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Abstract— The problem of pedestrian collision-free navigation
of self-driving cars modeled as a partially observable Markov
decision process can be solved with either deep reinforcement
learning or approximate POMDP planning. However, it is
not known whether some hybrid approach that combines
advantages of these fundamentally different solution categories
could be superior to them in this context. This paper presents
the first hybrid solution HyLEAP for collision-free navigation
of self-driving cars together with a comparative experimental
performance evaluation over the first benchmark OpenDS-
CTS of simulated car-pedestrian accident scenarios based on
the major German in-depth road accident study GIDAS. Our
experiments revealed that HyLEAP can outperform each of its
integrated state of the art methods for approximate POMDP
planning and deep reinforcement learning in most GIDAS
accident scenarios regarding safety, while they appear to be
equally competitive regarding smoothness of driving and time
to goal on average.

I. INTRODUCTION

The accomplishment of pedestrian safety by autonomous
or self-driving vehicles is considered paramount to their
acceptance and economic success. In general, collision-free
navigation refers to solving the constrained optimization
problem where the time to reach a given goal is minimized
subject to collision avoidance constraints for driving on
computed path, i.e. the car does not crash into any pedestrian
or other obstacle like a parking car on the lane. Since
the environment of traffic scenes is usually considered to
be not fully observable by the car, this problem is often
modeled as a partially observable Markov decision process
(POMDP) and solved, in general, by either approximate
POMDP planning (APPL) or deep reinforcement learning
(DRL).
In fact, there is a plethora of related work on collision-
free navigation in robotics available since decades with
recently renewed interest on the problem in the domain of
autonomous driving [23], [20]. APPL-based solutions such
as the online approximate POMDP planner IS-DESPOT [15]
leverage their explicit world model to plan their actions into
the future with an n-step lookahead, but do not learn from
any experience. Experiments in [1] showed the applicability
of APPL for real-time collision-free navigation on campus.
On the other hand, DRL methods like NavA3C [17], [18],
UNREAL [11], IntentionNet [9], SA-CADRL [6] and Fast-
RDPG [25] are able to learn and generalize to unseen
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situations from experience offline but without explicit, task-
oriented action planning into the future. Both types of ap-
proximate POMDP solving may show significantly different
behaviors. For example, an APPL-based self-driving car
could deduce future collisions with pedestrians based on
its world model and start braking without having to see
a similar traffic scene before, while DRL-based solutions
will have to learn a situatively optimal policy offline and
to generalize from situations they encountered in the past.
Unlike APPL, though, they can learn from their mistakes
and try to avoid repeating them in the future. However, it is
not yet known, which of both types of approximate POMDP
solving performs best for collision-free navigation of self-
driving cars, and how to effectively and efficiently combine
them for this purpose in general.
To this end, we developed the first hybrid solution, named
HyLEAP, which combines advantages of selected state of
the art methods for DRL and APPL, that are NavA3C[17],
respectively, IS-DESPOT[15], for goal-directed collision-free
navigation, and discuss the experimental evaluation results
for simulated single and multiple pedestrian-car accident
scenarios based on the German in-depth road accident study
(GIDAS). All sources and benchmark of this work are
publicly available [22].
The remainder of this paper is structured as follows. The
considered problem of pedestrian collision avoidance by
autonomous cars is defined in section 2, and our hybrid solu-
tion HyLEAP is described and discussed in section 3. This
is followed by the comparative experimental performance
evaluation in section 4, while related work is summarized in
section 5 before we conclude in section 6.

II. PROBLEM DESCRIPTION

The pedestrian collision avoidance problem of a self-driving
car is, in short, to minimize the time to a given goal subject
to constraints with specific focus on avoiding near misses or
even hits of pedestrians. This problem can be modeled as a
discrete-time, partially observable Markov decision process
(POMDP) to be solved by the car online in real-time. Before
defining the POMDP, we shortly describe the underlying
model of the car and pedestrian, and the considered critical
traffic scenarios for the problem.

A. Prerequisites

1) Car and pedestrian model: Regarding car perception,
we assume the car to have a 360◦ surround view of its
environment, where pedestrians within a maximum viewing



distance of 50 meters are observable, if no other obstacle
occludes them. As in [1], only the exact positions of ob-
servable pedestrians are assumed to be known to the car.
Moreover, we adopted the kinematic bicycle model in [12],
which appeared appropriate for approximate modeling of the
driving behavior of cars in our context [21]. The state of a car
c at time t is defined as [p, v, θ]ct , where pct = (px, py)

c
t ∈ R2

denotes the position of c, vct ∈ R its speed, and θct ∈ [0, 2π)
its orientation at time t.
For goal-directed navigation learning and planning of the car
in continuous space of POMDPs, we employ the hybrid A*
path planner [24] as in [1], [9] to make sure the generated
paths are driveable according to the car kinematics, though
paths are not guaranteed to be optimal and complete. Using
the path planner requires a costmap for which the 3D-model
of the traffic scene in OpenDS is scanned for obstacles in
a discretized grid into a graycale map and with standard
obstacle costs of car states defined as maximum of 1, 50, and
100, if the car is on the road, partly on the sidewalk, with
any part colliding with an obstacle, respectively, or infinite
else. Car intentions are snippets (84x84x3 RGB images) of
the cost map centered at the position of the car with its
path in the past and to be driven in the future drawn. The
idea of using car intentions for learning and planning is to
guide the autonomous vehicle in the right direction using the
information of the path planner as done in [9].
Similar to the car state, the pedestrian state [p, v, θ, g]pedt of
pedestrian ped of a set P of pedestrians in the environment at
time t is defined through its position ppedt = (px, py)

ped
t ∈

R2, speed vpedt ∈ R in m/s, orientation θpedt ∈ [0, 2π),
and goal gpedt = (gx, gy)

ped
t ∈ R2. Pedestrians only move

into the direction of the goal in a straight line. Accident
areas for collisions between car and pedestrian are defined
via rectangles with safety margins (1.5m front, 0.5 back/side)
for near-miss and hit (cf. Fig. 1) with respectively negative
rewards for the car (cf. Sect. 2.B).

Fig. 1. Accident (near-miss or hit) areas for car-pedestrian collisions

2) Simulated car-pedestrian accident scenarios: For com-
parative evaluation of pedestrian collision avoidance methods
of self-driving cars in accident scenarios with pedestrians
(cf. Section 4), we created the first benchmark OpenDS-CTS

1.0 [22] based on the GIDAS (German In-Depth Accident
Study) analysis of several thousands of such accidents that
happened in Germany in the past [3]. In particular, OpenDS-
CTS includes tens of thousands of scenes as instances of
the most likely GIDAS car-pedestrian accident scenarios in
which a pedestrian crosses the street in front of a car as
shown in Fig. 2; all accident scenes are virtually simulated
with the open-source 3D driving simulator OpenDS1 on a
test drive (of about 100 meters) in a virtual 3D version of
Saarbruecken city. Each scene of a GIDAS accident scenario
is denoted as (scenario, pcstart, θ

c
start, p

c
goal,P).

Fig. 2. Accident scenarios between car and pedestrian on German roads
according to GIDAS analysis with percentages of their occurence. Dotted
line denotes pedestrian movement, solid line that of the car, and red square
represents a static obstacle which blocks the sight of car.

B. Collision-free navigation problem

We modeled the pedestrian collision avoidance problem of
a car in a simulated GIDAS accident scene of the test drive
as a POMDP (S,A, T,R, γ, Z,O) as follows:

S: Set {[c, ped1, ..., ped|P|] | c ∈ R2×R× [0, 2π), pedi ∈
R2 × R × [0, 2π) × R2, 1 ≤ i ≤ |P|} of states st ∈ S
at time t with car state c and pedestrian states pedi =
[pedoi , ped

h
i ] ∈ P , 1 ≤ i ≤ |P|, where pedoi denotes the

observable position of pedestrian i
A: Set {(α, acc)} of car driving actions a ∈ A with

steering angle α ∈ Z, |α| ≤ αmax ∧ α mod 5 = 0,
αmax = 50o in both directions, and step-wise accelera-
tion acc ∈ {Accelerate,Maintain,Decelerate} with
+5, 0,−5km/h.

T : Transition probability T (st, at, st+1) =
p(st+1|st, at) ∈ [0, 1] of transitioning from state
st ∈ S into state st+1 ∈ S when executing action
at ∈ A at time t. State changes fully defined by car
movement kinematics, pedestrian model.

Z: Set {[c, pedo1, ..., pedo|P|]} of observations ot ∈ Z with
car state and observable part of perceived pedestrians
in the scene.

O: Observation probability O(st+1, at, ot+1) =
p(ot+1|st+1, at) ∈ [0, 1] of observing ot+1 ∈ Z
when transitioning into st+1 after executing at, and
O(st+1, at, ot+1) = 1, if ot+1 = [c, ped′

o
1, ..., ped

′o
|P′|]

for pedestrians P ′ ⊆ P currently perceived by car, else
0; states are not inferrable from single observations.

R: Immediate reward R(st, at) ∈ R for executing action
at in state st is:
rgoal = +1000, if goal position reached; rnear miss
−500, if pedestrian in near-miss area of car (rectangular

1OpenDS: https://opends.dfki.de



area around car; includes smaller hit area) and vct > 0;
rhit = −1000, if pedestrian in hit area and vct > 0; robst
= −max{obstCosts}, obstCost defined in Sect. 2.A;
racc = −0.1, if ac-/deceleration; rsteer = −1, if steering:
|αt| > 0; rnotgoal = −0.1 else.

γ: Discount factor in [0, 1], we set γ = 0.98 similar to [1].

The reward function R encourages safe, fast, and smooth
driving. Its component rewards rgoal and rnotgoal encourage
the car to reach the goal, and rnear miss to keep a safety
distance to perceived pedestrians, while rhit, robst penalize
crashing into a pedestrian or other obstacles. Small penalties
racc and rsteer intend to avoid unnecessary acceleration and
steering which decrease the smoothness of driving.

III. HYBRID SOLUTION HYLEAP

A. Overview

The HyLEAP method integrates the online POMDP plan-
ner IS-DESPOT [15] and the deep reinforcement learner
NavA3C [17] for approximated solving of the collision-
free navigation problem of self-driving cars as modeled
in Sect. 2.B. In particular, HyLEAP combines the advan-
tages of both approaches by online approximated POMDP
planning that exploits the integrated DRL network as its
critic. The overall HyLEAP architecture coupled with the
OpenDS driving simulator is shown in Fig. 3. In each GIDAS
accident scene simulation, HyLEAP gets trained in two
consecutive phases. First, IS-DESPOT determines its (APPL)
action policy using the coupled NavA3C network with fixed,
initially random weights in a feed-forward manner only for
evaluating its belief tree construction at each time step of
scene simulation, and executes the selected actions in the
scene. After simulation of the scene, the NavA3C network
then gets trained to update its weights during its (DRL)
action policy computation according to the received total
discounted reward, such that its experience-based evaluation
feedback to IS-DESPOT in the next scene simulations can
improve. In this respect, the network acts as an experience-
based critic of the acting online planner for simulated critical
traffic scenes.

B. HyLEAP NavA3C Neural Network

The DRL network of HyLEAP uses the NavA3C architecture
with only one instead of originally two chained LSTM layers
for faster execution (cf. Fig. 4). The observation input from
IS-DESPOT is the car intention RGB image (3x84x84 pixel),
which is passed through two convolutional network layers
conv1 (16x8x8 with stride 4x4) and conv2 (32x4x4 with
stride 2x2). The output of conv2 is then fed into a fully
connected layer, which result is concatenated with the last
received reward rt−1 ∈ R, current car velocity vt ∈ R, and
last executed action at−1 ∈ {0, 1}|A| by IS-DESPOT in the
simulated scene, and then fed into the LSTM network layer
with forget gates [10] together with the history ht−1. The
output of the LSTM layer is reduced to |A| outputs for the
DRL action policy πDRLt ∈ [0, 1]|A| and to size one for the
estimated value Vt(ht−1, ot) ∈ R based on its weights using

a fully connected layer each. All layers use ReLUs except
for the identity in the output layer.

Fig. 4. HyLEAP NavA3C neural network architecture

The network fθ(ht−1, ot) = (πDRLt , Vt) takes the cur-
rent history ht−1 and the latest observation ot =
(car intentiont ∈ [0, 1]84,84,3, rt−1 ∈ R, Vt ∈ R, at−1 ∈
{0, 1}|A|) at time t as an input, and then outputs the DRL
action policy πDRLt ∈ [0, 1]|A| and the estimated value
Vt ∈ R based on its weights θ. The computed DRL policy
is not executed in the scene but used inside IS-DESPOT
to guide its belief tree construction. As mentioned above,
the network is trained to minimize (a) the error between
the received total discounted reward Rt and the predicted
value Vt, and (b) the error between the neural network
policy πDRLt and the APPL policy of IS-DESPOT πAPPLt

for each scene simulation point in time 0 ≤ t < T
individually. The gradients of the loss function LH with
respect to the weights are calculated for each t sequentially
and summed up, and after all gradients are accumulated, the
network weights are updated using gradient descent. The
loss function LH : R × R × [0, 1]|A| × [0, 1]|A| → R+

is defined as LH(Rt, Vt, π
APPL
t , πDRLt ) = (Rt − Vt)

2 −
(πAPPLt )>logπDRLt + λ ‖ θ ‖2. This loss function aims
at minimizing the mean squared error between the estimated
value and the real value based on the total discounted reward
Rt received, and the cross-entropy loss between the DRL
policy and the APPL policy, with L2-regularization of the
neural network weights using a regularization constant λ.

C. Integrated Planning and Learning

The main algorithm of HyLEAP training as outlined in
Section 3.A is shown below in Alg. 1. Executing the trained
HyLEAP car in a simulated GIDAS accident test scene is
one run-through of its IS-DESPOT-p with integrated evalu-
ation by the trained NavA3C network with input from the
path planner and the driving simulator OpenDS. Training
of HyLEAP is performed in two phases per traffic scene
simulation in OpenDS as follows.
Phase 1: Network-guided action planning in traffic scene
simulation. The online POMDP planner DESPOT [27] is an
anytime heuristic search that uses upper and lower bounds
on belief values to guide the construction of an approximated
belief tree for computing an APPL action policy for POMDP



Fig. 3. Overview of HyLEAP architecture with OpenDS driving simulator

Algorithm 1 HyLEAP Training

# episodes: M ∈ N+

# steps per episode: Tmax ∈ N+

# particles for particle belief: P ∈ N+

Regularization parameter λ ∈ [0, 1]
Init neural network (πDRL, v) =
fθ(h, o) with random weights θ
For episode ← 1 to M do:
t← 1
Init belief b1 with P samples
Init history h0 = 0
Get initial observation o1
Repeat:
anglet ← PathPlanner(ot)
D,ht ← BuildDespot(bt, ht−1)
Sample accelerationt ∼ πAPPLi
at ← (anglet, accelerationt)
ot+1 ← OpenDS Step(at)

bt+1 ← UpdateBel(bt, at, ot+1)
t← t+ 1
Until ot == terminal or t > Tmax
, v = fθ(ht−1, ot)

R =

{
0, for terminal ot
v, for non-terminal ot

Reset gradients dθ ← 0
For i← t− 1 to 1 do:
R← ri + γR
πDRLi , vi = fθ(hi−1, oi)
Accumulate gradients wrt θ:
dθ ← dθ +∇θLH
End-For
Perform update of θ using dθ
End-For

solving. One major problem of DESPOT’s sampling-based
approach is that outcomes that have a low probability of
occuring, e.g. crashes, are not sampled, which may lead to
decreased performance. In [15], this problem is addressed
with importance sampling in the online approximate POMDP
planner IS-DESPOT, which we adopted for HyLEAP. At
each point in time t of one traffic scene simulation in
OpenDS, IS-DESPOT constructs a belief tree with root bt
using the neural network as guidance (cf. Fig. 5), and then
outputs a policy πAPPLt from which an action is sampled for
execution. This process is repeated until the scene simulation
ends, i.e. a terminal state is reached at time t = T . During
the whole scene execution, the NavA3C network remains
unchanged but is used to guide the construction of the belief
tree. This guidance is achieved by the network through
its evaluation of the newly created belief nodes b′ from
expanding a selected leaf node with the estimated value Vt,
which, in turn, is taken by IS-DESPOT as an estimation of
the initial upper bound U(b′) of the belief value required for
the belief node updates (backup) along the path back to the
root of the tree. The additionally required initial lower bound

is heuristically computed as in [15], i.e. the minimum number
of steps until a car-pedestrian collision occurs as outcome.
Finally, the new policy tree with πAPPLt is derived from
which the action (at root) with the highest lower bound is
selected for execution in the scene.

Fig. 5. Network-guided belief tree construction by IS-DESPOT at each
simulation step t = 0..T of a traffic scene simulated in OpenDS

Phase 2: HyLEAP NavA3C network training. After sim-
ulation of the considered traffic scene ends, the NavA3C



network gets trained for this episode to improve on its
evaluation of the APPL policy created by IS-DESPOT ac-
cording to the total discounted rewards received. Ideally, the
provided estimation of expected upper bound of the belief
value that can be achieved by IS-DESPOT for potential
outcomes according to the reward function R (cf. Sect. 2.B)
are tighter than the heuristic in [1]. Our experiments revealed
that this indeed is the case in most of the simulated GIDAS
accident scenarios.
The polynomial runtime complexity of HyLEAP is O(M ∗
(Tmax ∗ (cpathP lanning + cDESPOT + cbeliefUpdate) +
Tmaxcnetwork)), where M denotes the number of episodes,
Tmax the maximum length of an episode, cpathP lanning =
O(|V |2) the cost to plan a path using hybrid A*, cnetwork the
cost of network updates, and cDESPOT = O(N(D+K)(D+
cnetwork + |A|+K)) the cost of DESPOT construction.

IV. EVALUATION

A. Experimental Setting

The used benchmark OpenDS-CTS 1.0 consists of about
38000 accident scenes simulated in OpenDS with 9 different
single pedestrian-car accident scenarios (about 4000 scenes
for each) according to the GIDAS report. These accident
scenarios are enumerated as follows (cf. Fig. 2): The pedes-
trian crosses the street in front of an approaching car from
(1,2) the left without occlusion by obstacle; (4,5,6) the right
without occlusion by obstacle; (3) the left with occlusion by
parking vehicle on the road; (7) the right with occlusion by
obstacle on sidewalk; (8) the right with occlusion by parking
vehicle on the road; (9) the right after car turned left at an
intersection. Each method is trained over all these GIDAS
accident scenarios each of which instantiated with about
1200 scenes with varying pedestrian speeds (0.6-2m/s in 0.1
steps) and crossing distances (0.1-40m in 0.5m steps), and
then tested in about 2000 previously unseen critical scenes of
each scenario with different pedestrian speeds (0.25-2.85 m/s
in 0.1 steps), crossing distances (4.25-49.75m in 1m steps)
and unsual movement patterns on the sidewalk (ZigZag lines
with varying angles of 30◦ - 160◦ in 10◦ steps, and 0.5-5m in
0.5m steps). For each scenario, the configuration of varying
crossing distances (4.25m-49.75m) and pedestrian movement
speeds (0.25m/s-2.85m/s) are tested 10 times each (10 runs
per scene). Pedestrian position updates and car intentions are
provided to the selected navigation learning and planning
methods at each simulation time step t = 0..T by OpenDS.
The evaluation metrics are defined for pedestrian safety as the
number of hits (crashes), time-to-goal (TTG) in seconds, and
smoothness of driving as the number of acc-/decelerations
on the used GIDAS scenario test drive in the simulated 3D
version of Saarbruecken city by OpenDS. The basic reactive
controller is implemented as in [1]. In each simulated scene,
the car starts on the test drive with 0km/h and can maximally
accelerate to the German city speed limit of 50km/h.
As state-of-the-art approaches for DRL-based and APPL-
based navigation learning and planning methods, we selected
NavA3C-p [18] and IS-DESPOT-p [1], respectively, each

extended with path planner hybrid A* and coupled with
OpenDS (cf. Sect. 3). NavA3C-p was trained on the super-
computer NVIDIA DGX-1 at DFKI in 1 million episodes
taking 3 days in total with gradients computation intervals
of 40 steps, decreasing learning rate (0.0003 to 0.0005) and
entropy regularizer β (0.001 to 0.0008), weight optimization
with RMSprop (decay 0.99, momentum 0, epsilon 0.1) and
gradient clipping to size 40. The hybrid method HyLEAP
was trained in 40000 episodes taking 7 days in total with
learning rate 0.00015, L2 regularization (λ 0.0005) and
optimization with RMSprop as for NavA3C-p. Testing of all
methods was conducted on an Ubuntu 18 PC with a Nvidia
GTX 1080Ti, an Intel i7-7820X CPU @ 3.60GHz, and 32GB
RAM.

B. Results

As shown in Table I, the experimental results revealed that
HyLEAP can outperform IS-DESPOT-p and NavA3C-p in
most of the GIDAS accident scenarios on the simulated
test drive regarding safety (GIDAS safe). Recorded crashes,
impact speed in km/h, near-misses, smoothness, time to goal,
and execution times are averaged over all test scenes.
In particular, HyLEAP was the safest self-driving method
for simulated cars in accident scenarios 4, 5, 6, 8 and 9,
while IS-DESPOT-p was safest in scenarios 1, 2, and 7,
and NavA3C-p was superior to the other methods only in
scenario 3. Averaged over all tested scenes, both HyLEAP
and IS-Despot-p appear equally competitive regarding safety
but with an advantage of IS-DESPOT-p in the avoidance
of near-misses of pedestrians. Regarding the comfort or
smoothness of driving, HyLEAP and NavA3C-p turned out
to be similar, while IS-DESPOT-p performed only slightly
worse in this respect. Though the basic reactive controller
led to some safer driving than NavA3C-p and less near-
misses than even HyLEAP in test scenes on average, it did
not outperform the other methods in any GIDAS accident
type with similarly competitive comfort or smoothness of
driving and time to goal.
Behavior in GIDAS car-pedestrian accident scenarios. The
behavior of tested cars differed depending on crossing dis-
tance and speed of a pedestrian (cf. Fig. 6). In general, the
NavA3C-p car had severe problems in almost every tested
GIDAS accident scenarios to properly generalize, hence
could not react fast enough to previously unseen situations
in which pedestrians were crossing either fast (2-3m/s) and
close to (less than 10m), or slowly (0.2-0.5m/s) and far away
(>30m) from the car. In the latter case, the car stopped
correctly but often re-accelerated too early leading to crashes
or near-misses. On the other hand, NavA3C-p was safer than
the other methods in scenes with a parking vehicle on the
road that occludes the pedestrian crossing from the left who
it learned to evade during training.
The IS-DESPOT-p car can react online on any pedestrian
speed using its model, though, similar to the results for the
NavA3C-p car, fast moving pedestrians with short crossing
distances caused crashes and near-misses due to its slow



GIDAS safe Crashes (%) Impact speed Near-misses (%) # De-/Acc. TTG (s) Exec. (s)
HyLEAP 5 3.01 14.27 8.19 22.91 13.23 0.28

IS-DESPOT-p 3 2.95 16.44 6.22 24.90 13.66 0.27
NavA3C-p 1 3.88 19.18 8.27 22.59 13.56 0.01

React. contr. 0 3.29 5.35 6.86 27.59 15.17 0.001

TABLE I
OVERALL RESULTS OF SAFE DRIVING EVALUATION

Fig. 6. Distribution of accident rates of IS-DESPOT-p, NavA3C-p for varying pedestrian speeds (m/s) [y-axis] and crossing distances (m) [x-axis] averaged
over test scenes of all GIDAS accident scenarios.

shifting of beliefs with insufficient reaction time. If the belief
is not shifted yet, the car can still slow down even if the
planned path with hybrid A* does not keep enough distance
from the pedestrian yet. In several scenes of slowly moving
pedestrians (<0.8 m/s) with enough distance (about 35m) to
brake in time, IS-DESPOT-p does not sample potential crash
outcomes and the car maintains its speed until it is too late
to brake. Besides, in scenes with highly frequent changes
of pedestrian intentions, such as fast ZigZag movement, IS-
DESPOT-p cannot make its belief updates fast enough to
keep track with the situation, leading to indecisive behavior
on whether to slow down, or to stop the car, or to evade the
pedestrian. As IS-DESPOT-p does not learn from experience
over time it is inherently prone to make the same failures
again.
Like IS-DESPOT-p, HyLEAP, in general, suffered from the
time taken by its planning component for the construction
and update of belief nodes of the belief tree. But since
its integratively trained NavA3C neural network learned
to act as an experience-based critic of the action policy
created by its planner IS-DESPOT, HyLEAP could benefit
from this actor-critic-like interplay between online planning
and learning in more GIDAS accident scenarios than all
other methods. Compared to NavA3C-p and IS-DESPOT-p,
HyLEAP avoided crashes with pedestrians walking at a lower
speed and low crossing distances than seen during training,
but in some scenes with slow pedestrians (<0.5m/s) and
distances between 10 to 20m it was indecisive on whether to
overtake or to brake, such that compared to IS-DESPOT-p its
scene averaged crash rate reduced only slightly on average.
On the other hand, HyLEAP was safer than both NavA3C-p
and IS-DESPOT-p in most GIDAS accident scenarios. For

example, table II shows averaged results for the critical
scenario 9 where the car turns left into a street at an
intersection and a pedestrian crosses this street from the
right with varying crossing distances (4.25m− 49.75m) and
pedestrian speeds (0.25m/s − 2.85m/s). The IS-DESPOT-
p slowed the car down while turning left at an intersection
but then could not brake fast enough for the pedestrian due
to its slow belief updating, hence killed the pedestrian. The
car with NavA3C-p failed to generalize to the scene during
training possibly due to the rotation of the car intention for
and not recognizing the pedestrian moving in its direction
after turning left, hence crashed into the pedestrian without
slowing down. Only the HyLEAP-based car by combining
experience-based learning and look-ahead planning properly
slowed down when turning left and evaded the pedestrian in
most scenes of this scenario (cf. Table II).
Unusual pedestrian movement patterns. Furthermore, we
tested the behavior of the self-driving methods in situations
where the pedestrian is walking in a ZigZag line on the
sidewalk. Since the car with NavA3C-p did not encounter
such pedestrian behavior during training and the observed
directions frequently change, it becomes difficult for this
method to estimate the pedestrian intention for decision-
making. However, NavA3C-p learned to generalize to such
new situations during training and, unlike IS-DESPOT-p,
does not need to shift its belief online, hence reacted directly
on perceived movement changes of and overtook the pedes-
trian fast and safely (Avg. De-/Accel. (#): 16, Avg. Time-to-
goal (s): 12). The car with IS-DESPOT-p failed to overtake
the erraticly moving pedestrian, since the required shift of
probability mass by IS-DESPOT-p online is too slow; until
the belief is adapted to the observed situation for possible



Crashes (%) Impact speed Near-misses (%) # De-/Accel. TTG (s)
HyLEAP 4.34 20.58 8.29 14.69 10.41

IS-DESPOT-p 5.64 22.38 8.83 20.61 10.69
NavA3C-p 10.87 33.17 19.67 13.55 19.79

TABLE II
AVERAGED RESULTS FOR GIDAS ACCIDENT SCENARIO 9 (CAR TURNS LEFT AT INTERSECTION)

actions the pedestrian’s direction changed again, such that
the car just followed but did not overtake the pedestrian
until he disappeared at the end ot the test drive (Avg. De-
/Accel. (#): 20, Avg. Time-to-goal (s): 12.49). Although
HyLEAP using IS-DESPOT also shifts the belief, it keeps
a distance to the pedestrian and overtakes it straightforward,
because the APPL policy evaluating neural network consid-
ered the approaching of a pedestrian as not critical enough
to come to a stop or decelerate. In fact, HyLEAP executed
an experience-based overtaking action by its online planner
which was fastest and smoothest among all other methods
(Avg. De-/Accel. (#): 14, Avg. Time-to-goal (s): 11.75).
Multiple pedestrians. The navigation behavior of the different
methods was also tested for scenarios (4800 scenes) with
multiple, initially two to four, pedestrians crossing the street
from both sides with walking speed (1.81m/s), varying
distance (0.5-25m) to car, and delay of crossing the street (0-
4s). The NavA3C-p and HyLEAP cars were trained on 1440
scenes with two pedestrians crossing from the right sidewalk
only. In summary, with increasing number of pedestrians, the
NavA3C-p car struggled to appropriately generalize, hence
did hit the second pedestrian from the left most of the time,
while the IS-DESPOT-p car was significantly safer, smoother
in driving and faster in reaching the goal. The HyLEAP car
outperformed each of them overall (cf. Table III).

V. RELATED WORK

As mentioned before, there are various approaches for goal-
directed navigation of self-driving vehicles with approximate,
near-optimal action policy finding in fully or partially observ-
able environments. While some of them focus on pedestrian-
collision avoidance, others do not consider pedestrians at all.
Approximate POMDP navigation planning. [2] present a
mixed observable MDP that treats pedestrian intentions
as hidden variables, while the state of the predestrians
is assumed to be fully observable, and the offline policy
for navigation actions is generated by SARSOP[13]. The
approach suffered from performance problems with multiple
pedestrians present in a scene, which is why the authors
solved then a discrete POMDP for each pedestrian. [1]
improved upon [2] by using DESPOT to solve the overall,
single POMDP, keeping a joint belief over all pedestrians,
which yielded comparatively better performance. [5] present
a method for autonomous navigation in car merging scenarios
using continuous-state POMDP for all road users, which are
solved offline based on value iteration [4]. [14] propose a
method for collision avoidance in an urban road context,
where the car needs to avoid collisions with other (obstacle)

vehicles on the same road and the environment is mapped
with an empricially derived road context. Other cars are
assigned motion intentions such as stopping, i.e. letting the
ego car pass, or being aggressive, i.e. not letting anyone pass.
The problem is modeled as a discrete POMDP and solved
online using DESPOT [27].
DRL-based navigation learning. Applications of DRL for
collision-free navigation range from navigation in simple grid
worlds to driving autonomous robots in office environments.
While some of the existing approaches do not explicitly
consider other agents, e.g. pedestrians, in the environment
some are explicitly created for that purpose. Similarly, some
methods assume the environment to be wholly unknown
and some assume to have perfect knowledge of the sur-
roundings. For example, [17] and [11] improved the vanilla,
asynchronous advantage actor-critic (A3C) DRL method in
[18] in versions NavA3C and UNREAL, respectively, for
learning to navigate in a completely unknown, virtual 3D
maze with unknown goal locations directly from pixel values
based on observations and rewards only. A recent study [8]
argued that NavA3C in the maze is unable to generalize
to new, unseen environments, meaning that the agent is
not really able to learn to navigate but only to learn some
simple wall-following strategy. The approach in [25] used
Fast-RDPG for navigation of an unmanned aerial vehicle.
Similar to NavA3C and UNREAL, Fast-RDPG does not
use any sort of map for navigation, hence could potentially
suffer from the same problems as described before. Though
all previously mentioned approaches use LSTM layers to
incorporate histories, there exist alternate approaches that
utilize external memory, such as neural maps [19] or neural
SLAM [28], to internally represent the map, which should
force the agent to perform simultaneous localization and
mapping (SLAM). IntentionNet [9] combines path planning
with hybrid A* to generate the robot intention image and
deep inverse reinforcement learning that can be used if at
least a rough (street) map is available. It is then up to the
neural network to decide on the control of the robot using the
robot intention as a guide. Pedestrians are only considered
implicitly by learning from examples. In [7] the collision-free
navigation problem as a constrained optimization problem is
turned into an MDP, which is then solved with a trained
deep value network (DVN) but under the assumption, like
in the improved version [6], that the maximum number of
pedestrians for all possible scenes is known in prior in order
to be able fix the input layer size of their neural network.
However, to the best of our knowledge, there is no integrated
APPL- and DRL-based approach for approximate POMDP



Crashes (%) Impact speed Near-misses (%) # De-/Accel. TTG (s)
HyLEAP 6.32 10.99 10.84 18.74 13.06

IS-DESPOT-p 6.58 11.27 12.01 20.10 13.32
NavA3C-p 15.17 14.84 24.40 26.32 14.59

React. Contr. 10.92 9.83 28.43 47.37 19.54

TABLE III
AVERAGED RESULTS FOR SCENARIO WITH FOUR PEDESTRIANS CROSSING FROM BOTH SIDES OF STREET

solving for collision-free navigation in road traffic. Besides,
none of the current approaches were evaluated in synthe-
sized car-pedestrian accident scenarios based on real-world
accident studies like GIDAS.

VI. CONCLUSIONS

We presented the first hybrid solution for pedestrian
collision-free navigation of self-driving cars in simulated
critical traffic scenarios that combines selected methods
of approximated POMDP planning and deep reinforcement
learning. Our initial, comparative performance evaluation
over the OpenDS-CTS benchmark based on the German in-
depth road accident study GIDAS provided first, valuable
insights into the behavior of each method applied to this
problem and revealed that our hybrid solution HyLEAP
is superior to its integrated individual methods regarding
GIDAS pedestrian safety, though for each method there are
scenarios in which it was superior to all others. Ongoing
work is concerned with OpenDS-CTS benchmark extension
and alternative hybrid combination of learning and planning
in this context.
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