithms, and is dependent
on the static ontology size, but all evaluated algorithms scale fairly consistently

with growing window size, leading to the conclusion that per-triple reasoning
demands are the primary factor regarding scaling.

4 Related Work

There are several existing approaches to accelerate stream reasoning. For our
purposes, they can be broadly classified into approaches that focus either on
faster query evaluation or reasoning.

The C-SPARQL [1, 3] engine is a query execution engine for C-SPARQL queries.
Its query semantics distinguish between logical windows, which are time-based,
and physical windows, which contain a given number of triples. Logical windows
are advanced with a given time-step and can either overlap (sliding), or perfectly
tile (tumbling). Unlike QSMat, the currently available implementation does not
include materialization.

The CQELS [8] engine is a query processor employing window semantics and
query operators similar to C-SPARQL, including tumbling and sliding windows.
Query evaluation is triggered by the arrival of new triples (streaming) and not at
the end of each window as with C-SPARQL. The engine further supports reordering
of query operators during query runtime to yield a less costly execution order.
However, unlike QSMat, it provides no reasoning support.

SparkWave [7] uses a query language closely related to C-SPARQL and supports
time-based windows. In contrast to C-SPARQL and CQELS, it supports reasoning
for a subset of RDFS entailment plus inverse and symmetric properties. The
RETE-based algorithm combines a reasoning layer with a pattern matching
layer. Both reasoning and query matching is streaming, i.e. triggered by newly
arriving triples. As a tradeoff for increased performance, its query format is more
restrictive than that of C-SPARQL (and thus QSMat) and CQELS. Unlike QSMat,
the fixed subset of RDFS entailment rule cannot be customized.

The Hoeksema S4 Reasoner [6] is a C-SPARQL engine that supports a fixed
subset of the C-SPARQL query language and RDFS entailment. Unlike QSMat, it
is implemented as a distributed system of processing elements that are realized in
S4. The approach only supports time-based windows, since count-based windows
would require more synchronization between individual processing elements.

IMaRS [2] is a C-SPARQL engine with reasoning support for generic rule sys-
tems and incrementally maintains a full materialization. The approach supports
only logical windows, which allows it to exploit the specific window semantics of
C-SPARQL to precompute expiration times for newly derived triples. However,
QSMat only needs to perform a partial materialization depending on the needs
to satisfy the given stream query.

StreamQR [4] is a query rewriting approach that aims to circumvent the need
for explicit reasoning by encoding schematic knowledge in a set of conjunctive
sub-queries. That is possible, since this conversion is syntactical and independent
of the specific stream triples arriving during query runtime. The sub-queries are
then evaluated over the raw stream without the need for reasoning. This is both
an advantage and a disadvantage compared to materialization like in QSMat:

The number of sub-queries generated depends on the complexity of the relevant
background knowledge, hence it is most beneficial if this number is low. Both
approaches perform analysis on a syntactic level, where StreamQR preprocesses
the query with the help of relevant static information, while QSMat preprocesses
static information with the help of the query.

5 Conclusions

We presented a flexible approach, QSMat, to accelerate stream reasoning by ex-
ploiting knowledge of the query and a configurable inference rule-set. It works
backwards from the query, and extracts parts of the static materialization and
the rule-set that are not provably irrelevant to the query, which allows it to
maintain completeness with regard to the query. The performance evaluation of
QSMat based on the Berlin SPARQL Benchmark (BSBM) revealed that it can
reduce reasoning overhead significantly both on its own or as a preprocessing
step for another state-of-the-art reasoner. Future work is concerned with cross-
dependencies between multiple query triple patterns, which could yield a more
restrictive filtering, thus exclude unneeded inferences that cannot provably be
discarded on a per-pattern basis yet.

Acknowledgments: This research was partially supported by the German
Federal Ministry for Education and Research (BMB+F) in the project INVER-
SIV and the European Commission in the project CREMA.

References

1. Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M. (2009): C-
SPARQL: SPARQL for Continuous Querying. Proc. 18th International Conference
on World Wide Web (WWW), ACM.

2. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M. (2009): Incremen-
tal Reasoning on Streams and Rich Background Knowledge. Proc. International
Semantic Web Conference, LNCS 6088, Springer.

3. Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M. (2010): C-
SPARQL: A Continuous Query Language for RDF Data Streams. Semantic Com-
puting, 4(1):3–25.

4. Calbimonte, J.-P., Mora, J., Corcho, O. (2016): Query Rewriting in RDF Stream
Processing. Proc. 13th Extended Semantic Web Conference, Springer.

5. Forgy, C.L. (1982): Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19:17–37

6. Hoeksema, J., Kotoulas, S. (2011): High-performance distributed stream reasoning
using S4. Proc. of Workshop OrdRing at International Semantic Web Conference

7. Komazec, S., Cerri, D., Fensel, D.: (2012) Sparkwave: Continuous Schema-
Enhanced Pattern Matching over RDF Data Streams. Proc. 6th ACM International
Conference on Distributed Event-Based Systems; ACM.

8. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M. (2011): A Native and
Adaptive Approach for Unified Processing of Linked Streams and Linked Data.
Proc. 10th International Semantic Web Conference (ISWC); Springer

