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Abstract tributed data into alata warehous@n which to apply the

usual data mining techniques. Data warehousing is a popular
technology which integrates data from multiple data sources
into a single repository in order to efficiently execute complex
analysis querieBMoro and Sartori, 2001 However, despite

its commercial success, this approach may be impractical or
even impossible for some business settings, for instance:

Huge amounts of data are stored in autonomous,
geographically distributed sources. The discov-
ery of previously unknown, implicit and valuable
knowledge is a key aspect of the exploitation of
such sources. In recent years several approaches
to knowledge discovery and data mining, and in

particular to clustering, have been developed, but » when huge amounts of data are (frequently) produced at
only a few of them are designed for distributed data different sites and the cost for their centralization cannot
sources. We propose a novel distributed clustering scale in terms of communication, storage and computa-
algorithm based on non-parametric kernel density tion;
estimation, which takes into account the issues of e whenever data owners cannot or do not want to release
privacy and communication costs that arise in a dis- information, for instance to protect privacy or because
tributed environment. disclosing such information may result in a competitive
advantage or a considerable commercial added value.
1 Introduction One of the most studied data mining techniques in central-

Knowledge discoveris a process aiming at the extraction '2€d €nvironments igata clustering The goal of this tech-
nique is to decompose or partition a data set into groups such

of previously unknown and implicit knowledge out of large . e . IR
databases, which may potentially be of added value for somiat Poth intra-group similarity and inter-group dissimilarity
y are maximized. Despite the success of data clustering in cen-

given applicatiorfFayyadet al., 1994. : ,
Data mining which is devoted to the automated extrac-f[ral'zed environments, only a few approaches to the problem

tion of unknown patterns from given data, is a central element” ? dtﬁ.t”bmelg enwronmetn:(a[\)rggvallable }0 date. h to di
among the steps of the overall knowledge discovery proces "bnt (;detor Iwet p_resebn don. a nol\_/e %pprqtac tc') 'f'
the steps include preparation of the data to be analyzed as w?ﬂ uted data ﬁ 38 €ring based on sampling densi yfe?] ima ebs.
as evaluation and visualization of the discovered knowledge ' KDEC €ach data source transmits an estimate of the prob-
The large variety of data mining techniques which have bee bility density function _of its local data toa helpe_r site, and_
developed over the past decade include: methods for patterrpc egecm;]tes a d?lnj'ty based clustenr;]g ﬁlgokr)ltr_}mbth:?]t IS
based similarity search, cluster analysis, decision-tree bas |}/en fyt ehovera I ensf|tyhes|t|ma|1te, which is built by the
classification, generalization taking the data cube or attribute?©.Per from the samples of the local densities.

; . g - - The paper is organized as follows. In Section 2 we de-
?gﬁg;ee? ;leigtg'cén approach, and mining of association rUIeSscribe related work and highlight differences with respect to

The increasing demand to scale up to massive data segéjr aé)prodagh. Selcuon .3 and_4 r;lresent t_he KDEC lsc(l;emerz]to
which are inherently distributed over networks with limited d'Striouted data clustering. Finally, Section 5 concludes the
bandwidth and computational resources has led to method¥?Pe" and outlines ongoing and future research work.
for parallel and distributed knowledge discovdiargupta
et al, 2004. The related pattern extraction problem in dis- 2 Related work
tributed knowledge discovery is referred totistributed data  In [Johnson and Kargupta, 199%tree clustering approach is
mining Distributed data mining is expected to perform par-taken to build a global dendrogram from individual dendro-
tial analysis of data at individual sites and then to send thgrams that are computed at local data sites subject to a given
outcome as partial result to other sites where it is sometimeset of requirements. In contrast to the approach presented in
aggregated to the global result. this paper, the distributed data sets are assumed to be hetero-
One of the most common approaches of business applicgeneous, therefore every site has access only to a subset of
tions to perform distributed data mining is to centralize dis-the features of an object. The proposed solution implements



a distributed version of the single-link clustering algorithm of density estimation based clustering.

which generates clusters that are substantially different from ) ) i )

the ones generated by density-based methods. In particula¥;2 Density estimation based clustering

it suffers from the so-called chaining effect, by which anyIn density estimatiofDE) based clustering the search for
of two well separated and internally homogeneous groups ofiensely populated regions is accomplished by estimating a
objects connected only by a dense sequence of objects are &p-called probability density function from which the given
garded as a single clustéKarguptaet al, 2001 proposes a data set is assumed to have arisen. Many techniques for
technique for distributed principal component analysis, Col-DE-based clustering are available from the vast KDD liter-
lective PCA. Itis shown that the technique satisfies efficiencyature[Ankerstet al., 1999; Esteet al., 1996; Schikuta, 1996;
and data security requirements and can be integrated with exinneburg and Keim, 199&nd statistic§Silverman, 1985
isting clustering methods in order to cluster distributed, high4n both areas, the proposed clustering methods require the
dimensional heterogeneous data. Since the dimensionaligomputation of a non-parametric estimation of the density
of the data is reduced prior to clustering by applying PCA function from the data. One important family of non-
the approach is orthogonal to ours. Another related researqharametric estimates is known lesrnel estimatorsThe idea
direction deals with incremental clustering algorithms. Theis to estimate a density function by defining the density at
BIRCH [Zhanget al, 1994 and related BUBBLE method any data object as being proportional to a weighted sum of
[Ganti et al, 1999, compute the most accurate clustering, all objects in the data set, where the weights are defined by
given the amount of memory available, while minimizing the an appropriately chosen kernel function. In the following
number of 1/O operations. It uses a dynamic index strucwe introduce kernel-based density estima{iBarzen, 1962;
ture of nodes that store synthetic, constant-time maintainablgilverman, 198p and our approach to density estimation
summaries of sets of data objects. The method is sufficientlpased clustering.

scalable requirin@(NlogN) time and linear I/O. However, Let us assume a s&= {X |i=1,...,N} C R" of data
since it uses the centroid to incrementally aggregate objectgoints or objects. Kernel estimators originate from the in-
the method exhibits a strong bias towards globular clustersuition that the higher the number of neighbouring data ob-
IncrementalDBSCANEsteret al, 1999 is a dynamic clus- jects% of some given objeck € R", the higher the density
tering method supporting both insertions and deletions, whichit this objectX. However, there can be many ways of cap-
is shown to be equivalent to the well-known static DBSCAN turing and weighting the influence of data objects. When
algorithm. Since in turn DBSCAN can be shown to be equiv-given the distance between one data objeahd anotheg;
alent to a method based on density estimation when the kerngk an argument, the influencesfmay be quantified by us-
function is the square pulse and the clusters are density-baséfg a so called kernel function. Rernel function KXx) is
IncrementalDBSCAN is less general than methods based aa real-valued, non-negative function &which has finite

kernel density estimates. Its time complexityd@NlogN). integral overR. When computing a kernel-based density es-
timation of the data se$, any elemen¥; in Sis regarded
3 Data Clustering as to exert more influence on sorke= R" than elements
i which are farther fronX than the element. Accordingly,
3.1 The cluster analysis problem kernel functions are often non-increasing wiih. Promi-

Cluster analysisis a a descriptive data mining task which nent examples of kernel functions are the square pulse func-
aims at decomposing or partitioning a usually multivariatetion %(sign(er 1) —sign(x— 1)), and the Gaussian function
data set into groups such that the data objects in one gro L exp(—%xz). 1

Tt

oo et groups. Theraors. 3 s Aoty |y kemelbased densiy estimal | ): B . i
' ! defined, modulo a normalization factor, as the sum over all

is a mapping from any data sBof objects to alusteringof data objectg; in Sof the distances betwe&nandX, scaled by

S that is, a collection of pairwise disjoint subsetsofClus- . : ;
tering techniques inherently hinge on the notion of distanc%];i(iitgm&,Ca”edwmdow width and weighted by the kernel

between data objects to be grouped, and all we need to know
is the set of interobject distances but not the values of any of N d(%.%)
the data object variables. Several techniques for data cluster- dx.n[S(X) = Z\K ( i ) ) (1)
ing are available but must be matched by the developer to the ' i= h

objectives of the considered clustering td€cabmeier and  The influence of data objects and the smoothness of the
Rudolph, 2002 In partition-based clustering, for example, estimate is controlled by both the window widthand the

the task is to partition a given data set into multiple disjointshape of kernek: h controls the smoothness of the estimate,
sets of data objects such that the objects within each set ajghereask determines the decay of the influence of a data
as homogeneous as possible. Homogeneity here is capturggject according to the distance. Even if the nunief data

by an appropriate cluster scoring function. Another optiongpjects is very large, in practice it is not necessary to compute
is based on the intuition that homogeneity is expected to bg distances for calculating the kernel density estimate at a
high in densely populated regions of the given data set. Corgjyen object. In fact, the value of commonly used kernel

sequently, searching for clusters may be reduced to searchifgnctions is negligible for distances larger than a feunits;
for dense regions of the data space which are more likely to

be populated by data objects. That leads us to the approach Wherevx € R\ {0} : sign(x) = x/|x|, and sigri0) = 0.




it may even be zero if the kernel has bounded support, as Algorithm 1 DE-cluster: Clustering based on density estima-
is the case, for example, for the square pulse. Using kernetion

based density estimation, it is straightforward to decompos@nct DEGradjent(K SK(), h) =
the clustering problem into three phases as follows. foreachi € SNQ (k,X) do

1. Choose a window width and a kernel functiok. g:=9g+ (X —X)*K(d(X,%)/h) od

2. Compute the kernel-based density estinmixtg,[S/(X) 9. o B
from the given data set. fu%ct Ué?hﬂi((il)a SK(),h) =
=Sge

3. Detect regions of the data space where the value of the ._ DEGradient(%,S K, h) / | DEGradient(%,S K, h)||
estimate is high and group all data objects of space re- g o (1 X+6*SR’ad1’u7 (K.%) #V). T

gions into corresponding clusters. proc FixedPoint(i SK(),h C)
In the literature, many different definitions of cluster have C.setVisited (i)
been proposed formalizing the clusters referred to in step 3 j:= Uphill (i,S K, h)

above. Adensity-basedluster[Esteret al, 1994 collects if C.clustered ()

all data objects included in a region where density exceeds  then C.setLabel (i,C.getLabel (j))

a threshold. Center-definedtlusters[Hinneburg and Keim, elseif C.visited(j) then C.setLabel(i, j)

1999 are based on the idea that every local maximunp of elseFixedPoint(j,S K,h,C)
corresponds to a cluster including all data objects which can C.setLabel (i,C.getLabel (j))
be connected to the maximum by a continuous, uphill path in fi

the graph off. Finally, anarbitrary-shapecluster[Hinneb- fi B

urg and Keim, 199Bis the union of center-defined clusters  C.setClustered(i).

having their maxima connected by a continuous path whosgroc DECluster (SK (),h,k,C)

density exceeds a threshold. _ for i := 1to S.count do
Algorithm 1 (DE-cluster) implements the computation of if =C.clustered (i) then FixedPoint (i, S K,h,C) fi

center-defined clusters by a climbing procedure driven by the 4.

density estimate. The main procedureDECluster, taking T

as inputs an instancgof the class of data objects, the kernel

function K, the window widthh, and returning a clustering o . ) )

represented b, which stores a mapping from eaghto ~ €duipping the class @with a spatial access method Ilk_e the

the unique integer label of’s cluster. It is assumed th& KD-, or MVP-, or M-tree. Therefore, the time complexity of

is an instance of a class which provides the following meth-PECluster is O(NG(N)), whereq(N) is the cost of & near-

ods: get(i) to access object; given indexi, NQ (k,X) and est nelghbqur query in any such access method. Note that in

Radius(k,X) to retrieve, giverk € R, the indexes and maxi- Many practical caseg(N) is very close to log\.

mum distance oK's k nearest neighbourdJphill computes

the steepest direction on the graph of the estimated density & Distributed Data Clustering

the versor of its gradient, computed by functibEGradient The bod P P

. . ) X y of work on applications of data clustering in dis-
(cf. [I—_hnneburg and Keim, 199;.3 Uphill then movesinthat i teq environments, the problem of so callgidtributed
direction a fractiord < 1 of the distanc& Radius (k,) of the *  gata ¢lustering(DDC), is comparatively small. In this sec-
kth nearest nﬁ;)ghbc_)ur ?’fﬁmd fma;:lydreturn.s the index of thed tion we adopt the kernel density estimation based clustering
nearest neighbour i8 of the reached position. Every neste approach presented above for the distributed case assuming

call to FixedPoint marks the current objea} as visited and - 5 q4eneous data, which means that a data object cannot be
calls Uphill to get the index of the next data objegt If ?plit across two sites.
a

such object has already been visited, the proximity of a loc
maximum has been reached ani taken as new clusterla- 4.1 The DDC Problem
bel. Otherwis€; is inductively assumed to lie at the bottom
end of a path leading to the proximity of a local maximum
and to be already labeled accordingly.Xjfis not marked as ; .
clustered, a recu¥sive call ensures tgh)étxt!he assumption holdd 7= 1:-:--N} € R" be a data set of objects. Léj,j =
The complexity of the DE-cluster algorithm is that of call- =:---+M, beé afinite set obites Each S'td,\;i stores one data
ing N = ScounttimesFixedPoint. At the beginning of every setDj, and it will be assumed th&= (JjZ; Dj. The DDC
iteration in DECluster, the sets of clustered and visited ob- Problem is to find a site clustering; residing in the data
jects are equal FixedPoint is never called with a clustered spaceoLj, for j=1,...,M, such that
object as argument, and visits unclustered objects at mostj). Cj = {CNDj:Cec 4(S)} (correctness requirement
once. Therefore, even if the number of visited data object?.. i o o i
in one call ofFixedPoint is bounded only by, the number  ()- TImeé and communications costs are minimizesifi¢
of visited data objects in all calls is still on. For each ciency requiremeit
visited object a singlé&-nearest neighbour query suffices to(iii). Atthe end of the computation, the size of the subse$ of
compute the gradient and the next uphill object. The methods  which has been transferred out of the data space of any
NQ(-,-) andRadius(-,-) can be efficiently implemented by siteLj is minimized privacy requirement

We define the problem dfomogeneous distributed data clus-
"tering for a clustering algorithn? as follows. LetS= {X; |



The traditional solution to the homogeneous distributed datés immediate to see by (2) that addivity holds for the sampled
clustering problem is to simply collect all the distributed dataforms:

setsD; into one centralized repository where their unisn M
is computed, and the clustering of the unionS is com- b9 = Z 4(Dj] i=1,...,M. (4)
puted and transmitted to the sites. Such approach, however, =i

does not satisfy our problem’s requirements both in terms of o
privacy and efficiency. We therefore propose a different ap-Therefore, after receiving the sampled forfiD;] of the
proach yielding a kernel density estimation based clusterind! density estimates, the helper site can compute by (4) the

scheme, called KDEC. sampled form of the overall estimate and transmit it to the
sitesLj. SitesL; can then cluster local data with respect to the
4.2 The KDEC Scheme for DDC overall density estimate, using the gradient of the sampling

The key idea of the KDEC scheme is based on the follow-series
ing observation: Although the density estimate computed on
each local data set gives information on the distribution of
the objects in the data set, it conceals the objects themselves.
Moreover, the local density estimate can be coded to provid@here Sin¢x) = M, singx?), and
a more compact representation of the data set for the purpose
of transmission. In the sequel, we tacitly assume that all sites ) 1 if x=0,
L; agree on using a global kernel functighand a global sing(x) = {slm‘lx otherwise
window width h. We will therefore omitk andh from our . o ) ’
notation, and writdp[S|(X) for $x n[S(X). Density estimates &S needed in the hill-climbing function. .
in the form of Equation (1) are additive, i.e. the global den- We briefly discuss the extent to which the series (5) can
sity estimateh[S(X) can be decomposed into the sum of thebe used to represedtfS(x). It is well known that, under
site density estimates, one estimate for every datB set mild conditions, sampling a functiog(x) is an invertible
M M transformation if, for every coordinate=1,...,n, there is
D=3 3 K (M) =y eDI®. @ @ frequencyf () such that the Fourier transform gfdiffers
=1% €D, h = from zero only in the interval—f() ()], and the samples

Thus, the local density estimates can be transmitted to an@f€ computed with a period not greater thidh= 1/(2f())
summed up at a distinguishéelper siteyielding the global ~ (cf. [Higgins, 199¢). Under these assumptions, the value of
estimate which can be returned to all sites. Eachlsitmay the sampling series computedkaqualsg(X). Unfortunately,
then apply, in its local data space, the hill-climbing techniquemost popular kernel functions (hence summations of kernel
of Algorithm 1 (DE-cluster) to assign clusters to the local datafunctions) do not satisfy these hypotheses since the support
objects. There is nevertheless a weakness in such a plan: tRétheir Fourier transform is unbounded. Consequently sam-
definition of a density estimate explicitly refers to all the datapPling density estimates yields an information loss. However,
objects%. Hence, knowing how to manipulate the estimateit can be shown that the Fourier transform of a kernel density
entails knowing the data objects, which contradicts the priestimate is negligible everywhere except fof)| not greater
vacy requirement. However, only an intensional, algebrai¢han 1/h. Therefore, the global density estimate can be re-
definition of the estimate includes knowledge of the data ob€onstructed from its samples by (5) introducing only a small
jects. Multidimensional sampling theory provides the basiserror if 1) < h/2.
for an alternative extensional representation of the estimate It is worth noting that the infinite series (5) need not be ap-
which makes no explicit reference to the data objects. proximated, if it has finitely many nonzero terms. The latter
The theoretical idea of sampling is to represent a functiorcase holds if the used kernel function has a bounded support,
f by asampling serigsthat is, a summation of suitable ex- since the density estimate will also have bounded support. If,
pansion functions weighted by the valuesfoht a discrete however, the kernel function has unbounded support, like the
subset of its domaifHiggins, 1996. In the following, letthe  Gaussian kernel, then the density estimate can be approxi-

> #s9SinaDiag[t] *-(X-DiaglZ-1)),  (5)

2e7n

i th coordinate ok € R" be denoted by, and letDiag[td],  mated by regarding its value to be zero everywhere except
d=[u®,...,uMT e R", denote then x n diagonal matrix inside an appropriately chosen bounded region. _
having diagonall, i.e., defined byDiag[t]ij = 0 if i # |, According to this approach, we propose the following al-

gorithmic KDEC scheme for computing the kernel density es-

i =yl =W (MT e r"
Diag[Ul = u™V. Further left = [T'%,..., T*] € R" a vector timation based clusters for local data spacdsl alistributed

of sampling periodsThesampled fornof ¢ [ (X) at intervals

= n . data sited j (see Algorithm 2). Every local site runs the pro-
Uis the sequenceds(S}, 2€ 7 ',deflnid by cedureSiteDECluster whereas the helper site ruiielper.
$2[S =[S (Diag[Z - 1), (3)  SiteDECluster is passed a referen¢¢ to the helper and the

where- is the inner product between vectors. TherefdS  local data seD, and returns a clustering in a class instance
is the sequence of the values ®fS|(X) at all the real,n-  C. Helper is passed a list of referencésto the local sites.
dimensional vectors whoséh coordinates are spaced by a The procedureSiteNegotiate carries out a negotiation with
multiple of thei th sampling period(),i =1,...,n. Thesam- the other local sites througHelperNegotiate at the helper
pled forms of the local density estimates are defined in a simsite to determine the sampling periotisthe bounding cor-
ilar way by §;[Dj] = §[Dj|(Diag[Z - T), for j =1,...,M. It ners of the sampling rectangte, 7, < Z", the kerneK, and



Algorithm 2 KDEC: distributed clustering based on density vances a fractiod of the gradient in its direction, if the gradi-

estimation

funct Sample(D,T,71,7%,K(),h) =
s.setCorners(Z1,7)
foreachZ € Rectangle(s.getCorners())
do s.Add(Z, DE(Diag[Z - T,D,K,h)) od
S.
funct Uphill (X, T, GlobalSam) =
if || SeriesGradient (X,T, GlobalSam)|| > €
then X+ &« SeriesGradient (X, T, GlobalSam)
elsex fi.
funct FixedPoint (X, D, GlobalSam, C)
y := Uphill (X, T, GlobalSam)
g:= D.RangeQ (3,Y)
if Ji € q: C.clustered(i) then Id := C.getLabel (i)
elsify =X
then Id := D.Add (X)
elseld := FixedPoint (Y, D, GlobalSam,C)

fi
foreachi € D.RangeQ (9,X)
do C.setLabel (i,Id); C.setClustered(i) od
Id.
proc SiteDECluster(D,H,C) =
SiteNegotiate(H,T,71,7,K, h)
Send(H,Sample(D,_fil,_Z'z, K, h))
GlobalSam := Receive(H)
for i :=1to D.count do
if = C.clustered(i)
then FixedPoint (X,D, GlobalSam,C) fi

od.
proc Helper(L) =
HelperNegotiate(L)
for j:=1to L.count do
Sam := Receive(L.get(]))
foreachZ € Rectangle(Sam.getCorners())
do GlobalSam.Sum(Z, Sam.get(Z)) od

od

for j :=1to L.count do Send(GlobalSam, L.get(j)) od.

ent’s norm exceeds a threshealdf a 3-neighbourhood of the
object returmed byJphill contains an already clustered data
object, the current cluster labkl is set from that object’s la-
bel. Otherwise, checking whethélphill returned the same
space object signals tBixedPoint that the proximity of the
local maximum has been reached. The maximum is marked
by adding the current space obj@cts a dummy object to the
local data set; this ensures that subsequent paths converging
to the same local maximum will use the same cluster label
as the current path. Methdd.Add(-) returns the identifier

of the added object, which is used as current cluster label. If
neither case holds, the laklel is obtained by a recursive call.
Finally, all objects in a small neighbourhood of the current
object are labeled byd. Note that adding dummy objects
has effect only on the range queries, and does not modify the
density estimate.

4.3 Complexity of the KDEC scheme

In terms of the complexity in computation and communica-
tion one crucial point of the KDEC scheme is how many sam-
ples have to be computed and transferred among the sites. In
most cases, to obtain good density estimatesust not be

less than a small multiple of the smallest object distance. As
1 ~ h/2, the number of samples should rarely exceed the
number of objects, if only space regions where the density
estimate is not negligible are sampled. Since the size of a
sample is usually much smaller than the size of a data ob-
ject, the overall communication costs of our DDC approach
will be in most cases significantly lower than in a centralized
approach. Of course, the precise humber of samples depends
on the bounding region that is being sampled by every site. In
Algorithm 2 the sitd_; determines autonomosly the rectangle
that contains the computed samples.

The computational costs of the KDEC scheme in terms of
used CPU cycles and 1/0O do not exceed the one in the cen-
tralized approach where clustering is performed on data col-
lected in a single repository. The computational complexity is
linear in the number of samples. The precise cost of compu-
tation of any KDEC-based DDC algorithm as an instance of
the proposed scheme largely depends also on the used kernel

the window widthh. The negotiation procedures contain ap-function and local clustering algorithm. The DE-cluster algo-
propriate handshaking primitives to ensure that all sites parrithm we developed for the KDEC scheme in Section 3.2 is

ticipate and exit negotiations only if an agreement has beegf complexityO(Ng(N)), whereq(N) is the cost of a nearest
reached. Each local site computes the sampled form of thgeighbour query (which in practical cases is close td\pg
estimate ofD, by calling functionSample, and sends it to  Algorithm 2 implements a slightly different approach in the
the helper. (FunctioE computes the density estimate and pj||-climbing function than Algorithm 1, since the function

is omitted for brevity.) The helper receives the sampled esgoes not use data objects to direct the uphill path. How-
timates, sums them by sampling indexes into a global samever, preliminary results of experiments conducted on a pro-
ple, and returns it to all sites. Procedusesid andReceive  totype implementation show good scalability of the approach,

implement appropriate blocking and handshaking to ensurg, terms of number of executed range queries.
the transmission takes place. Each local site uses the global

sample in functiongFixedPoint and Uphill to compute the :
values of the gradient of the global density estimate. Func—5 Conclusion
tion SeriesGradient can be easily derived from (5). Local Due to the explosion in the number of autonomous data
sites perform a DE-cluster algorithm to compute the corresources there is a growing need for effective approaches to
sponding local data clusters. The details of the hill-climbingdistributed knowledge discovery and data mining. In this pa-
strategy are however different from Algorithm 1 because theer we have presented KDEC, a hovel scheme for distributed
sites are allowed access to local data objects dimill ad-  data clustering which computes the density estimation, to per-



form the clustering, from sampled forms of local densities afHinneburg and Keim, 1998Alexander
each data source site.

The approach exploits statistical density estimation and in-
formation theoretic sampling to minimize communications
between sites. Moreover, the privacy of data is preserved Discovery and Data Mining (KDD-98)pages 58-65,
to a large extent by never transmitting data values but ker- New York City, New York, USA, 1998. AAAI Press.

nel based density estimation samples outside the site of Or[:Johnson and Kargupta, 199€rik Johnson and Hillol Kar-
gin. The approach does not require CPU and I/O costs sig- gypta. Collective, hierarchical clustering from distributed
nificantly higher than a similar centralized approach and its heterogeneous data. In M. Zaki and C. Ho, editbesge-
communication costs may be lower. Ongoing research fo- gcgle Parallel KDD Systemaecture Notes in Computer

cuses in particular on implementations of a multiagent system  gejence, pages 221-244. Springer-Verlag, 1999.
for KDEC-based distributed data clustering in a peer-to-pee ’ '

network, and investigation on methods to mitigate the risk OIKarguptaet al, 2004 H. Kargupta, B. Park, D. Hersh-

security and privacy violations in distributed data mining en- Derger, and E. JohnsonAdvances in Distributed and
vironments. Parallel Knowledge Discoverchapter 5, Collective Data

Mining: A New Perspective Toward Distributed Data Min-
ing, pages 131-178. AAAI/MIT Press, 2000.

[Karguptaet al, 2001 H. Kargupta, W. Huang, S. Krish-

Hinneburg and
Daniel A. Keim. An efficient approach to clustering in
large multimedia databases with noise. Rroceedings
of the Fourth International Conference on Knowledge
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