
i-QLS: Quantum-supported Algorithm for Least
Squares Optimization in Non-Linear Regression

Supreeth Mysore Venkatesh1,2[0000−0002−9824−7399], Antonio
Macaluso2[0000−0002−1348−250X], Diego Arenas3[0000−0001−7829−6102], Matthias

Klusch2[0009−0009−5431−8640], and Andreas Dengel1,3[0000−0002−6100−8255]

1 University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany
{supreeth.mysore}@rptu.de

2 German Research Center for Artificial Intelligence (DFKI), Saarbruecken, Germany
{supreeth.mysore, antonio.macaluso, matthias.klusch}@dfki.de

3 German Research Center for Artificial Intelligence (DFKI), Kaiserslautern,
Germany

{diego.arenas,andreas.dengel}@dfki.de

Abstract. We propose an iterative quantum-assisted least squares (i-
QLS) optimization method that leverages quantum annealing to over-
come the scalability and precision limitations of prior quantum least
squares approaches. Unlike traditional QUBO-based formulations, which
suffer from an exponential qubit overhead due to fixed discretization, our
approach refines the solution space iteratively, enabling exponential con-
vergence while maintaining a constant qubit requirement per iteration.
This iterative refinement transforms the problem into an anytime algo-
rithm, allowing for flexible computational trade-offs. Furthermore, we
extend our framework beyond linear regression to non-linear function
approximation via spline-based modeling, demonstrating its adaptabil-
ity to complex regression tasks. We empirically validate i-QLS on the
D-Wave quantum annealer, showing that our method efficiently scales to
high-dimensional problems, achieving competitive accuracy with classi-
cal solvers while outperforming prior quantum approaches. Experiments
confirm that i-QLS enables near-term quantum hardware to perform re-
gression tasks with improved precision and scalability, paving the way
for practical quantum-assisted machine learning applications.

Keywords: Quantum Annealing · Least Squares Optimization · Non-
Linear Regression · Quantum Machine Learning

1 Background

A key distinction in machine learning methodologies lies in their optimization
strategies, which are shaped by the assumptions that models make about the
relationship between input features and the target variable. Models as Neural
networks rely on non-convex optimization, often requiring extensive datasets and
prolonged training due to the difficulty of escaping local minima [7]. In contrast,
parametric models based on least squares (LS) optimization [10], such as splines
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[19] and support vector machines [2], benefit from convex optimization, ensuring
global optimality and theoretical robustness. However, the polynomial complex-
ity of matrix operations in LS optimization introduces significant computational
constraints as the number of features grows, limiting scalability.

Recently, several quantum machine learning models have been proposed
for supervised learning tasks[14]. However, relatively few studies have explored
the potential of leveraging near-term quantum computing exclusively for train-
ing and parameter estimation while maintaining a classical model for inference
[20,12]. In particular, quantum annealing has been proposed as a method for
reformulating LS optimization into a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem for execution on quantum hardware [3,1,4]. Despite
these advancements, quantum annealing approaches face two fundamental bot-
tlenecks. First, scalability remains a major challenge, as a tradeoff exists between
the number of qubits and the precision of estimates of the optimized weights.
Second, these methods are primarily to linear models, which fail to capture the
complexities of real-world problems.

In this work, we introduce i-QLS, an iterative for quantum-assisted least
squares optimization that overcomes the precision-scalability tradeoff inherent
in prior quantum annealing-based methods. Instead of attempting to solve the
problem in a single QUBO formulation with a fixed discretization, our approach
iteratively refines the search space over multiple annealing cycles, exponentially
converging to the optimal solution. This iterative approach is an anytime al-
gorithm, meaning that at any point during execution, we can extract the best
solution found, allowing for flexible computational tradeoffs. Furthermore, our
method enables scalable adaptation to the constraints of existing quantum hard-
ware by adjusting the granularity of discretization dynamically across iterations.
In addition, we test i-QLS to non-linear regression via spline-based approxima-
tions, further demonstrating the versatility of our method beyond conventional
linear regression. Our objective is to establish a practical and scalable frame-
work for quantum-enhanced least squares optimization that leverages quantum
hardware efficiently while remaining competitive with classical solvers. To sum-
marize, this paper makes the following key contributions:

– Iterative QUBO Refinement for Least Squares Optimization: We
introduce a novel iterative quantum-assisted least squares optimization strat-
egy that mitigates the precision-qubit tradeoff inherent in prior single-shot
QUBO formulations.

– Scalability and Anytime Computation: Our approach enhances scala-
bility by enabling computation-limited devices to obtain progressively refined
solutions throughout execution, supporting flexible computational tradeoffs.

– Extension to Nonlinear Regression: We extend our iterative framework
beyond linear regression by incorporating spline-based function approxima-
tion, demonstrating its adaptability to complex modeling tasks.

– Empirical Validation on Quantum Hardware: We implement and eval-
uate our method on the D-Wave quantum annealer, showing that iterative
refinement facilitates exponential convergence in optimization precision.
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2 Related Works

Quantum annealing has been recently explored as an alternative paradigm for
solving combinatorial optimization problems that naturally map onto a QUBO
formulation. Although the least squares (LS) problem in regression does not
inherently conform to this framework, few studies have attempted to adapt the
LS formulation to harness quantum annealing for regression purposes.

For instance, [4] and [1] discretize the solution space by encoding each contin-
uous weight as a series of binary variables, thereby formulating a corresponding
QUBO problem that is amenable to solution via a quantum annealer. A sig-
nificant limitation of these approaches is that increasing the precision of the
weights necessitates an exponential increase in the number of qubits, render-
ing the method infeasible for large-scale problems on current quantum hard-
ware. Consequently, classical LS solvers—such as direct matrix inversion [22],
QR decomposition [6], or iterative gradient-based methods [13]—often outper-
form quantum approaches due to their capacity to achieve high precision without
incurring the substantial overhead associated with quantum hardware.

Moreover, existing quantum annealing methods for LS have predominantly
focused on linear regression, thereby neglecting non-linear problems that are
more representative of real-world applications. In contrast, gate-based quantum
computation has addressed non-linear approximation through the development
of quantum splines [15,11]. Splines, which are piecewise polynomial functions
with smoothness constraints, provide an effective tool for modeling non-linear
relationships within a structured regression framework. In the initial formulation
of quantum splines [15], a specific LS formulation based on B-splines [5] was
employed to exploit the computational advantages of the HHL algorithm [9]
for solving sparse linear systems. Although this approach offers a theoretical
computational advantage, its reliance on fault-tolerant quantum computation
limits its near-term applicability. Consequently, a variational counterpart has
been proposed to leverage near-term quantum devices [11], although it has not
yet demonstrated a robust advantage over classical methods.

Our work builds on these methodologies but fundamentally differs in two
key aspects. First, rather than formulating a fixed QUBO problem with a pre-
determined discretization, we introduce an iterative refinement process. In our
approach, each QUBO solution serves as the input for the subsequent itera-
tion, progressively narrowing the weight search space while maintaining a fixed
qubit requirement. This iterative refinement accelerates convergence exponen-
tially and overcomes the scalability limitations encountered in previous meth-
ods. Our method is inspired by classical iterative refinement techniques com-
monly used in numerical optimization—such as Newton’s method[17], gradient
descent[8], and expectation-maximization [16]. To the best of our knowledge,
apart from combinatorial optimization problem like graph-clustering [18], previ-
ous QUBO-based quantum regression methods have not incorporated an itera-
tive refinement mechanism, rendering our approach unique in this context.

Second, our approach explicitly extends quantum-assisted regression to non-
linear function approximation by integrating quantum spline formulations. In
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our framework, the advantages of splines—namely, their ability to model non-
linear relationships through piecewise polynomial fitting with smoothness con-
straints—are harnessed within the iterative QUBO process to determine optimal
spline coefficients. This integration enables the capture of non-linear dynamics
while mitigating the fixed discretization issues of prior methods. By unifying
iterative refinement with spline-based modeling, our method addresses the limi-
tations of both conventional quantum annealing approaches and the earlier quan-
tum spline formulations that rely on fault-tolerant computation.

3 Preliminaries
Least squares optimization is a technique in linear regression, where the goal is to
identify the best-fitting linear relationship between input variables and a target
by minimizing the sum of squared differences between observed and predicted
values. This approach underpins many statistical models due to its simplicity and
efficiency [10]. To extend these ideas to more complex, non-linear relationships,
spline functions are often employed[2]. Spline functions are smoothing methods
suitable for modelling the relationships between variables, typically adopted ei-
ther as a visual aid in data exploration or for estimation purposes [10]. The
underlying idea is to use linear models in which the input features are aug-
mented with the so-called basis expansions. These consist of transformations of
the original variables and serve to introduce non-linearity. Technically, splines are
constructed by dividing the sample data into sub-intervals delimited by break-
points, also referred to as knots. A fixed degree polynomial is then fitted in each
of the segments, thus resulting in a piecewise polynomial regression. Formally, in
the case of a 1-dimensional input vector x, we can express its relationship with
a target variable y in terms of an order-M spline with knots {ξk}k=1,...,K :

ynobs×1 = Nnobs×(M+K)θ(M+K)×1 + ϵnobs×1, (1)

where θ is the vector of coefficients attached to the basis expansions, nobs is the
sample size, ϵ is a random error term and the design matrix N contains M +K
basis functions defined as follows:

hj(x) = xj−1, j = 1, · · · ,M (2)

hM+k = (x− ξk)
M−1
+ , k = 1, · · · ,K. (3)

Notice that the formulation above includes M basis functions that determine
the order-M polynomial to be fitted in each segment. The additional K basis
introduce continuity constraints on the spline and its derivatives up to order
M − 2. The goal is then to find the optimal set of parameters θ that minimises
the residual sum of squares (RSS ), with a ridge regularisation of the curvature
acting as a roughness penalty:

Score (θ, η) = (y −Nθ)
T
(y −Nθ) + ηθTΩ(M+K)×(M+K)θ, (4)

where Ω is a diagonal matrix containing the partial second derivatives. The
solution to (4) can easily seen to be:

θ̂ = (NTN + ηΩ)−1NTy. (5)
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4 Methods

In this section, we present the mathematical formulation and derivation of our
proposed quantum-classical hybrid algorithm for performing iterative least squares
optimization, named i-QLS. We begin by posing the standard linear regression
model as a discretized optimization problem, then describe how to embed it into
a QUBO form suitable for a quantum annealer. Subsequently, we extend the
iterative scheme to refine the precision of the solution at each iteration without
requiring a large number of qubits from the outset. Finally, we outline how the
approach generalizes to non-linear regressions via spline representations.

4.1 Problem Formulation
Let

X ∈ RN×d, y ∈ RN ,

where N is the number of data points and d is the number of features (or
variables). The goal of linear regression is to find a weight vector

w∗ = (w∗
1 , w

∗
2 , . . . , w

∗
d)

⊤

that minimizes the sum of squared errors (SSE):

w∗ = argmin
w∈Rd

S(w) =

N∑
n=1

(
yn −w⊤xn

)2
, (6)

where xn is the n-th sample. The least squares solution can be found in closed
form via w = (X⊤X)−1X⊤y in the non-singular case. However, our method
operates on a discretized search space to allow a quantum annealer to sample
candidate w values.

4.2 Discretization and QUBO Construction

Representing each weight parameter wi ∈ R by m binary variables and initializ-
ing a sufficiently large interval ∆(0)

i with lower bound ℓ
(0)
i and the upper bound

u
(0)
i , we find the discretization step size:

δ
(0)
i =

∆
(0)
i

2m − 1
for i = 1, . . . , d, where ∆

(0)
i = (u

(0)
i − ℓ

(0)
i ) (7)

Initializing w
(0)
i ← (u

(0)
i +ℓ

(0)
i )

2 , our goal is to find w
(1)
i restricted to 2m equally

spaced values in the interval [ℓ(0)i , u
(0)
i ] that is closest to the optimal weight w∗

i .
Mathematically,

w
(1)∗
i = argmin

w
(1)
i

|w(1)
i − w∗

i |,

where w
(1)
i ∈ {ℓ(0)i + δ

(0)
i p | p ∈ {0, 1, . . . , 2m − 1}}

(8)
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b =
(
b1,0, b1,1, . . . , b1,m−1, . . . , bd,0, . . . , bd,m−1

)⊤ (9)

be the binary encoding vector representing the discretized weights. The weight
vector w can now be expressed as a linear function of b:

w(1)(b) = ℓ(0) + D(0)B(b), (10)

where ℓ = (ℓ1, . . . , ℓd)
⊤,

D is a diagonal matrix containing the discretization step sizes δi,

D = diag(δ1, . . . , δd),

and B(b) is the vector whose entries are sums of powers of two weighted by the
bits i.e.,

B(b) = (B1(b1), . . . , Bd(bd))
⊤,

Bi(bi) =

m−1∑
p=0

2m−1−p bi,p,

bi =
(
bi,0, bi,1, . . . , bi,m−1

)⊤
.

(11)

Quadratic Cost Function The sum of squared errors for the discretized
weights is

S(1)(b) =

N∑
n=1

(
yn −w(1)(b)⊤xn

)2

. (12)

Expanding this, we get

S(1)(b) =

N∑
n=1

(
yn − ℓ(0)

⊤
xn −B(b)⊤D(0)⊤xn

)2

. (13)

Since each component of B(b) is linear in the binary variables, S(1)(b) becomes
a polynomial (up to quadratic order) in those bits:

S(1)(b) = α(1) +
∑
r

γ(1)
r br +

∑
r<s

Γ (1)
r,s br bs, (14)

where the summations over r, s run over all binary variables in b, and α(1), γ
(1)
r , Γ

(1)
r,s

are real coefficients derived from X,y, ℓ(0),D(0).
This polynomial is in fact strictly quadratic, because each b2r = br as br ∈

{0, 1}. Thus we have effectively mapped the least squares cost onto a QUBO:

b(1)∗ = min
b∈{0,1}d×m

α(1) +

dm∑
r=1

γ(1)
r br +

∑
1≤ r<s≤ dm

Γ (1)
r,s br bs. (15)
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Given Eq. 15, a quantum annealer can directly solve QUBO problems by
mapping them onto its native hardware architecture, where the cost function
is minimized adiabatically through quantum tunneling. The annealer attempts
to find a low-energy configuration of the binary variables that corresponds to
the optimal solution of the given problem. However, the total number of binary
variables that can be encoded is constrained by the available qubits, making it
challenging to achieve high precision (i.e., large m) in naive discretization, as
each additional bit per weight significantly increases qubit requirements.

4.3 i-QLS Algorithm
To address the qubit-precision trade-off, we propose an iterative zoom-in ap-
proach that uses a small number of bits m ≥ 1 per weight but refines the solution
region over multiple iterations. Let ℓ(0)i and u

(0)
i be the initial bounds for weight

wi. At iteration k = 1, . . . ,K, each weight wi is represented in [ℓ
(k−1)
i , u

(k−1)
i ]

with m bits. With ∆
(k−1)
i = u

(k−1)
i − ℓ

(k−1)
i , the discretization step size is eval-

uated as

δ
(k−1)
i =

∆
(k−1)
i

2m − 1
.

Thus,
w(k)(b) = ℓ(k−1) + D(k−1)B(b)

Construct the QUBO from

S(k)(b) =

N∑
i=1

(
yi −w(k)(b)⊤xi

)2
with the updated bounds. Simplify the expression so that powers of binary vari-
ables are reduced via b2j,r = bj,r. Solve the QUBO using a quantum annealer.
Retrieve the optimal binary solution b(k)∗. Compute

w
(k)∗
i = wi(b

(k)∗
i ), i = 1, . . . , d.

For each i:

ℓ
(k)
i = w

(k)∗
i − (

δ
(k−1)
i

2f(m)
). u

(k)
i = w

(k)∗
i + (

δ
(k−1)
i

2f(m)
),

where f(x) =

{
2, if x = 1,

1, otherwise.

(16)

This ensures the next iteration’s search space is an interval of width ∆
(k)
i centered

at the best estimate w
(k)∗
i . Observe that, for m = 1, δki = ∆k

i =⇒ w
(k)
i ∈

{ℓ(k−1)
i , u

(k−1)
i }, thus the step function f(x) helps in shrinking the search space

exponentially. Repeat until the maximum number of iterations K is reached, or
until a convergence criterion is met (e.g., changes in the loss below a threshold).
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Algorithm 1: i-QLS: Iterative Quantum-Assisted Least Squares
Input: X ∈ RN×d (feature matrix), y ∈ RN (target values), bits per weight

m, max iterations K, initial bounds ℓ
(0)
i , u

(0)
i for each i = 1, . . . , d.

for k = 1 to K do

Compute step size: δ(k−1)
i ← u

(k−1)
i −ℓ

(k−1)
i

2m−1
, i = 1, . . . , d.

Construct weight representation w
(k)
i (b) (Eq. 10)

Formulate QUBO cost function S(k)(b).
Solve minS(k)(b) using a quantum annealer.
Extract optimal solution: b(k)∗ ← argminb S(k)(b).
Compute updated weight estimates: w∗

i ← wi(b
(k)∗).

Update bounds:
ℓ
(k)
i ← w

(k)∗
i − 1

2f(m)
δ
(k)
i , u

(k)
i ← w

(k)∗
i + 1

2f(m)
δ
(k)
i .

Output: w(K)∗ = (w
(K)∗
1 , . . . , w

(K)∗
d ) (optimal weights).

This procedure scales linearly with d in qubit usage (only d ×m qubits are
needed), yet allows an effective exponential zoom-in on the candidate solution
region over multiple iterations, thereby improving precision without globally
increasing the qubit count. The pseudocode of the algorithm is given in 1.

Lemma 1. If the underlying least squares problem is well-posed (i.e., there ex-
ists a unique optimal weight vector w∗ such that y = Xw∗) and w∗

i ∈ [l
(0)
i , u

(0)
i ]∀i,

then the mean squared error evaluated from the weights estimated at each itera-
tion exponentially converges to 0 as k →∞.

Proof. At iteration k = 0, the search interval for weight wi is given by [l
(0)
i , u

(0)
i ]

with width ∆
(0)
i . In the first iteration, the algorithm discretizes this interval into

2m equally spaced values. Let the discretization step size be

δ
(0)
i =

∆
(0)
i

2m − 1
.

The QUBO formulation selects the discrete value closest to the true optimum,
denoted by w

(1)
i . The algorithm then updates the search interval to be centered

at w
(1)
i with new bounds

l
(1)
i = w

(1)
i −

δ
(0)
i

2f(m)
, u

(1)
i = w

(1)
i +

δ
(0)
i

2f(m)
,

so that the new interval width is

∆
(1)
i =

δ
(0)
i

f(m)
=

∆
(0)
i

f(m)(2m − 1)
.

By repeating this process iteratively, the width of the interval after k itera-
tions is

∆
(k)
i =

∆
(k−1)
i

f(m)(2m − 1)
=

∆
(0)
i

(f(m)(2m − 1))
k
. (17)
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Since f(m)(2m − 1) > 1 for any m ≥ 1, it follows that

lim
k→∞

∆
(k)
i = 0.

Because the search interval shrinks to a single point, the weight estimate w
(k)
i

converges to a unique value, which must coincide with the optimal weight w∗
i

provided the model is correctly specified.
Furthermore, since the mean squared error is a continuous function of the

weights, it follows that

lim
k→∞

E(k) = lim
k→∞

∥Xw(k) − y∥2 = ∥Xw∗ − y∥2.

Under the assumption that the least squares problem is consistent (or that w∗

minimizes the error), we have ∥Xw∗ − y∥2 = 0, which implies

lim
k→∞

E(k) = 0.

5 Experiments

In this section, we present a series of experiments to evaluate various aspects of
i-QLS. Specifically, the first set of experiments examines the convergence rate
and the accuracy of thee algorithm, analyzing how the number of bits used for
weight representation and the number of iterations influence these two factors.

The second set of experiments evaluates the performance of i-QLS in terms
of scalability on a multivariate linear regression problem. We demonstrate that
i-QLS overcomes the scalability limitations of existing quantum approaches by
successfully handling datasets with up to 175 features. Our results indicate that
the performance of i-QLS is comparable to classical methods while outperforming
all previously proposed quantum annealing-based techniques.

Finally, we extend our analysis beyond linear regression by applying i-QLS
to nonlinear function estimation using the least squares formulation of spline
functions. In this case, the algorithm achieves significantly higher precision in
weight estimation compared to existing gate-based quantum spline methods,
even with a relatively low number of iterations.

5.1 Convergence Rate and Accuracy

In this section, we demonstrate our iterative quantum-assisted least squares al-
gorithm on a synthetic linear regression problem with two features. The goal
is to illustrate the exponential rate of convergence of the mean squared error
(MSE) across iterations, along with the exponential refinement of the weights’
search space. We generate synthetic data (Figure 1a) with two input features,
sampling each feature value xi uniformly from [−5, 5]. The corresponding target
values are computed using a linear model (yi = w∗

1 xi1 + w∗
2 xi2) where the true

weights w∗
1 and w∗

2 were set to fixed values within (−1, 1).
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(a) Two-Feature Linear Data.
100 data points (xi, yi) where xi ∈
[−5, 5]2 sampled from a linear
model.

(b) MSE Convergence Over Iterations. Ex-
ponential decay of MSE with iterations, improv-
ing with increasing bits per weight.

(c) Exponential Shrinking of the Search Space. The weight search space for
w1 and w2 narrows exponentially with iterations. Higher bit precision enables finer
updates, accelerating convergence.

Fig. 1: Assessment of convergence rate and accuracy of i-QLS

We use i-QLS to find the optimal set of weights w∗
1 and w∗

2 . Initially, each
weight is discretized into 2m equally spaced values in a sufficiently broad range
(we initialized [−1, 1]). At each iteration k, we solve the corresponding QUBO
using a D-Wave Advantage annealer, extract the best candidate (w

(k)∗
1 , w

(k)∗
2 ),

and then refine the search interval around it (Eq. 16). This process ensures that,
the search space shrinks exponentially by a factor of f(m)(2m − 1) (Eq. 17).

Figure 1b plots the MSE per iteration for different bit-precisions b. The log-
arithmic scale on the vertical axis reveals a linear decline, which corresponds
to exponential convergence in the original scale. Increasing m (i.e., using more
qubits per weight) accelerates convergence. For example, at iteration k = 9,
the 6-bit case achieves MSE ≈ 0 (within machine precision using float64),
whereas the 2-bit case remains around 10−9. This follows our theoretical pre-
diction that finer discretization improves solution precision but at the cost of
additional quantum resources.

Figure 1c shows how the search space bounds for w1 and w2 evolve over
iterations. The shaded regions indicate the possible value ranges, which shrink
exponentially with each iteration. Higher bit precision results in faster contrac-
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tion of the search space, leading to earlier convergence to w∗
1 and w∗

2 . This aligns
with our theoretical framework (Lemma 1), which predicts that the bounds con-
tract by a factor of f(m)(2m − 1) per iteration.

5.2 Scalability Analysis

In this experiment, we investigate how i-QLS scales with the number of features
in a linear regression setting. We fix the number of bits per weight to 1 and the
maximum number of iterations to 10. We generate synthetic data in the same
manner as Section 5.1, but now the number of features d ranges from 1 to 175.
Specifically, for each d, we draw each feature value xij uniformly from [−5, 5]
and compute the target values via

yi =

d∑
j=1

w∗
i xij ,

where the true weights w∗
i are sampled from (−1, 1). At each iteration of i-QLS,

a QUBO problem of size proportional to the number of features d is defined,
discretizing each weight into 21 = 2 equally spaced values in a broad interval
(here we chose [−1, 1]). This QUBO is solved on a D-Wave Advantage quantum
annealer accessed remotely, employing a default embedding strategy, which is
heuristic and may produce different embeddings for repeated runs on identical
problems. For a classical QUBO solver, we use Gurobi, a state-of-the-art branch-
and-bound mixed-integer optimizer. Additionally, to compare with classical lin-
ear regression, we employ scikit-learn’s LinearRegression, which by default
uses an efficient singular value decomposition (SVD)-based method. This makes
it highly competitive for moderate to large d.

The results in Figure 1 highlight the trade-off between quantum hardware
constraints and classical solver limitations. D-Wave Advantage (Quantum An-
nealer) efficiently handles problems up to d = 175, yielding MSE values near
10−1 for larger d. This is, to our knowledge, the first demonstration of linear
regression on a real quantum annealer scaling to 175 features while maintaining
high accuracy. The inconsistencies of minor embedding and remote access on the
performance of the quantum annealer for certain instances can be seen as spikes
in Figure 2. Gurobi’s branch-and-bound algorithm struggles beyond d = 50 due
to the fully connected QUBO (the number of pairwise interactions is equal to
d(d−1)

2 ). Consequently, Gurobi’s runtime becomes prohibitively large, and the
solver occasionally terminates with suboptimal solutions or runs out of memory.
Scikit-learn remains highly accurate (MSE ≈ 10−28) and efficiently solves these
linear regressions for d beyond 175.

5.3 Non-Linear Function Approximation Using Splines

In this section, we use i-QLS to non-linear function approximation by lever-
aging the LS optimization of splines provided in Eq. (4). We perform similar
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Fig. 2: MSE at iteration k = 10 for i-QLS exe-
cuted on D-Wave Advantage, Gurobi, and scikit-learn’s
LinearRegression. Shaded regions indicate variance
(darker) and min-max range (lighter) over three random
seeds.

d R²
1 0.999943
25 0.999988
50 0.999990
75 0.999987
100 0.999987
125 0.999923
150 0.999627
175 0.998592

Table 1: R²
values for the
fit generated by
our quantum-
assisted ap-
proach across
different num-
bers of features.

experiments to existing quantum splines [15,11] generating synthetic datasets
from five widely used non-linear functions in deep learning: (1) the sine function
sin(πx), which is periodic and frequently appears in Fourier analysis and wave
modeling; (2) the sigmoid function σ(πx) = (1 + e−πx)−1, commonly used in
neural networks for binary classification; (3) the hyperbolic tangent tanh(πx),
which serves as a popular activation function for hidden layers; (4) the ReLU
(Rectified Linear Unit) max(0, πx), a piecewise linear function that underpins
many modern deep networks; and (5) the ELU (Exponential Linear Unit), an
extension of ReLU that smooths the transition for negative inputs, thereby im-
proving optimization stability. For each function, we generated 100 data points
uniformly in the range x ∈ [−1, 1]. Given these target highly non-linear func-
tions, we define a LS optimization problem using spline functions (Section 3 with
20 knots. Thus, we estimate the optimal parameters of the non-linear regression
using i-QLS. The optimization is performed by discretizing the solution space,
assigning one qubit per parameter, and refining the weight estimates iteratively
for up to 10 iterations.

Figure 3 presents the results of our spline-based approximations. The blue
scatter points indicate the ground-truth function values, while the green curves
represent the fits obtained by estimating the parameters of the splines using
i-QLS. Due to the choice of a linear function in each interval of the splines, the
approximation is piecewise linear, generating a recurrent angular pattern in the
function representation. This effect arises from the limited number of knots (20),
which results in a segmented approximation of the underlying function.

While we demonstrated the capability of i-QLS to model non-linear func-
tions, more expressive spline models—such as quadratic or cubic splines—could
further improve smoothness and accuracy. However, these higher-degree splines
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Fig. 3: Spline-Based Approximation of Non-Linear Functions. The green
curves illustrate the iterative refinement of the regression fit obtained using our
quantum-assisted least squares approach with linear splines (20 knots), one qubit
per parameter, and up to 10 iterations. The lighter green lines correspond to
intermediate fits across iterations, while the darker green curve represents the
final approximation after 10 iterations.

introduce additional computational overhead, requiring more qubits, which must
be accounted for in practical quantum implementations.

By integrating splines with our iterative refinement strategy, we demon-
strated how quantum-assisted optimization can be extended beyond traditional
linear models, offering a scalable path towards non-linear function learning on
quantum hardware.

6 Discussion and Conclusion
In this work, we proposed i-QLS, a novel iterative quantum-assisted least squares
optimization algorithm that exhibits favorable scaling compared to prior single-
shot QUBO formulations. The key advantage stems from the iterative refinement
mechanism, which systematically narrows the search space around the best-found
weight values at each step. Given that the search space contracts by a factor of
f(m)(2m − 1) per iteration, the number of iterations K required to achieve a
given precision ϵ scales as:

K = O
(
logf(m)(2m−1)

1

ϵ

)
,

where m is the number of bits allocated per weight. This implies that, with higher
bit precision, convergence is achieved in fewer iterations. However, as observed
in Figure 1b, increasing m requires additional quantum resources, introducing
a trade-off between iteration count and hardware feasibility. Nevertheless, the
approach theoretically guarantees to find the optimal solution even with m = 1
as k →∞, making it inherently more scalable.

As a well-rounded analysis of the approach, considering practical hardware
constraints, we acknowledge that if an iteration selects a weight far from the
true optimal, restricting the subsequent shrunk search space from containing
the true optimal weight, successive iterations may struggle to recover. This issue
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is particularly relevant when practical quantum hardware noise or solver lim-
itations prevent finding the best candidate in an iteration. Also, our method
demonstrates strong scalability in terms of problem size, the practical runtime
depends heavily on hardware access constraints. As the annealer is remotely
accessed and shared among many users, the time to solution for each QUBO
problem is primarily dominated by network latency and queue wait times rather
than raw annealing time [21]. Consequently, having the annealer on-site could
significantly reduce overhead and make i-QLS a highly competitive method for
real-time applications.

The weight chosen at step k might be nearer to the optimal weight than the
weight chosen at step k+1, but the search space would have shrunk by a factor of
f(m)(2m − 1). This effect is exacerbated when fewer qubits per weight are used,
as demonstrated in Figure 1b for the 1-bit case. From iteration 8 to 9, the MSE
temporarily increases instead of decreasing. This occurs because the selected
weight at iteration 8 was closer to the optimal than any available discretized value
at iteration 9. However, the MSE resumes decreasing at iteration 10, illustrating
that while local fluctuations may arise, the overall convergence trend remains
intact. Thus, one can eventually mitigate this issue by running a sufficiently
large number of iterations.

Empirical validation on the D-Wave quantum annealer demonstrated the
effectiveness of i-QLS, showing that it scales efficiently to problems with up
to 175 features while maintaining high accuracy. Additionally, we extended our
framework to non-linear regression using spline-based modeling, demonstrating
its adaptability beyond linear problems.

While our approach significantly improves existing quantum-assisted regres-
sion, practical implementations against classical solvers must carefully balance
bit precision, iteration count, and hardware limitations to ensure robust perfor-
mance. Future work will explore adaptive bit precision per iteration and weight
to further enhance efficiency and accuracy.

Code Availability. The code associated with this paper is available at:
https://github.com/supreethmv/i-QLS
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for Education and Research (BMB+F) in the project QAIAC-QAI2C under grant
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