
On Safe Kernel Stable Coalition Forming among Agents

Bastian Blankenburg, Matthias Klusch
German Research Center for Artifical Intelligence,

Deduction and Multiagent Systems,
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

e-mail: {blankenb, klusch}@dfki.de

Abstract

We investigate and discuss safety and privacy preserv-
ing properties of a game-theortic based coalition algorithm
KCA for forming kernel stable coalitions among informa-
tion agents in face of imperfect information on actual coali-
tion values, and changing agent society. In addition, we an-
alyze the chances of deceiving information agents to suc-
ceed in coalition negotiations using the KCA protocol. We
show that a certain type of fraud which leads to an increase
of individual profit can neither be prevented nor detected,
but this comes at the expense of exponentially high compu-
tation costs for the deceiving agent.

1. Introduction

Game-theoretic coalition algorithms can be used by in-
telligent agents as coordination means in a variety of appli-
cations in different environments. Applications in the health
care and m-commerce domain are required to preserve the
privacy of user information to a large extent. In this respect,
one interesting question concerns the relation between the
safety poperties of a given coalition negotiation protocol,
and the privacy of information required to specify the under-
lying coalition game to be solved by the agents according to
the protocol. In particular, what is the minimum amount of
information required for a given coalition algorithm to out-
put stable solutions? Will it be individually beneficial to de-
ceive negotiation partners on local information that is used
to determine the value of joint coalitions? What kinds of in-
formation can be hidden by an agent from selected agents
at what costs in terms of its bargaining position in the coali-
tion negotiation?

As to our knowledge, there is no work on this topic
available yet. Hence, in this paper, we provide some first
thoughts on, and preliminary answers to these questions,
taking a special coalition algorithm KCA [4] for kernel sta-
ble coalition forming as an example.

In section 2, we introduce the reader to the basics of co-
operative game theory, with focus on Kernel stable coalition
forming, to an extent that is necessary to understand the re-
sults presented. Readers who are familiar with the field can
skip this section. In section 3, we analyze and discuss some
safety properties of the KCA protocol for negotiation set-
tings with imperfect information on coalition values, and
changes in the set of negotiating agents. Finally, the chances
of deceiving agents to succeed in coalition negotiations ac-
cording to the KCA protocol are discussed in section 4.

2. Kernel stable coalition forming

In this section, we briefly introduce the reader to the ba-
sic concepts of coalition games, kernel stable coalitions, and
a specific negotiation protocol KCA [4] that can be used by
agents to form such coalitions. For a more comprehensive
introduction to co-operative game theory we refer the reader
to, for example, [2, 5].

2.1. Basics

A co-operative or coalition game (A, v) is defined by a
set A of agents wherein each subset of A is called a coali-
tion, and a real-valued characteristic or coalition value func-
tion v : A → R that assigns each coalition C ⊆ A its
maximum monetary gain. Any set of coalition values for
all possible coalitions defines a coalition game. The self-
value v({ak}) ≡ v(ak) of an agent ak denotes the maxi-
mum profit it may gain without any cooperation with other
agents. It is assumed that each value v(C) does not depend
on the actions of agents outside C, any coalition C forms
by a binding agreement on the distribution of v(C) among
its members, and no side-payments are allowed from C to
any agents outside C within the given game.

The sum of both self-value and marginal contribution to
a coalition C is called the local value or worth lwortha(C)
of agent a for C. An individual agent production utility
function Uk determines the worth of task-related produc-

tions of agent ak. Agents coalesce to increase their individ-
ual profits that may result from jointly accomplishing their
tasks. The value lwortha(C) of agent a for coalition C is
the total revenue a may obtain for accomplishing its tasks
in C on behalf of its user or other agents in C. Each coali-
tion value is the sum of the local values of its members
(v(C) =

∑
a∈C lwortha(C)).

Stable Solutions of Coalition Games. The solution of a co-
operative game with side payments is a coalition configura-
tion (S, u) which consists of a partition S of A, the coali-
tion structure, and a n-dimensional, real-valued payoff dis-
tribution vector which components are computed by a real-
valued payoff or utility function u. The payoff distribution
assigns each agent in A its utility u(a) out of the value v(C)
of coalition C it is member of in a given coalition structure
S.

In individually rational payoff distributions each agent
gets at least its self-value u(a) ≥ v({a}). For group ratio-
nal distributions, it holds that the group of all agents max-
imises its joint payoff. In Pareto-optimal payoff distribu-
tions no agent is better off in any other valid payoff distri-
bution for the given game and coalition structure.

A configuration (S, u) is called stable if no agent has an
incentive to leave its coalition in S due to its assigned pay-
off u(a). Different characteristics and criterions of stability
define different solution spaces for a co-operative game.

In general, non-super-additive games at least one pair of
potential coalitions is not better off by merging into one.
The meaning of stability of coalitions depends on the con-
sidered discipline and application domain. Many if not most
of the coalition formation algorithms today rely on chosen
game-theoretic concepts for stable pay-off division within
coalitions according to, for example, the Shapley-value, the
Core, the Bargaining Set, or the Kernel [2]. In this paper,
we focus on the latter concept of coalition stability.

Kernel Stable Configurations. The kernel of a co-operative
game (A, v) with respect to a given coalition structure S is
a set of K-stable configurations (S, u) wherein each coali-
tion in S is in equilibrium. Each pair of agents ak, al in C is
in equilibrium, if they cannot outweigh each other in (S, u)
by having the option to get a better payoff in coalition(s) not
in S excluding the opponent agent. The surplus of agent
ak ∈ A with respect to the opponent al in a given con-
figuration (S, u) is skl = maxR/∈S,ak∈R,al /∈R{e(R, u)},
where e(R, u) = v(R) − u(R) denotes the excess of alter-
native coalitions R. Agent ak outweighs al, if skl > slk and
u(al) > v(al). Any pair of agents ak, al is in equilibrium
with respect to (S, u), if one of the following constraints is
satisfied: (skl = slk), or (skl = slk and ul = v(al), or
skl < slk and uk = v(ak).

To compute a K-stable payoff distribution, agents trans-
fer side payments among each other; the demand of agent
ak from al is defined as dkl = min{ (skl−slk

2 , u(al) −

v(al)} ≥ α, and zero else, as an upper limit of any side-
payment α to be added (subtracted) from the payoff u(a k)
(u(al). The transfer scheme converges against a K-stable
(S, u) after O(nlog(re/ε)) iterations with O(n2n) steps
each, where re(u) denotes the relative error.

The kernel of a game is exponentially hard to com-
pute unless, for example, the size of the coalition is lim-
ited by a constant. The kernel appears to be attractive, since
it is unique for any 3-agent game (A, v), assigns symmet-
ric agents of some coalition in a given coalition structure
for (A, v) equal payoff, and is locally Pareto-optimal in the
set K. Polynomial coalition algorithms for polynomial K-
stable coalition configurations have been developed for co-
operative information agents with perfect [4] or imperfect
knowledge [1].

2.2. KCA coalition algorithm

Any set of rational agents can negotiate kernel stable so-
lutions (S, u) of co-operative games (A, v) by using the so
called KCA coalition algorithm [4] which proceeds as fol-
lows.

Each agent a performs

1. Communication

(a) Set ({a1}, . . . , {an}, (v({a1}), . . . , v({an})) to
be the current configuration.

(b) Set each agent to be the coalition leader of its
coalition.

(c) Generate a totally ordered list of all agents sorted
by their overall computational power. The sort-
ing of this list is the same for all agents. It is not
important here how this is exactly done.

(d) Send the set of tasks Ta to all other agents.

(e) Receive the set of tasks of each other agent.

(f) Evaluate the set of tasks accomplishable by a and
send it to all other agents.

(g) For each other agent, receive the set of accom-
plishable tasks.

(h) For every coalition C ⊆ A, evaluate lwortha(C)
and send it to all other agents.

(i) Receive all local values from each other agent.

2. Generating Proposals

(a) If a is not coalition leader of C, a ∈ C, go to 4e.

(b) For each other coalition C ∗ ∈ S, a �∈ C∗ com-
pute a Kernel-stable configuration (S ∗, u∗) with
C ∪C∗ ∈ S∗ and all other coalitions unchanged.
If u∗ strictly dominates u, send (S∗, u∗) as a con-
figuration proposal to the leader of coalition C ∗.

3. Evaluating Proposals

(a) Receive configuration proposals from the other
coalition leaders.

(b) Evaluate the received proposals. Choose one pro-
posal (S+, u+) that is most beneficial to accept,
i.e. for which u+ strictly dominates u and is not
strictly dominated by u∗ of any other received
proposal (S∗, u∗).

(c) Inform all other coalition leaders about the ac-
cepted proposal.

4. Deciding Upon Coalition Configuration

(a) Receive all accepted proposals from the other
coalition leaders.

(b) If no proposal was accepted, stop.

(c) Choose one proposal to become the new config-
uration. To do this, determine an order of prefer-
ence of the proposals according to the following
keys, priority in descending order:

i. Bilaterally accepted proposals are preferred
to unilaterally accepted ones. An accepted
proposal (S∗, u∗) of coalition C∗ for coali-
tion C+ is bilaterally accepted iff C+ ac-
cepted a proposal of C∗.

ii. If any two proposals (S∗, u∗) and (S+, u+),∑
a∗∈A u∗(a∗) >

∑
a∗∈A u+(a∗) holds,

(S∗, u∗) is preferred to (S+, u+).
iii. If any two proposals are equally pre-

ferrable according to the above proper-
ties, the one which was made by the agent
with the greater computational power is pre-
ferred.

(d) Inform all other coalition members in C about
the new configuration.

(e) If a is not coalition leader, receive the new con-
figuration.

(f) If a is in the coalition, determine the new coali-
tion leader as the agent in the new coalition with
the greatest computational power.

(g) If a is coalition leader, do: if a is in the new coali-
tion, inform all other coalition leaders about a be-
ing the new coalition leader. If a is not in the new
coalition, receive the new coalition leader of the
new coalition.

(h) If the grand coaltion was formed or a previously
defined time for the coalition formation process
is exceeded, stop.

(i) Go to 2.

It is assumed that the time for message exchange is lim-
ited, and inter-agent communication is correct. Please note
that according to the KCA protocol, in each round at most

one new coalition is formed (as a merger of two coalition of
the previous configuration), and the computation of a kernel
stable payoff distribution with respect to a proposed coali-
tion may affect also the payoffs of those agents that are not
involved in that proposal.

3. Safety properties of the KCA

3.1. Safe KCA with incomplete information

Unknown Tasks. Suppose agent a1 does not receive
the complete set of tasks from agent a2. The lo-
cal value lwortha2 (C) of a2 for any coalition C in
which both agents are involved depends on the ex-
tent a1 is able to help a2 in accomplishing its tasks. Since
v(C) =

∑
a∈C lwortha(C) holds, and the task sets of

agents are mutually exchanged before the coalition ne-
gotiation starts, any partial knowledge on tasks to ac-
complish only changes the original game, thus does not
affect the correctness of the output of the KCA proto-
col.

Unknown Local and Coalition Values. In cases where lo-
cal values are not known to some agent, it can estimate,
or set the corresponding coalition by default. How-
ever, this leads to situations in which different agents try
to solve different games at the same time with respec-
tively different outcomes of the coalition negotiations ac-
cording to the KCA protocol.

Example 3.1: KCA negotiation with estimated coali-
tion value

Consider a non-superadditive 3-agent game for a set
of agents ({a1, a2, a3} and coalition values v({ai}) =
0, i ∈ {1, 2, 3}, v({a1, a2}) = 3, v({a1, a3}) = 1,
v({a2, a3}) = 3, and v({a1, a2, a3}) = 0. The agents
may solve this game using the KCA. For example, in the
first round, the mutually exchanged kernel stable pro-
posals are Cfg1 = ({{a1, a2}, {a3}}, (0.5, 2.5, 0)),
Cfg2 = ({{a1, a3}, {a2}}, (0.5, 0, 0.5)) and
Cfg3 = ({{a1}, {a2, a3}}, (0, 2.5, 0.5)). Suppose that no
proposal is bilaterally but unilaterally accepted. As a re-
sult, both most beneficial coalitions {a1, a2} or {a2, a3}
could form. In order to obtain a unique configuration,
the proposal of the most powerful agent, here a2, is se-
lected, that is Cfg1.

Suppose that a1 did not receive lwortha3 ({a2, a3}) and
under-estimates the related coalition value v∗({a2, a3}) =
2. a1 proposes ({{a1, a2}, {a3}}, (1, 2, 0)) to a2 instead of
Cfg1. Unfortunately, this proposal is not as good as the one
in the original game for a2 such that it rather accepts the al-
ternative proposal of a3. Thus, the kernel stable configura-
tion Cfg3 is formed. Thus, in contrast to the above solu-

tion of the original game, a1 stays alone with no profit from
joint collaboration.

In case a1 over-estimates the coalition value
v∗({a2, a3}) = 3.5, it proposes Cfg1c =
({{a1, a2}, {a3}}, (0.25, 2.75, 0)) instead of Cfg1 to
a2, and Cfg2c = ({{a1, a3}, {a2}}, (0.25, 0, 0.75)) in-
stead of Cfg2 to a3. As a result, a2 and a3 accept Cfg1c,
respectively, Cfg2c, and a1 accepts either Cfg1 from a2

or Cfg2 from a3. Given that a1 and a2 accepts Cfg1, re-
spectively, Cfg1c, all agents uniquely decide on the
configuration Cfg1c proposed by a1 based on given crite-
ria for drawing a tie. However, this solution is not kernel
stable with respect to the original game but the differ-
ent game considered by a1. Even worse, a1 obtains less
profit than it would be possible in most kernel stable solu-
tion of the original game.
◦

If an agent decides to compute kernel stable configura-
tions in case of complete information on coalition values
only, the interesting question is how its proposals and be-
havior in negotiations are affected. In Ex. 3.1, a 1 would not
make any proposal to any agent, thus non-kernel stable pro-
posals do not appear in the negotiation.

In general, if a does not know the coalition value v(C ∗)
of a certain coalition c∗, let s∗ik denote the estimated sur-
plus of ai over ak, that is the maximum of the set of ex-
cesses of coalitions C �= C∗ with ai ∈ C, ak /∈ C. This
surplus estimation is computable by a without know-
ing v(C∗). Hence, for each kernel stable configuration
(S, u) which can exactly be computed by a by us-
ing s∗ik instead ofsik, it holds that (a) C∗ �∈ S, and (b)
∀C ∈ S, ai, ak ∈ C, ai ∈ C∗, ak �∈ C∗ : u(ak) = v(ak).
The second constraint means that a does not need to com-
pute any surplus with v(C∗). Agent a can determine
whether a configuration it computes with incomplete infor-
mation is kernel stable by checking if both constraints are
satisfied.

Example 3.2: Computable configurations without cer-
tain local values

Consider the coalition game in example 3.1. Suppose that
a1 does not know v({a2, a3}) and decides to neither esti-
mate, nor use any default value for it. As a result, a1 is not
able to compute a kernel stable configuration for the coali-
tion structure {{a1, a2}, {a3}}, because the excess of
coalition C∗ = {a2, a3} is not computable by a1. The rea-
son is that if a1 (wrongly) assumes s21 = v({a2} − u(a2),
then u = (2, 1, 0) is kernel stable with respect to the game
it considers. However, the second constraint is not sat-
isfied, since u(a1) > v({a1}) holds. Thus a cannot
be sure that the assumption is right and the result-
ing configuration is kernel stable. In fact, s21 is given

by v({a2, a3} − u(a2) − u(a3) > v({a2} − u(a2)
since v({a2, a3}) > v({a2}) and u(a3) = 0. How-
ever, if the game includes v({a2}) = 3, then u = (0, 3, 0)
is determinable by a1 to be Kernel-stable because it is suf-
ficient to know that s21 ≥ v({a2} − u(a2) holds. Be-
cause u(a1) = v({a1}) in this case, it does not mat-
ter if s21 > v({a2}) − u(a2) or s21 = v({a2} − u(a2) is
true and v({a2}) − u(a2) ≥ s12 holds.
◦

To summarize, using the KCA, coalition negotiations
are safe with respect to unknown coalition values v(C).
Any under- or over-estimation of v(C) by agent a yields
a changed game (A, v) for which K-stable solutions can be
computed by a following the KCA protocol but with possi-
bly lower payoff u(a) compared to solutions that are com-
puted at the same time by other agents for the original game
(A, v).

3.2. Safe KCA with changing agent sets

New agents trying to enter negotiations after these actu-
ally started can easily be avoided by verifying the sender
of each message to be an expected one. But it may happen
that an agent for whatever reason, intended or unintended,
becomes unavailable before negotations end and/or the ac-
tions as determined by the coalitional contract are carried
out. That is, it does not send any more messages required
by the protocol. For example, its network connection may
break down. The consequences are different for coalitions
leaders and members.

Coalition leaders dropping out of negotiation. If the coali-
tions leader a of a coalition C becomes unavailable, con-
sequently no proposals are made or accepted for C.
Other members of C receive no more configuration up-
dates and eventually time out, finishing the negotiation
process. After this, the members of C have an out-
dated configuration if the other coalitions made further
merges, which means that their payoffs might no longer
be Kernel-stable. This is true even if a becomes avail-
able again to accomplish his part of the coalitional con-
tract. If a stays unavailable, the remaining members of
C are in fact forming the coalition C \ {a}. If there ex-
ist agents in C which rely on payments by a, individual
rationality might not be guaranteed any more. Alterna-
tively, a might become available again before negotia-
tions are finished. This might, depending on the state of a
then, lead to different configurations considered true by dif-
ferent agents.

Example 3.3: Coalition leader leaving and re-entering
negotiation

Consider a 3-agent game with A = {a1, a2, a3} in

which usually a1 and a2 bilaterally accept propos-
als in the first round because {a1, a2} is much more
beneficial than any other coalition. But a1 becomes un-
available right after the initial exchange of local values, and
thus does not make a proposal for a2, nor accepts a2’s pro-
posal. Thus, {a2, a3} is formed. Suppose a2 becomes coali-
tion leader. In the second round, a1 becomes available again
just when proposals are to be made. a2 proposes the forma-
tion of the grand coalition while a1, not having received a
configuration update, proposes the formation of {a 1, a2}.
Because this is the most beneficial proposal, it is cho-
sen as the new configuration, thus splitting up the coalition
{a2, a3} again (which is not allowed by the KCA). Sup-
pose a1 becomes coalition leader of {a1, a2}. a1 thus sends
a configuration update to a3, but a3 is waiting for a con-
figuration update by its (now former) leader a2. a3 will
eventually time out and finish negotiations still ’believ-
ing’ it would coalesce with a2.
◦

Other coalition members dropping out of negotiation. The
dropping out of coalition members does not influence the
coalition formation process unless this happens during task
execution which leads to the same problem as for coalition
leaders. That is, the configuration may no longer be kernel
stable, since the original game no longer models the situa-
tion appropriately. As in the case of unavailable coalition
leaders, individual rationality of payoffs cannot be guar-
anteed for agents that rely on payments from unavailable
coalition members.

To summarize, using the KCA, coalition negotiations are
not safe in case of changing agent society: If agents are leav-
ing the actual coalition game (A, v) a K-stable solution of
the changed game (A, v) cannot be guaranteed without to-
tal restart of the KCA.

4. Secure and safe KCA

In this section, we show that, using the KCA, agents can
safely negotiate K-stable coalitions and preserve individual
data privacy (security) at the same time. In particular, any
agent that is involved in the negotiations can completely
hide its local data and information used to compute its self-
value from other agents. Surprisingly, it can do so without
even risking any loss of profit in the final coalition configu-
ration.

4.1. Privacy preserving K-stable coalition negotia-
tions

This property of local data privacy preservation in coali-
tion negotiations using the KCA is an inherent property of

the definition of kernel stability, which is stated in the fol-
lowing lemma.

Lemma 1. Let (A, v) and (A, v∗) with

∃a∗ ∈ A, r ∈ R : v∗(C) :=
{

v(C) + r for a∗ ∈ C
v(C) otherwise

Then it holds that the configuration (S, u∗) with
u∗(a∗) = u(a∗) + r and ∀a ∈ A, a �= a∗ : u∗(a) = u(a)
is K-stable with respect to the game (A, v∗) iff (S, u) is
K-stable with respect the game (A, v).

Proof. Let s∗a∗,a◦(C) the surplus of agent a∗ over agent a◦,
a∗, a◦ ∈ C ∈ S in configuration (S, u∗). Then it holds

s∗a∗,a◦(C) = max
C+:a∗∈C+,a◦ �∈C+

{v∗(C+) −
∑

a∈C+

u∗(a)}

= max
C+:a∗∈C+,a◦ �∈C+

{v(C+) + r(−
∑

a∈C+

u(a) + r)}

= max
C+:a∗∈C+,a◦ �∈C+

{v(C+) + r −
∑

a∈C+

u(a) − r}

= sa∗,a◦(C)(in configuration(S, u).)

According to lemma 1, it holds for any K-stable so-
lution (S, u) of coalition game (A, v) that the configura-
tion (S, u∗) for the changed game (A, v∗) with v∗(C) =
v(C) − lworth(a, {a}), v∗({a}) = 0, a ∈ C ∈ S,
and u∗(a) = u(a) − lworth(a, {a}) is K-stable. Since
u(a) − u∗(a) is constant for all pairs of K-stable propos-
als (S, u) and (S, u∗), the KCA negotiation protocol is safe
against non-disclosure of self-values.

Since v(C) =
∑

a∈C lwortha(C) holds, any agent a
may add r ∈ R to each of its local values, thereby con-
stantly changing its actual contribution to each C by r,
such that a’s net result remains the same as in the origi-
nal game with v(C). In particular, if for each agent a i the
factor ri = −lworthai({ai}) is added to every coalition
value v(C) with ai ∈ C, then the resulting game contains
only zero-valued self-values and is equivalent to the origi-
nal game (A, v).

To understand why that is the case, consider an
agent which communicates its worth lworth∗(a, C) =
lworth(a, C) − lworth(a, {a}) to every coalition C in the
coalition structure S of configuration (S, u) for given game
(A, v). That action changes the original coalition game to
a new game (A, v∗) with v∗(C) = v(C) − lworth(a, {a})
and v∗({a}) = 0. However, this change does not affect the
value of the excess of any coalition C, since it holds that
e∗(C) := v∗(C) − u∗(C) = v(C) − u(C) = e(C). This,
in turn, implies that the surplus values of agents in a so-
lution (S, u) of (A, v), and (S, u∗) of (A, v∗) remain the
same. By induction over all agents a ∈ A and S, it can eas-
ily be shown that this finally yields equivalent games for
any set of agents modulo their self-values.

As a result, self-values are not required to be communi-
cated among the agents at all in order to solve any given
coalition game with a K-stable configuration. That means
that, using the KCA, any agent ai can hide any set of lo-
cal information from other agents in K-stable coalition ne-
gotiations, without loss of benefit for anyone, iff this lo-
cal information is exclusively used to compute its self-value
v({ai}). However, the extent to which local information can
be hidden depends on the structure of the coalition game, as
we will show by means of a simple application example in
the following section.

4.2. Application to retailer coalition games

In general, rational agents in e-markets are envisioned to
be capable of forming different kinds of coalitions for dif-
ferent purposes. For example, retailer agent coalitions are
commonly formed to maximize individual benefits of joint
sales to customers. On the other side, customer agent coali-
tions can be built to maximize individual benefits of joint
purchases at retailer site, or to maximize individual broker-
age/commission from the customer agents’ users.

In the following, we consider a given set A of re-
tailer agents that form coalitions to improve and share
their joint benefits of selling requested items to cus-
tomer agents. In terms of coalition game theory, the coali-
tion value v(C) of a retailer agent coalition C ⊆ A is the
maximum joint benefit of retailer agents in C for selling rel-
evant items to their customer agents. Individual item utility
U(a, p) for retailer agent a of selling item p to its cus-
tomers. The self-value v({a}) of retailer agent a is the max-
imum gain of sales without any cooperation. Finally, the
retailer agent coalition game (A, v) is the set of all coali-
tion values.

Example 4.1: Car Retailer Coalition Game

Consider the following (superadditive) coalition
game (A, v) of three car retailer agents {a1, a2, a3}
and following coalition values defined by max-
imum car sales in each coalition: v({a1}) =
2, v({a2}) = 1.5, v({a3}) = 1, v({a1, a2}) = 6,
v({a1, a3}) = 8, v({a2, a3}) = 7, v({a1, a2, a3}) = 15.

Using the KCA, after first negotiation round, the
agents reach the following K-stable solution of the game:
(S, u) = ({{a1, a2}, {a3}}, (3.5, 2.5, 1)) which bal-
ances the agents’ surpluses s(a1, a2) = v({a1, a3})
−(u(a1) + u(a3)) = 8 − 3.5 − 1 = 3.5, and s(a2, a1)
= 7 − 2.5 − 1 = 3.5. After a second (final) negotia-
tion round, the grand coalition is formed with the follow-
ing K-stable payoff distribution among the retailer agents:
(S, u) = ({{a1, a2, a3}}, (5, 4.25, 5.75)) which balances
the agents’ surpluses s(a1, a2) = e({a1, a3}) = −2.75,
s(a2, a1) = e({a2}) = −2.75, s(a1, a3) = e({a1, a2})

Local items of a1:
car11, car12, car13

k1 car11: 2 k€
car22: 1.5 k€
car32: 1 k€

Local items of a2:
car21, car22, car23

Sales to k2:
car21: 1.5 k€
car12: 1 k€
car31: 1 k€
car33: 2 k€

Local items of a3:
car31, car32, car33

Sales to k3:
car31: 1 k€
car12: 2 k€
car13: 2 k€
car21: 2 k€
car23: 2 k€

a2

a3

a1

Coalition Game (A,v)
v({a1}) = 2 v({a2}) = 1.5 v({a3}) = 1
v({a1,a2}) = 6 v({a1,a3}) = 8
v({a2,a3}) = 7 v({a1,a2,a3}) = 15

k2

k3

max 6k€
• Coalition value v(C): Maximum car sales in C
• Local customers k1, k2, k3 of

car retailer agents a1, a2, a3

Sales to k1:

Figure 1. Example of a car retailer agent
coalition game

= −3, s(a3, a1) = e({a2, a3}) = −3, s(a2, a3) = e({a2})
= −2.75, s(a3, a2) = e({a1, a3}) = −2.75.
◦

Example 4.2: Privacy Preservation in K-Stable Coali-
tion Negotiations

The K-stable solution ({{a1, a2}, {a3}}, (3.5, 2.5, 1))
of game (A, v) after first negotiation round bases
on the agents’ surpluses s(a1, a2) = v({a1, a3}) −
(u(a1) + u(a3)) = 8 − 3.5 − 1 = 3.5, and
s(a2, a1) = 7 − 2.5 − 1 = 3.5. Hiding of the self-value by
each agent induces a new 3-agent game (A, v∗) with a new,
unique and K-stable solution ({{a1, a2}, {a3}}, (1.5, 1, 0))
which balances the newly formed but equally valued sur-
pluses s∗(a1, a2) = (v({a1, a3}) − v({a1}) − v({a3})) −
((u(a1)− v({a1}))+ (u(a3)− v({a3}))) = 5− 1.5 = 3.5
and s∗(a2, a1) = 4.5 − 1 = 3.5. This game is equiv-
alent to the original one modulo the agents’ self val-
ues.

Hiding of self-values implies that, for example, car re-
tailer agent a1 can prevent the other car retailer agents
a2, a3 from knowing how many and what kind of own cars
it can sell to its local customer for what price. In this ex-
ample, a1 can only sell one car of type car11 to its local
customer for a price of 2k euros. It can protect this local in-
formation without loss of benefit in implied coalition nego-
tiation by simply communicating a zero-valued self-value
v∗({a1}) = 0. In this example, agents a2 and a3 by no
means are able to infer the true self-value of a1 from their
local knowledge, since its car11 cannot be alternatively sold
to them to maximize any of their joint coalition values. Both

agents do not even know about the existence of car11.
That is not true in cases where local items can be both lo-

cally and remotely sold. In such cases the local sales value
can be partially inferred by other agents. For example, con-
sider the situation in which car retailer agent a2 com-
municates a zero-valued self-value v∗({a2}) to protect
its local information that it can sell car21 to its cus-
tomer for 1.5k euros. Further, it does not tell a3 that
car21 exists. However, in order to determine the max-
imum joint coalition value with a3 it has to communi-
cate to a3 that a3’s car33 can be sold to its local customer
k2 for 2k euros, that is more than a3 could obtain lo-
cally. As a consequence, a2 communicates its worth
lworth∗(a2, {a2, a3}) = 0.5(= 2 − 1.5) to a3 such
that both agents are now able to compute the maxi-
mum sales value of a joint coalition. But now a3 can eas-
ily infer that the self-value v({a2}) of a2 must at least be
of value 1.5k (= 2 − lworth∗(a2, {a2, a3})) euros, which
does not match with the zero value that has been communi-
cated by a2 to a3 before.
◦

5. Fraud in Kernel stable coalition forming

Serious threats to safe kernel stable coalition forming
based on the KCA protocol are caused by, for example,
fraudulent agents that intend to (a) unreasonably strengthen
their bargaining position in the coalition negotiation, or (b)
influence the building of coalitions for any other strategic
reason. We show that this is in principle possible, but at high
computational costs in practice.

Suppose that agent a wants to demand more pay-
off in a given coalition game (A, v) than originally pos-
sible. For this purpose, in the first negotiation round,
it delays the communication of its worth lwortha(C)
for any coalition C ⊆ A to all other agents. Since
v(C) =

∑
a∈C lwortha(C) holds, at this moment, it

is the only agent that can compute all coalition val-
ues, hence the complete game (A, v). Since a can in-
fluence the coalition formation process according to the
KCA protocol only at the beginning of the first negotia-
tion round, it must decide on whether to perform a fraud to
unfoundedly increase its profit, or not, right before it com-
municates its local values to the other agents. For this
purpose, it locally simulates the KCA protocol to pre-
dict the final, kernel stable solution (S, u) for (A, v). In
case of 3-agent coalition games, this predicted configura-
tion is even unique.

How can agent a increase its predicted utility u(a) with-
out getting harmed by unmasking claims of other agents
within a joint coalition in the predicted final structure S?
One option is to choose one coalition C ′ /∈ S, and deceive

all agents on its individual worth lwortha(C′) for C ′ such
that the unfoundedly increase of its utility u ′(a) in the cor-
responding final configuration (S ′, u′) is maximum. Such a
fraud is in principle impossible to detect, since the worth of
each agent depends on its individual production utility func-
tions Ua which can be different for all agents.

With increasing v(C ′), by definition of the KCA
the probability that C ′ is actually formed also in-
creases. How to determine the highest possible value
r ∈ R, r �= 0 by which agent a can increase its origi-
nal lwortha(C′)? Each change of worth in some round
t ∈ N, that is lworth

(t)
a (C′) = lworth

(t−1)
a (C′) + r(t)

where lworth
(0)
a (C′) = lwortha(C′), implies a change

of the respective coalition value v (t)(C′). That, in turn,
changes the current game (A, v (t)) to (A, v(t+1)) by replac-
ing v(t)(C′) with v(t+1)(C′) = v(t)(C′) + r(t). For each
new game (A, v(t)), t = 1...m, agent a simulates a full run
of the KCA protocol until it finds, in round m, a configura-
tion (Sm, um) such that C ∈ Sm. In this case, it holds that
u(m)(a) ≤ u(0)(a) + r(m) (cf. lemma 2). But that is adver-
sive to a, since it would be enforced to bring the additional
amount r(m) into the coalition once it is formed.

Lemma 2. Let (A, v), (A, v∗) games, r ∈ R, and C∗ ⊆ A
with

∀C ⊆ A : v∗(C) :=
{

v(C) + r for C = C∗

v(C) otherwise

Further, let a∗ ∈ C∗, (S, u) a kernel stable configuration
for (A, v), u∗ a payoff distribution for which holds that
u∗(a) = u(a)+r, a ∈ A, if a = a∗, and u∗(a) = u(a) oth-
erwise.

Then (S, u∗) is not kernel stable for (A, v∗), if there
exists an agent a+ ∈ C∗, a+ �= a∗ such that sa∗,a+ −
sa+,a∗ < r holds in (A, v).

Proof. Let s∗a1,a2
denote the surplus of agent a1 over agent

a2 in the game (A, v∗) and Z := {C|C ⊆ 2A, a∗ ∈
C, a+ �∈ C}. Further, let e∗(C) the excess of coalition C
in the game (A, v∗). Then

s∗a∗,a+ = max
C∈Z

{e∗(C)}
= max

C∈Z
{v(C) −

∑
a′∈C,a′ �=a∗

u(a′) − u∗(a∗)}

= max
C∈Z

{v(C) −
∑

a′∈C,a′ �=a∗
u(a′) − (u(a∗) + r)}

= max
C∈Z

{v(C) −
∑
a′∈C

u(a′)} − r

= sa∗,a+ − r < sa+,a∗

But since u∗(a∗) > v∗({a∗}) = v({a∗}), configuration
(S, u∗) is not kernel stable for (A, v∗).

As a consequence, agent a selects r(m−1) as the max-
imum raise of its original worth for C ′ to the fraudulent
value lworth∗

a(C′) = lwortha(C′)+ r(m). The value r(m)

is the amount of additional profit a expects to gain by com-
municating its worth lwortha(C) for all possible coalitions
C, including the incorrect value lworth∗

a(C′) for coali-
tion C ′, to all other agents in the first round of the KCA
based negotiations.

Example 5.1: Fraudulent manipulation of coali-
tion value

Consider a game (A = {a1, a2, a3}, v) with
v({ai}) = 0, i ∈ {1, 2, 3}, v({a1, a2}) = 5,
v({a1, a3}) = 1, v({a2, a3}) = 2, v({a1, a2, a3}) = 0.
Applying the KCA to this game clearly results in the coali-
tion structure {{a1, a2}, {a3}} and the kernel stable pay-
off distribution u = (2, 3, 0). Now, the question is what
happens if agent a1 by intention deceives the other
agents on the true coalition value v({a1, a3}) by com-
municating an artificially increased value of its worth
lworth∗

a1
({a1, a3}) = lwortha1 ({a1, a3}) + r, r ∈ R

+?
Consider the respectively changed game (A, v∗) with

r = 3. Then it holds that v∗({a1, a3}) = 4, and all
other coalition values v∗ remain the same as in the origi-
nal game v. Again, using the KCA, the coalition structure
{{a1, a2}, {a3}} is formed, but now with different payoff
distribution u∗ = (3.5, 1.5, 0). Thus, the fraud of a1 has
been succesfull, since it resulted in an increase (3.5 − 2 =
1.5) of its profit compared with payoff distribution for the
original game.

Now consider the case in which agent a1 decides to in-
crease its worth even more (r > 4), say r = 5. For the re-
sulting game (A, v+) it holds that v+({a1, a3}) = 6 and
all other coalition values remain the same. This time, using
the KCA, a different coalition structure {{a1, a3}, {a2}}
forms with payoff distribution u+ = (4.5, 0, 1.5). Again,
it seems that agent a1 increased its payoff compared
with that in the original game by 4.5 − 2 = 2.5. How-
ever, agent a1 now has the severe problem to actually
bring in the amount of r = 5 into the formed coali-
tion {a1, a3}, since its real increase in profit is given by
2.5 − 5 = −2.5, hence actually a loss! How shall a1 ex-
plain that to its committed coalition partner a3?
◦

The computational efforts that are required to decide
whether there exists an individually beneficial option to de-
ceive other agents in KCA based coalition negotiation for

a given game are exponentially expensive. Once the pre-
dicted configuration (S, u) is locally computed, agent a
still has to check each of the O(2n) alternative coalitions
C′ /∈ S with polynomial computational complexity of sim-
ulated KCA based negotiations for each respective game.
Besides, the possibly large delay in communicating its val-
ues to the other agents after having received theirs may al-
ready draw some initial suspicion of fraud on agent a.

6. Conclusion

We showed that the KCA coalition protocol exhibits
both desirable and non-desirable properties with respect
to safety and privacy preservation. The possibility for any
agent to hide its self-values without risking any decrease
of its payoff is clearly an advantageous result for kernel
based coalition formation procedures such as the KCA. On
the other hand, tasks and information may be hidden from
other agents only at the cost of giving up some cooperation
opportunities. However, if agents hide certain local values
from other agents the course of negotiations according to
the KCA can seriously be affected such that non-kernel sta-
ble solutions of the original game will form. Another threat
to KCA based negotiations is caused by agents that drop
out of running negotiations. As a consequence, the remain-
ing agents and those that reenter the negotiation process af-
ter a while, may end up with different ideas about the final
configuration. This makes it impossible for most agents to
abide by their coalition contracts. Finally, it has been shown
that individual fraud in kernel stable coalition forming us-
ing the KCA is in principle possible but appears impractical
in terms of computational complexity.

References

[1] B. Blankenburg, M. Klusch, O. Shehory: Fuzzy Kernel-Stable Coali-
tions Between Rational Agents. Proc. 2nd Intl. Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2003), Mel-
bourne, Australia, ACM Press, 2003.

[2] J. P. Kahan, A. Rapoport: Theories of coaltion formation. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1984.

[3] M. Klusch, A. Gerber: Dynamic Coalition Formation among Rational
Agents. IEEE Intelligent Systems, 17(3), May/June 2002.

[4] M. Klusch, O. Shehory: A Polynomial Kernel-Oriented Coalition Al-
gorithm for Rational Information Agents. Proc. 2nd Intl. Conference on
Multi-Agent Systems (ICMAS ’96), Kyoto (Japan), AAAI Press, 1996.

[5] G. Owen. Game Theory. Academic Press, NY, 1995.

