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Abstract. Hybrid quantum-classical computation represents one of the
most promising approaches to deliver novel machine learning models ca-
pable of overcoming the limitations imposed by the classical comput-
ing paradigm. In this work, we propose a novel variational algorithm
for quantum Single Layer Perceptron (qSLP) which allows producing a
quantum state equivalent to the output of a classical single-layer neural
network. In particular, the proposed qSLP generates an exponentially
large number of parametrized linear combinations in superposition that
can be learnt using quantum-classical optimization. As a consequence,
the number of hidden neurons scales exponentially with the number of
qubits and, thanks to the universal approximation theorem, our algo-
rithm opens to the possibility of approximating any function on quan-
tum computers. Thus, the proposed approach produces a model with
substantial descriptive power and widens the horizon of potential appli-
cations using near-term quantum computation, especially those related
to quantum machine learning. Finally, we test the qSLP as a classification
model against two different quantum models on two different real-world
datasets usually adopted for benchmarking classical algorithms.

Keywords: Quantum Machine Learning · Quantum Computing · Ma-
chine Learning · Neural Networks.

1 Background and Motivation

Machine learning (ML) can be considered as one of the most disruptive technol-
ogy of the last decades. However, the ever-increasing size of datasets and Moore’s
law coming to an end emphasizes that the current computational tools will no
longer be sufficient in the near future. An opportunity for ML to overcome these
limitations is to leverage quantum computation, where quantum effects allow
solving selected problems that are intractable using classical machines. The in-
tersection between ML and quantum computing is known as Quantum Machine
Learning (QML) where a quantum algorithm is employed to solve typical ML
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tasks. In particular, QML algorithms are designed to tackle optimization prob-
lems using both classical and quantum resources and they are composed by three
main ingredients: i) a parametrized quantum circuit U(x;Θ), ii) a quantum out-
put f(x;Θ) and iii) an updating rule for Θ.
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Fig. 1: Scheme of a hybrid quantum-classical algorithm for supervised learning.
The quantum variational circuit is depicted in green, while the classical compo-
nent is represented in blue.

The hybrid quantum-classical approach (Figure 1) proceeds as follows. The
data, x, are initially encoded as a quantum state through the use of a quan-
tum routine Sx. Then the quantum hardware computes U(x;Θ) with randomly
initialized parameters Θ. After multiple executions of U(x;Θ), the classical com-
ponent post-processes the measurements and generates a prediction f(x;Θ). Fi-
nally, the parameters are updated, and the whole cycle is run multiple times in
a closed loop between the classical and quantum hardware.

1.1 Neural Network as Universal Approximator

A Single Layer Perceptron (SLP) [1] is a single-layer neural network suitable for
classification and regression problems. Given a training point (x, y), the output
of a SLP containing H neurons can be expressed as:

f(x;β, θ) = σout

 H∑
j=1

βjσhid [L(x;θj)]

 =

H∑
j=1

βjg(x; θj). (1)

where σout is the identify function in case of a continuous target variable y.
Each hidden neuron j computes a linear combination, L(·), of the input features
x ∈ IRp with coefficients given by the p-dimensional vector θj . This operation
is performed for all neurons, and the results are individually fed into the inner
activation function σhid. The outputs of the previous operation are then lin-
early combined with coefficients βj . Finally, a task-dependent outer activation
function, σout, is applied.



Despite being less utilized than the deep architectures, the SLP model can
be very expressive. According to the universal approximation theorem [2], a SLP
with an arbitrarily large number of hidden neurons and a non-constant, bounded
and continuous activation function can approximate any continuous function on
a closed and bounded subset of IRp. In spite of this crucial theoretical result,
the SLP are rarely adopted in practice due to the unfeasibility of training large
amounts of hidden neurons on classical devices. Quantum computers, however,
could leverage the superposition of states to scale the number of hidden neurons
exponentially with the number of available qubits. Starting from these consid-
erations, cleverly implementing a quantum SLP would therefore enable a real
chance to benefit from the universal approximation property.

1.2 Activation function

The implementation of a proper activation function – in the sense of the Univer-
sal Approximation Theorem – is one of the major issues for building a complete
quantum neural network. Recently, the idea of quantum splines (QSplines) [3]
has been proposed to approximate non-linear activation functions by means of
a fault-tolerant quantum algorithm. Although a QSpline provides a method to
store the value of a non-linear function in the amplitudes of a quantum state, it
uses the HHL [4] as subroutine, a quantum algorithm for matrix inversion which
imposes several practical limitations [5].

In this work, we do not discuss how to implement in practice a non-linear
activation function. Nevertheless, we provide a framework that permits to train
a quantum SLP with an exponentially large number of hidden neurons for a
given activation function Σ. Furthermore, our architecture is naturally capable
of incorporating new implementations of non-linear activation functions as long
as they fit in the learning paradigm.

2 Related Works

Variational circuits can be considered as the composition of multiple layers of
connected computational units controlled by trainable parameters. This defini-
tion is similar to the characterization of neural networks, but the comparison
between the two poses several challenges. In fact, classical neural networks re-
quire a non-linear activation function which is a limit for quantum computation
since quantum operations are unitary and therefore linear. Furthermore, it is
impossible to access the quantum state at intermediate points during compu-
tation. Thus, backpropagation [6], which is the standard to work on large-scale
models, cannot be used to train quantum circuits.

In practice, several attempts for building a quantum neural network are dis-
cussed in the literature. Although a potential quantum advantage of quantum
neural networks over classical ones has been recently investigated [7], to the best
of our knowledge, there are no trainable quantum algorithms that can effectively



implement a complete neural network in a quantum setting. A concrete imple-
mentation of a quantum circuit to solve a typical ML task using a near-term
processor is illustrated in [8], where the authors introduced a model for binary
classification using a modified version of the perceptron updating rule. Another
approach is represented by Tensor Networks inspired by quantum many-body
physics. Tensor networks [9] are methods to represent quantum states whose
entanglement is constrained by local interactions. This approach enables the
numerical treatment of systems through layers of abstraction, as for deep neu-
ral networks. Some of the most studied tensor networks have been adopted for
classification and generative modeling [10,11]. Recently, the idea of building a
parametrized quantum circuit to generate a quantum state equivalent to the
output of a two-layer neural network has been proposed [12]. However, the gen-
eralization to more than two neurons is not provided.

In general, the standard approach for quantum neural networks (QNN) con-
sists of building a quantum circuit on top of existing approaches for variational
circuits which solve a supervised learning task [13]. Methods within this ap-
proach take care of the supervised task end-to-end, where the input quantum
state is fed through a parametrized unitary operator and the final measurement
provides the estimate of the target variable of interest.

Alternatively, quantum support vector machines (QSVM) [14] use a quantum
circuit to map classical data into a quantum feature space. The resulting features
are then fed into a classical linear model which calculates the final output.

2.1 Contribution

In this work, we propose the quantum Single Layer Perceptron (qSLP), a novel
quantum algorithm that reproduces a quantum state equivalent to the output
of a classical SLP with an arbitrarily large number of hidden neurons. In par-
ticular, building on top of the approach described in [12], we design an efficient
variational algorithm that performs unitary parametrized transformations of the
input in superposition. The results are then passed through an activation func-
tion with just one application. The flexible architecture of the qSLP enables to
plug in custom implementations of the activation function routine. Thus, thanks
to the possibility of learning the parameters for a given task, the proposed algo-
rithm allows training models that can potentially approximate any function if
provided of a proper activation function.

However, we do not address the problem of implementing a non-linear activa-
tion function. Our goal is to provide a framework that generates multiple linear
combinations in superposition entangled with a control register. As a conse-
quence, instead of executing a given activation function for each hidden neuron,
a single application is needed to propagate it to all of the quantum states. This
allows scaling the number of hidden neurons exponentially with the number of
qubits, while increasing linearly the depth of the correspondent quantum cir-
cuit and candidating the qSLP to be a concrete alternative for approximating
complex and diverse functions.



Finally, we test the qSLP as classification model against two different quan-
tum approaches on two different real-world datasets usually adopted for bench-
marking classical ML algorithms.

3 Generalized Quantum Single Layer Perceptron

3.1 Preliminaries

Gates as Linear Operators. As discussed in Sec. 1.1, an SLP applies multiple
linear combinations on the same input based on different sets of parameters. In
case of qSLP, we can consider the following parametrized quantum gate to map
a generic input quantum state any possible other quantum states:

U3(θ) = U3(α, β, γ) =

(
eiβcos(α/2) eiγsin(α/2)

−e−iγsin(α/2) e−iβcos(α/2)

)
. (2)

The unitary U3(θ) represents a bounded linear operation where the set of param-
eters vector θ = {α, β, γ} can be learnt using classical optimization procedures.
Importantly, the adoption of U3(θ) as linear operator implies transforming the
input data using complex coefficients. Therefore, it describes a more general
operation with respect to the classical SLP, that only allows for linear combi-
nations with real-valued coefficient. Nonetheless, one can still parametrize the
circuit using Pauli-Y rotation to restrict the computation to the real domain.

Ansatz for Linear Operators in Superposition. The original proposal of
the qSLP [12] creates entanglement between the control and the data register
using two CSWAP operations and an additional temp register to generate a
superposition of two different linear transformations. Although this approach
allows obtaining the desired result, it implies the adoption of twice the number of
qubits to encode the input data (temp register). Furthermore, using the CSWAP
gates introduces a linear overhead with respect to the size of the two registers
data and temp [15], in terms of gate complexity. To reduce such complexity, we
propose a different approach (illustrated in Figure 2) which does not require the
additional temp register and the use of the CSWAP gates.

3.2 Quantum Single Layer Perceptron

Intuitively, a generalized qSLP can be implemented into five steps: state prepa-
ration, entangled linear operators in superposition, application of the activation
function, measurement step, post processing optimization. To this end, two quan-
tum registers are necessary: control (d qubits), data (n qubits).

Step 1: State Preparation. The control register is turned into a non-uniform
superposition parameterized by the d-dimensional vector β̂ by means of d Pauli-
Y rotation gates. Also, a single p-dimensional training point is encoded into the



Control |β⟩

Data |x⟩ U(θ1)

Temp |ϕ⟩ U(θ2)

→
Control |β⟩ X

Data |x⟩ U(θ1) U(θ2)

1

Fig. 2: Alternative ansatz for linear operators in superposition. On the left the
quantum gates adopted in the first version of the two-layer qSLP [12]. On the
right the proposed schema to generate two different linear operation in superpo-
sition each entangled with one of the basis states of the control quibit.

n-qubit data register through the quantum gate Sx:

|Φ⟩SP =

(
d
⊗
i=1

Ry(β̂i)⊗ Sx

)
|0⟩⊗d

control ⊗ |0⟩
⊗n
data

=
d
⊗
i=1

(ai |0⟩+ bi |1⟩)⊗ |x⟩ =
d
⊗
i=1
|ci⟩ ⊗ |x⟩ , (3)

where {ai, bi} are real numbers such that |ai|2 + |bi|2 = 1. Importantly, the
algorithm is completely independent by the encoding strategy chosen for Sx.

Step 2: Entangled Linear Operators in Superposition. The second step
generates a superposition of 2d linear operations with different parameters, each
entangled with a basis state of the control register. In particular, once the two
registers are initialized, each qubit in the control register is entangled with two
different random transformations of the data register. As a result, 2d different
transformations in superposition of the input are generated. Here we describe
the procedure assuming 3 control qubits where the ansatz described in Sec. 3.1
is applied only d = 3 times in order to obtain 2d = 8 different parametrized
unitary transformations of the input in superposition.

Step 2.1 (d = 1) The first step applies the unitary U(θ1,1,θ1,2) to the
initialized quantum system, which is defined as follows:

U(θ1,1,θ1,2) =
[
1⊗d−1 ⊗ C-U(θ1,1)

] [
1⊗d−1 ⊗X ⊗ 1

] [
1⊗d−1 ⊗ C-U(θ1,2)

]
where 1 is the identity matrix and X is the NOT gate (i.e., Pauli-X gate). Thus,
the first step (d = 1) leads to the following quantum state:

|Φ⟩(d=1) = U(θ1,1,θ1,2) |Φ⟩SP
=

2
⊗
i=1
|ci⟩ ⊗ (a1 |1⟩U(θ1,2) |x⟩+ b1 |0⟩U(θ1,1) |x⟩). (4)

The basis states of the first control qubit is then entangled with two parametrized
unitary transformations of the data register.



Step 2.2 (d = 2) The second step employs another control qubit and other
two sets of parameters θ2,1 and θ2,2. Then the same procedure is applied through
the unitary operations U(θ2,1,θ2,2):

|Φ⟩(d=2) = U(θ2,1,θ2,2) |Φ⟩(d=1)

=
1√
4

[
b2a1 |00⟩U(θ2,1)U(θ1,1) |x⟩+ b2b1 |01⟩U(θ2,1)U(θ1,2) |x⟩

+ a2a1 |10⟩U(θ2,2)U(θ1,1) |x⟩+ a2b1 |11⟩U(θ2,2)U(θ1,2) |x⟩
]

(5)

with U(θ2,1,θ2,2) = [1⊗ C ⊗ 1⊗ U(θ2,1)]
[
1⊗X ⊗ 1⊗n+1

]
[1⊗ C ⊗ 1⊗ U(θ2,1)] .

The position of the C gate indicates the control qubit used to perform the con-
trolled operations C-U(θ2,1) and C-U(θ2,2). As a consequence of this second
step, four parametrized transformations of the input |x⟩ are generated, each re-
sults from the product of two U(θi,k) gates, for i, k ∈ {1, 2}. Furthermore, these
transformations are entangled with the basis states of the two control qubits.

Step 2.3 (d = 3) We perform the same procedure for the third control qubit,
using the unitary U(θ3,1,θ3,2):

|Φ⟩(d=3) = U(θ3,1,θ3,2) |Φ⟩(d=2)

=
1√
8

[
β1 |000⟩U(θ3,1)U(θ2,1)U(θ1,1) |x⟩+ β2 |001⟩U(θ3,1)U(θ2,1)U(θ1,2) |x⟩

+β3 |010⟩U(θ3,1)U(θ2,2)U(θ1,1) |x⟩+ β4 |011⟩U(θ3,1)U(θ2,2)U(θ1,2) |x⟩
+β5 |100⟩U(θ3,2)U(θ2,1)U(θ1,1) |x⟩+ β6 |101⟩U(θ3,2)U(θ2,1)U(θ1,2) |x⟩
+β7 |110⟩U(θ3,2)U(θ2,2)U(θ1,1) |x⟩+ β8 |111⟩U(θ3,2)U(θ2,2)U(θ1,2) |x⟩

]
=

1√
8

8∑
j=1

βj |j⟩U(Θj) |x⟩ , (6)

where U(θ3,1,θ3,2) =
[
C ⊗ 1⊗2 ⊗ U(θ2,1)

]
[X ⊗ 1⊗ 1]

[
C ⊗ 1⊗2 ⊗ U(θ2,1)

]
.

The final quantum state is a superposition of 8 different parametrized unitary
transformations of the input, each entangled with a basis state of the control
register whose amplitudes depend on a set of parameters {βi}i=1,...,d. We can
generalize the quantum state |Φ⟩(d=3) for a generic d-qubit control register:

|Φ⟩d =

d∏
i=1

U(θi,1,θi,2)

(
d
⊗
i=1
|ci⟩ ⊗ |x⟩

)

=
1√
2d

2d∑
j=1

βj |j⟩U(Θj) |x⟩ =
1√
2d

2d∑
j=1

βj |j⟩ |L(x;Θj)⟩ , (7)

where U(Θj) is the product of d unitaries U(θi,k) for i = 1, . . . , d and k = 1, 2.



To summarize, the underlying idea of this procedure is to initialize the control
register according to a set of weights and assign each weight βj to a parametrized
unitary function U(Θj). This approach is extremely flexible and allows learning
all the parameters βj and Θj for specific use cases. Furthermore, it allows to
generate a superposition of 2d diverse unitary transformation while increasing
linearly the depth correspondent quantum circuit.

Step 3: Activation. A further step consists of applying the Σ gate, represent-
ing the quantum version of the classical activation function to the data register.
Notice that, having all the parametrized unitary operations in superposition
allows propagating the application of Σ with a single execution, as follows:

|Φ⟩Σ = (1⊗d ⊗Σ) |Φd⟩ →
1√
2d

2d∑
j=1

βj |j⟩ |σ[L(x; θj)]⟩)

=
1√
H

H∑
j=1

βj |j⟩ |g(x;Θj)⟩ , (8)

where H = 2d and 1
⊗d is the identity matrix. In this way, the result of the

algorithm corresponds to the output of the SLP (Eq. (1)) with 2d hidden neurons
that can be accessed by measuring the data register only.

Step 4: Measurement. Finally, the expectation measurement on the data
register is performed:

⟨M⟩ =
〈
ΦΣ |1⊗d ⊗M

∣∣ΦΣ

〉
=

2d∑
j=1

β
′

j ⟨g(x;Θj)|M |g(x;Θj)⟩

=

2d∑
j=1

β
′

j ⟨Mj⟩ =
2d∑
j=1

β
′

jgj = f(x;β,Θ), (9)

where M is a generic measurement operator (e.g., the Pauli σz), the function
g(x;Θj) = σ[L(x; θj)] and β

′

j = |βj |2 with
∑

j |βj |2 = 1. Although we do not
measure the control register, the j-th transformation of the input is associated
to a specific amplitude βj of the control register. The parameters of the quan-

tum circuit {β̂i}i=1,...,d and {θi,1,θi,2}i=1,...,d, that indirectly determine the pa-

rameters in Eq. (9), can be randomly initialized and hybrid quantum-classical
optimization process can be exploited (Section 1).

Thus, we extended the proposed approach of the qSLP [12] to an exponen-
tially large number of neurons in the hidden layer. In fact, the entanglement of
linear combinations to the basis states of the control register implies that the
number of different linear combinations is equal to the number of basis states
of the control register. This translates in a number of hidden neurons H which



scales exponentially with the number of qubits of the control register, d. This is
a consequence of each hidden neuron being represented by a single independent
trajectory (Eq. (8)). The exponential scaling alongside the ability to freely learn
the parameters, enables the construction of quantum neural network with an
arbitrary large number of hidden neurons as the amount of available qubits in-
creases. In other terms, we can build qSLP with an incredible descriptive power
that may be really capable of being an universal approximator. The quantum
circuit to implement the qSLP (d = 3) is depicted in Figure 3.

State
Preparation

Linear
Operators

Activation

Control |0⟩ Ry(β)

Data |0⟩ Sx U(θ1) Σ

Temp |ϕ⟩ U(θ2)

State Preparation Linear Operators Activation

Control1 |0⟩ Ry(β̂1) X

Control2 |0⟩ Ry(β̂2) X

Control3 |0⟩ Ry(β̂3) X

Data |0⟩⊗n Sx U(θ1,1) U(θ1,2) U(θ2,1) U(θ2,2) U(θ3,1) U(θ3,2) Σ

d = 1 d = 2 d = 3

3

Fig. 3: Quantum circuit for a qSLP with 8 (d = 3) hidden neurons.

Step 5: Optimization. The post-processing is task-dependent and performed
classically. In particular, given the measurement of the quantum circuit f(x;β,Θ),
a cost function is computed and then classical approaches to update the param-
eters of the quantum circuit {β,Θ} are employed. As loss function, in case of
supervised problem, the Sum of Squared Errors (SSE) between the predictions
and the true values y is usually adopted:

SSE = Loss(β,Θ;D) =

N∑
i=1

[yi − f (xi;β,Θ)]
2
, (10)

where N is the total number of observations in the training set.
To summarize, the variational algorithm described above allows reproduc-

ing a classical neural network with one hidden layer on a quantum computer.
In particular, it includes a variational circuit adopted for encoding the data,
performing the linear combinations of input neurons and applying the same
activation function to their results with just one execution. A single iteration
during the learning process is then completed to measure the output of the net-
work, compute the loss function and update the parameters. The whole process
is repeated iteratively until convergence, as for classical neural networks.

3.3 Discussion

The algorithm provided in the previous section allows building a generalized
qSLP with an exponentially large number of neurons, increasing the depth of



the quantum circuit linearly. Furthermore, the model supports amplitude en-
coding strategy, which translates into a exponential advantage in terms of space
complexity (i.e., number of qubits) when encoding data into the data quan-
tum register. This implies a potential polylogarithmic advantage in terms of the
number of parameters with respect to its classical counterpart [16].

There are two main differences between the classical and quantum SLP, de-
riving from the normalization constraint introduced when dealing with the am-
plitudes of quantum systems. In the qSLP, the input data x and the weight
vector β = {βj}j=1,...,2d are normalized to 1. This may seem a limitation since
classical neural networks may take raw input and freely learn the weight param-
eters. However, rescaling the inputs and limiting the magnitudes of the weights
are two common strategies adopted in the classical case to avoid overfitting. In
particular, these procedures are known as batch normalization and weight decay
[17]. Thus, quantum mechanics’ normalization constraint allows automatically
implementing of ad-hoc procedures developed in the context of classical neural
networks without any additional computational effort.

From a computational point of view, given H hidden neurons and L training
epochs, the training of a classical SLP scales (at least) linearly in H and L,
since the output of each hidden neuron needs to be calculated explicitly to
obtain the final output. Also, if H is too large (a necessary condition for an
SLP to be a universal approximator [2]), the problem becomes NP-hard [18].
The proposed qSLP, instead, allows scaling linearly with respect to log2(H) = d
thanks to the entanglement between the two quantum registers that generates an
exponentially large number of quantum trajectories in superposition. However,
the cost of state preparation (gate Sx) needs to be taken into consideration, as
well as the cost implementing the quantum activation function Σ. Nonetheless,
once the optimal set of parameters of the qSLP is obtained for a specific task,
the whole quantum algorithm can be employed as subroutine in other quantum
algorithms to reproduce the function for which it is trained.

4 Experiments

To test the performances of the qSLP, we implemented the circuit illustrated in
Figure 3 using IBM Qiskit environment on two different real-world datasets. Af-
ter training the qSLP on the simulator, we executed the pre-trained algorithm on
two real quantum devices. In addition, QNNs [7] and QSVMs [19] are adopted as
benchmark to compare the proposed qSLP with state-of-the-art QML models3.

4.1 Dataset Description

The simulation of a quantum system on a classical device is a challenging task
even for systems of moderate size. For this reason, the experiments consider only
datasets with a relatively small number of observations (100–200) that will be

3 All code to generate the data, figures and analyses is available at
github.com/filorazi/qSLP-quantum-Single-Layer-Perceptron

https://github.com/filorazi/qSLP-quantum-Single-Layer-Perceptron


split in training (80%) and test (20%) set. Furthermore, the PCA is performed
to reduce the number of features to 2. We consider five different binary classifi-
cation problems from two real-world datasets (MNIST and Iris) usually adopted
for benchmarking classical machine learning algorithms. The Iris dataset consists
of 50 examples for three species of Iris flower (Setosa, Virginica, Versicolor) de-
scribed by four different features. The MNIST dataset contains 60k images of ten
possible handwritten digits, each represented by 28× 28 pixels. Since these two
datasets exhibit a multiclass target variable, but the current implementations of
qSLP, QNN, and QSVM solve a binary classification problem, we consider five
different datasets extracted from the original multiclasses problems (Table 1).

MNIST09 MNIST38 SeVe SeVi VeVi

Training set 160 160 80 80 80

Test set 40 40 20 20 20

Raw features 784 784 4 4 4

PCA features 2 2 2 2 2

% Variance 31% 20.3% 98% 98.4% 92.2%

Target classes 0 vs 9 3 vs 8
Setosa vs

Versicolor

Setosa vs

Virginica

Versicolor vs

Virginica

Table 1: Datasets description. The columns represent five different binary
classification datasets. Each row describes a characteristic of the data: the num-
ber of training points (Training set), the number of test points (Test set), the
number of features in the original data (Raw features), the number of PCA fea-
tures, the explained variance of the PCA (% Variance) and the target classes
chosen as the binary target variable (Target classes).

4.2 State Preparation for the qSLP

The most efficient encoding strategy adopted in QML is amplitude encoding
that associates quantum amplitudes with real vectors at the cost of introducing a
normalization constraint to the raw input. Formally, a normalized vector x ∈ IRp

can be described by the amplitudes of a quantum state |x⟩ as:

|x⟩ =
p∑

k=1

xk |k⟩ ←→ x = [x1, . . . , xp]
T
. (11)

Two different approaches are used for amplitude encoding in the qSLP: Padded
state preparation and Single-qubit state preparation.

Single-qubit state preparation. This approach encodes a two-dimensional real
vector x into the amplitudes of a qubit by performing two parametric rotations
Ry(x1), Rz(x2), where the angles {x1, x2} are the two components of the (nor-
malized) feature vector x = (x1, x2) [20]. In this case, the parametrized quantum
gate U(θi,k) of the qSLP is directly implemented using the gate U3 (Eq. (2)).



Padded state preparation. A second strategy for amplitude encoding consists of
mapping an input state |x⟩ to the all-zero state |0 . . . 0⟩. Once the circuit is ob-
tained, all of the operations are inverted and applied in the reversed order. In this
case, a two-dimensional input data x is first mapped into a four-dimensional vec-
tor adding constant values and then normalized. Thus, following the procedure
described in [21], a set of angles are defined in such a way to apply a sequence of
Ry and CNOT gates to generate a quantum state whose amplitudes are equiv-
alent to the input (four-dimensional) feature vector. The quantum circuit for
padded state preparation is depicted in Figure 4. When using this strategy, since
the data register is made up of 2 qubits, the unitary operator U(θi,k) of the
qSLP is implemented by two U3 gates (one per qubit) and a CNOT gate.

Control |β⟩

Data |x⟩ U(θ1)

Temp |ϕ⟩ U(θ2)

→
Control |β⟩ X

Data |x⟩ U(θ1) U(θ2)

Control |0⟩ Ry(βi) |ci⟩

Data |0⟩ Sx |x⟩

=

Control |0⟩ Ry(βi) |ci⟩

Data |0⟩ Ry(x0) Rz(x1) |x⟩

Control |0⟩ Ry(βi) |ci⟩

Data1 |0⟩
Sx

|x1⟩

Data2 |0⟩ |x2⟩

=

|0⟩ Ry(βi) |ci⟩

|0⟩ Ry(α̂0) X X |x1⟩

|0⟩ Ry(α̂1) Ry(α̂2) Ry(α̂3) Ry(α̂4) |x2⟩

1

Fig. 4: Quantum circuit for padded state preparation in the qSLP. The {α̂i}i=0,...,4

parameters are determined following the procedure described in [21].

4.3 Results

We consider nine different algorithms based on the three QML models. A QSVM
[19] is trained using a two-layer quantum feature map (ZZFeature-map). Two
types of QNNs are tested: the first one (QNNC v1) uses single-layer quantum
feature map (ZFeature-map) as state preparation routine and Real amplitudes
approach as classification ansatz; the second type (QNNC v2) differs from the
first for the use of ZZFeature-map as state preparation. Regarding the qSLP,
six different configurations are tested based on two possible implementations
for amplitude encoding (Section 4.2) and three values for the parameter d. To
the best of our knowledge, there is no quantum routine suitable for near-term
quantum computation capable of approximating the behaviour of an activation
function. For this reason, as Σ gate (Eq. (8)), we adopt the identity gate4.

The training is performed on a QASM simulator, a backend that simulates
the execution of a quantum algorithm in a fault-tolerant quantum device. The
number of measurements for each run of the quantum circuits is fixed to 1024.
The results for each model are reported in Table 2.

Assuming a perfect quantum device, the QSVM and the QNN outperform
the qSLP considering the VeVi dataset. This means that for specific cases the use
of a quantum feature map provides a practical advantage with respect to stan-
dard amplitude encoding. However, in case of MNIST09, MNIST38 and SeVe the
qSLP outperforms the QNNs, thanks to its ability to aggregate multiple and di-
verse unitary functions. Thus, the flexible architecture of the ansatz of the qSLP

4 Importantly, the code already allows the embedding of a gate Σ different from the
identity gate, as quantum activation function.



MNIST09 MNIST38 SeVe SeVi VeVi

Model d Train Test Train Test Train Test Train Test Train Test

QSVM .97 .91 .83 .84 1.0 1.0 1.0 1.0 .98 .95

QNN (v1) .87 .86 .55 .61 .95 .90 .98 .95 .92 .90

QNN (v2) .84 .84 .74 .70 1.0 .95 1.0 1.0 .85 .80

(padded)

qSLP

1 .92 .89 .89 .81 1.0 1.0 1.0 1.0 .82 .70

2 .93 .91 .87 .82 1.0 1.0 1.0 1.0 .82 .70

3 .92 .91 .86 .84 1.0 1.0 1.0 1.0 .82 .70

1 .83 .85 .86 .84 1.0 1.0 1.0 1.0 .80 .70

2 .83 .85 .87 .84 1.0 1.0 1.0 1.0 .78 .65
(Single-qubit)

qSLP
3 .83 .85 .87 .82 1.0 1.0 1.0 1.0 .80 .65

Table 2: Training and test results of three different models (qSLP, QNN, QSVM)
on five different binary classification problems.

allows achieving a better performance when comparing full quantum models5.
Nonetheless, the qSLP and QSVM equally perform on four cases (MNIST09,
MNIST38, SeVe, SeVi), although the implementation of the qSLP is not com-
plete due to the lack of a proper activation function and a limited number of
hidden neurons (H = 23 = 8).

Model d MNIST09 MNIST38 SeVe SeVi ViVe

QSVM - .91 .84 1.0 1.0 .95

QNN (v1) - .89 .64 .95 1.0 .95

QNN (v2) - .89 .68 1.0 1.0 .75

(padded)

qSLP

1 .89 .81 1.0 .90 .70

2 .81 .65 1.0 .60 .50

3 .81 .65 1.0 .60 .50

1 .82 .78 1.0 1.0 .50

2 .82 .70 1.0 1.0 .55
(Single-qubit)

qSLP
3 .84 .78 1.0 .95 .45

Table 3: Test performances using real devices (ibmq lima and ibmq quito).

Furthermore, the trained algorithms have been executed on real IBM quan-
tum devices. Results are reported in Table 3. The deterioration in the perfor-
mance of the (Single-qubit) qSLP is negligible. While the results of the (Padded)
qSLP, which uses a higher number of qubits and deeper quantum circuits, dete-
riorate as d increases. Instead, the QSVM seems not to be affected by the use
of a real device since the quantum component only generates the new features,
while the classification is performed classically. However, being each feature rep-
resented by a single qubit (as for QNN), the use of the quantum feature map
on real-world datasets seems to be prohibitive even when considering quantum
devices with hundreds of (noisy) qubits. Instead, the amplitude encoding strat-
egy adopted in the qSLP represents an optimal strategy to efficiently encode a
large dimensional input data in a small number of qubits. Thus, the (Single-

5 The QSVM uses a quantum circuit to translate the classical data into quantum
states while the classification is performed classically.



qubit) qSLP is the best compromise when using a real device, since it seems to
preserve its performance while adopting the amplitude encoding strategy.

Importantly, these results are an indication of how the tested QML models
perform and do not represent an exhaustive evaluation of their performance.

5 Conclusion and Outlook

In this work, we proposed a quantum algorithm to generate the quantum ver-
sion of the Single Layer Perceptron (qSLP). The key idea is to use a single
state preparation routine and apply different linear combinations in superposi-
tion, each entangled with a control register. This allows propagating a generic
activation function to all the basis states with only one execution. As a result,
a model trained through our algorithm is potentially able to approximate any
desired function as long as enough hidden neurons and a non-linear activation
function are available. Furthermore, we provided a practical implementation of
our variational algorithm that reproduces a quantum SLP for classification with
different possible hidden neurons and an identity function as activation.

In addition, we performed a comparative analysis between our algorithm and
two quantum baselines on real-world data and demonstrated that the qSLP out-
performs other full quantum approaches (QNN) and matches with the QSVM.

The main challenges to tackle in the near future is the design of a routine
that reproduces a non-linear activation function, as well as the adoption of the
qSLP for regression tasks. Yet, recently it has been shown that quantum feature
maps alongside functions aggregation are able to achieve universal approximation
[22]. Thus, another promising future work is the study of the qSLP on top of the
quantum feature map, to obtain a universal approximator, without implementing
a non-linear quantum activation function.

In conclusion, we are still far from proving that machine learning can benefit
from quantum computation in practice. However, thanks to the flexibility of
variational algorithms, the hybrid quantum-classical approach may be the ideal
setting to make universal approximation possible in quantum computers.
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