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Bootstrapping NE classification 
based on Michael Collins and Yoran Singer, EMNLP 1999

• The task: to learn a decision list to classify strings as 
person, location or organization

R1 : if features then person
R2 : if features then location
R3 : if features then organization
…
Rn : if features then person

… says Mr. Gates, founder of Microsoft …

… says Mr. Gates, founder of Microsoft …
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Bootstrapping NE classification 
based on Michael Collins and Yoran Singer, EMNLP 1999

• The task: to learn a decision list to classify strings as 
person, location or organization

R1 : if features then person
R2 : if features then location
R3 : if features then organization
…
Rn : if features then person

… says Mr. Gates, founder of Microsoft …

… says Mr. Gates, founder of Microsoft …

The learned decision 
list is an ordered 
sequence of if-then 
rules
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Outline of Bootstrapping Co-Training

• Parse an unlabeled document set

• Extract each NP, whose head is tagged as proper 
noun

• Define a set of relevant features, which can be 
applied on extracted NPs

• Define two separate types of rules on basis of 
feature space

• Determine small initial set of seed rules

• Iteratively extend the rules through co-training
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Two Categories of Rules

• The key to the method is redundancy in the two 
kind of rules.

                        …says Mr. Cooper, a vice president of…

Paradigmatic or spelling Syntagmatic or contextual

Huge amount of unlabeled data gives us these hints!
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The Data

• 971,746 New York Times sentences were parsed 
using full sentence parser.

• Extract consecutive sequences of proper nouns 
(tagged as NNP and NNPS) as named entity 
examples if they met one of following two 
criterion.

• Note: thus seen, NNP(S) functions as a generic NE-
type, and the main task is now to sub-type them.
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Kinds of Noun Phrases

1. There was an appositive modifier to the NP, whose 
head is a singular noun (tagged NN).

• …says [Maury Cooper], [a vice president]…

2. The NP is a complement to a preposition which is 
the head of a PP.  This PP modifies another NP 
whose head is a singular noun.

• … fraud related to work on [a federally 
funded sewage plant] [in [Georgia]].
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(spelling, context) pairs created

• …says Maury Cooper, a vice president…

• (Maury Cooper, president)

• … fraud related to work on a federally funded 
sewage plant in Georgia.
• (Georgia, plant_in)
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Features
representing examples for the learning algorithm

• Set of spelling features

• Full-string=x	

 	

 (full-string=Maury Cooper)

• Contains(x)	

 	

      (contains(Maury))

• Allcap1            	

      IBM

• Allcap2 	

 	

            N.Y.

• Nonalpha=x          	

 A.T.&T. (nonalpha=..&.)

• Set of context features

• Context = x           	

 (context = president)

• Context-type = x	

appos or prep
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Features
representing examples for the learning algorithm

• Set of spelling features

• Full-string=x	

 	

 (full-string=Maury Cooper)

• Contains(x)	

 	

      (contains(Maury))

• Allcap1            	

      IBM

• Allcap2 	

 	

            N.Y.

• Nonalpha=x          	

 A.T.&T. (nonalpha=..&.)

• Set of context features

• Context = x           	

 (context = president)

• Context-type = x	

appos or prep

It is strongly assumed that the features can be partitioned 
into two types such that each type alone is sufficient for classification
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Examples of named entities and 
their features
Sentence Entities(Spelling/Context) (Active) Features

But Robert Jordan, a partner 
at Steptoe & Johnson who 
took …

Robert Jordon/partner Full-string=Robert_Jordan, contains(Robert), contains
(Jordan), context=partner, context-type=appos

Steptoe & Johnson/partner_at
Full-string=Steptoe_&_Johnson, contains(Steptoe), 
contains(&), contains(Johnson), nonalpha=& , 
context=partner_at, context-type=prep

By hiring a company like 
A.T.&T. … A.T.&T./company_like Full-string= A.T.&T., allcap2, nonalpha=..&. , 

context=company_like, context-type=prep

Hanson acquired Kidde 
Incorporated, parent of Kidde 
Credit, for …

Kidde Incorporated/parent
Full-string=Kidde_Incorporated, contains(Kidde), 
contains(Incorporated), context=parent, context-
type=appos

Kidde Credit/parent_of Full-string=Kidde_Credit, contains(Kidde), contains
(Credit), context=parent_of, context-type=prep
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Rules

Feature → NE-type, h(Feature,NE-type)

h(x,y): the strength of a rule, defined as

is a smoothing parameter

k = #NE-types

where

The rules ordered according to their strengths h form a 
decision list: the sequence of rules are tested in order,  

and the answer to the first satisfied rule is output.
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Rules

Feature → NE-type, h(Feature,NE-type)

h(x,y): the strength of a rule, defined as

is a smoothing parameter

k = #NE-types

where

Is an estimate of 
the conditional 
probability of the 
NE-type given the 
feature, P(y|x)

The rules ordered according to their strengths h form a 
decision list: the sequence of rules are tested in order,  

and the answer to the first satisfied rule is output.

Two separate types 
of rules:
Spelling rules
Context rules
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7 SEED RULES	



• Full-string = New York	

    → Location

• Full-string = California	

     → Location

• Full-string = U.S.	

 	

     → Location

• Contains(Mr.) 	

	

          → Person

• Contains(Incorporated)	

 → Organization

• Full-string=Microsoft 	

      → Organization

• Full-string=I.B.M. 	

	

      → Organization
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• Full-string = New York	

    → Location

• Full-string = California	

     → Location

• Full-string = U.S.	

 	

     → Location

• Contains(Mr.) 	

	

          → Person

• Contains(Incorporated)	

 → Organization

• Full-string=Microsoft 	

      → Organization

• Full-string=I.B.M. 	

	

      → Organization

Note: only one type of rules 
used as seed rules, and all 
NE-types should be covered
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The Co-training algorithm
1. Set N=5 (max. # of rules of each type induced in each iteration)

2. Initialize: Set the spelling decision list equal to the set of seed rules. Label the 
training set using these rules.

3. Use these to get contextual rules.    (x = feature, y = label)

1. Compute h(x,y), and induce at most N * K rules 

2. all must be above some threshold pmin=0.95

4. Label the training set using the contextual rules.

5. Use these to get N*K spelling rules (same as step 3.)

6. Set spelling rules to seed plus the new rules.

7. If N < 2500, set N=N+5, and goto step 3.

8. Label the training data with the combined spelling/contextual decision list, then 
induce a final decision list from the labeled examples where all rules (regardless of 
strength) are added to the decision list.
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Example

• (IBM, company)
• …IBM, the company that makes…

• (General Electric, company)     
• ..General Electric, a leading company in the area,…

• (General Electric, employer )
• … joined General Electric, the biggest employer…

• (NYU, employer)
• NYU, the employer of the famous Ralph Grishman,…
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Why Separate Spelling, Context Features?

Requirements:

1. Classification problem f: X → Y
1. f1(x1,i) = f2(x2,i) = yi	

 for i = 1…m

2. f1(x1,i) = f2(x2,i) 	

 for i = m+1…n
	


(softer criteria requires f1 and f2 to minimize their disagreements → 
similarity)

2. Can partition features X into 2 types of features x = 
(x1,x2)

3. Each type is sufficient for classification

4. x1,x2 not correlated to tightly (e.g., no deterministic 
function from x1to x2)

Can use theory behind co-training 
to explain how algorithm works.
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Why Separate Spelling, Context Features?

Requirements:

1. Classification problem f: X → Y
1. f1(x1,i) = f2(x2,i) = yi	

 for i = 1…m

2. f1(x1,i) = f2(x2,i) 	
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(softer criteria requires f1 and f2 to minimize their disagreements → 
similarity)

2. Can partition features X into 2 types of features x = 
(x1,x2)

3. Each type is sufficient for classification

4. x1,x2 not correlated to tightly (e.g., no deterministic 
function from x1to x2)

Can use theory behind co-training 
to explain how algorithm works.

fi must correctly 
classify labeled 
examples, and 

must agree with 
each other on 
unlabeled ex.

3. & 4. Say that features 
can be partitioned.

Open question: best 
similarity function?
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The Power of the Algorithm

• Greedy method

• At each iteration method increases number of 
rules

• While maintaining a high level of agreement 
between spelling & context rules

For n= 2500: 
1. The two classifiers give both labels on 49.2% of the unlabeled data
2. And give the same label on 99.25% of these cases

 The algorithm maximizes the number of unlabeled examples on 
which the two decision lists agree.
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Evaluation

• 88,962 (spelling, context) pairs.

• 971,746 sentences

• 1,000 randomly extracted to be test set.

• Location, person, organization, noise (items outside the 
other three)

• 186, 289, 402, 123 (- 38 temporal noise).

• Let Nc be the number of correctly classified examples

• Noise Accuracy: Nc / 962 

• Clean Accuracy:  Nc /(962-85)
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Results
Algorithm Clean Accuracy Noise Accuracy

Baseline 45.8% 41.8%

EM 83.1% 75.8%

Yarowsky 95 81.3% 74.1%

Yarowsky Cautious 91.2% 83.2%

DL-CoTrain 91,3 % 83,3 %

CoBoost 91.1% 83.1%
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Remarks

• Needs full parsing of unlabeled documents

• Restricted language independency

• Need linguistic sophistication for new types of 
NE

• Slow training

• In each iteration, full size of training corpus has 
to be re-labeled
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