
Recognizing Textual Entailment Using a Subsequence Kernel Method

Rui Wang and Günter Neumann

LT-lab, DFKI
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{wang.rui, neumann}@dfki.de

Abstract
We present a novel approach to recognizing Textual
Entailment. Structural features are constructed from abstract
tree descriptions, which are automatically extracted from
syntactic dependency trees. These features are then applied
in a subsequence-kernel-based classifier to learn whether an
entailment relation holds between two texts. Our method
makes use of machine learning techniques using a limited
data set, no external knowledge bases (e.g. WordNet), and
no handcrafted inference rules. We achieve an accuracy of
74.5% for text pairs in the Information Extraction and
Question Answering task, 63.6% for the RTE-2 test data,
and 66.9% for the RET-3 test data.

Introduction

Recognizing Textual Entailment (RTE) is a concrete task
based on a relationship between two plain texts, Text (T)
and Hypothesis (H). If the meaning of H can be inferred
from the meaning of T, we say that T entails H. This task
can be viewed as a binary classification task or as a
probabilistic function mapping the pair T-H to a value
between zero (not entailed) and one (fully entailed).
Generally, the application of RTE falls into one of the
following two categories: building a semantic model with
the ability to perform inferences or improving the current
NLP applications, cf. (Zanzotto and Moschitti, 2006).

From a linguistic perspective, several possible types of
textual entailment exist: syntactic entailment, like “I’m
eating at home” entails “I’m eating”; semantic entailment,
like “He loves her” entails “He likes her”; implicature, like
“He beat Mary” entails “Mary is injured”.

From an NLP perspective, the goal of RTE is to find a
common solution for several real-world NLP applications
(Dagan and Glickman, 2004), which includes Information
Extraction (IE), Information Retrieval (IR), Question
Answering (QA), and SUMmarization (SUM). This is also
the focus of the RTE challenges (Bar-Haim et al., 2006)
organized by the PASCAL network in the last two years.

Table 1 displays several examples from the RTE-2 data
set. The first pair (id=13) belongs to syntactic entailment.
The most relevant knowledge here is “[LN1] city of [LN2]”
entails “[LN2] is located in [LN1]”, although T focuses on
the earthquake event. The last pair (id=534) is a similar
case with different structures in T. On the other hand, the

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

third pair (id=133) requires not only an understanding of
concepts like “buy” and “takeover”, but also to understand
the usage of “said”, which is a case of semantic entailment.

These aspects motivate us to explore specialized
entailment strategies for different NLP tasks. In other
words, we want to find out the potential connections
between entailment relations belonging to different
linguistic layers for different applications.

In this paper, we propose a novel approach towards
structure-oriented cases based on observations of the data:
1) H is usually textually shorter than T, 2) not all the
information in T is relevant for the entailment relation, 3)
the dissimilarity of relations among the same topics
between T and H is of great importance. In brief, our
primary method starts from H to T (i.e. in the opposite
direction of the entailment relation), excluding irrelevant
information from T. Then corresponding topics and
relations on both sides are extracted. We represent the
differences between T and H obtained before by means of
a set of closed-class symbols, e.g., part-of-speech tags or
grammatical function symbols. Finally, these acquired
representations (named Entailment Patterns - EPs) are
classified by means of subsequence kernels.

The structure-oriented RTE method is combined with
two robust backup strategies, which are responsible for
those cases that are not handled by the acquired EPs. One
is a similarity matcher applied on top of local dependency
relations of T and H; the other is a simple Bag-of-Words
(BoW) approach that calculates the overlapping ratio of H.
Thus, together with our main method, we make use of
these three approaches to deal with different entailment
cases in the implementation.

Related Work

Conventional methods for the RTE task define measures
for the similarity between T and H either by assuming an
independence between words (Corley and Mihalcea, 2005;
Glickman, Dagan, and Koppel, 2005) in a BoW fashion or
by exploiting syntactic interpretations. (Kouylekov and
Magnini, 2006) propose the use of syntactic tree editing
distance to detect entailment relations. Since they calculate
the similarity between the two dependency trees of T and
H directly, the noisy information may decrease accuracy.
This observation, in fact, motivated us to start from H
towards the most relevant information in T.

Logical rules (Bos and Markert, 2005) or sequences of
allowable rewrite rules (de Salvo Braz et al., 2005) are
another fashion for tackling the RTE task. Of the best two
teams in RTE-2, one (Tatu et al., 2006) proposed a
knowledge representation model and a logical proof system,
achieving about 10% better performance than the third best
team. The other (Hickl et al., 2006) acquired more training
data from the internet automatically, also achieving about
10% better accuracy than the third best team. Consequently,
obtaining more training data and embedding background
knowledge were expected to be the focus of future research,
as reported in the RTE-2 summary statement. However,
except for the positive cases of SUM, T-H pairs are
normally not very easy to collect automatically; multi-
annotator agreement is difficult to reach on most of the
cases as well. The knowledge-based approach also has its
caveats, since the logical rules mentioned above are
designed manually, and hence require a high amount of
specialized human expertise in different NLP areas.

(Zanzotto and Moschitti, 2006) have utilized a tree
kernel method for cross-pair similarity and showed an
improvement, motivating us to investigate kernel-based
methods. The main difference in our method is that we
apply subsequence kernels on patterns constructed from the
dependency trees of T and H, instead of applying tree
kernels on complete parsing trees. This allows us, on the
one hand, to identify the essential parts that indicate an
entailment relationship, and on the other hand, to reduce
computational complexity.

Preprocessing and Backup Strategies

We are using Minipar (Lin, 1998) as our preprocessing
parser. Our first backup strategy is based on a node-edge-
node representation of the resulting dependency trees that
expresses the local dependency relations found by Minipar,
while the second one is a straightforward BoW method,

which we will not present in this paper, but which you can
find out more about in (Corley and Mihalcea, 2005).

A dependency structure consists of a set of triples. Each
triple is a complex structure of the form <node1, relation,
node2>, where node1 represents the head, node2 the
modifier, and relation the dependency relation. For
instance, the parsing result of H from pair (id=13) in Table
1 is as follows (only some parts are shown):

{<fin:C i shoot:V>, <shoot:V subj Goosen:N>,
<shoot:V obj 69:N>, …}
The inner structure of the nodes consists of the lemma

and the Part-Of-Speech (POS) tag. In the rest of the paper,
T and H will represent either the original texts or the
dependency structures.

Triple Set Matcher
Chief requirements for the backup system are robustness
and simplicity. Accordingly, we try to construct a
similarity function which operates on two triple sets and
determines how many triples of H are contained in T. The
core assumption here is that the higher the number of
matching triple elements, the more similar both sets and
the more likely it is that T entails H. The similarity checker
of two triples makes use of an approximate matching
function:

ArgsMatchreturn

HnTnHnTnelseif

RightMatchreturn

HrTrHnTnelseif

LeftMatchreturn

HrTrHnTnelseif

FullMatchreturn

HnTnHrTrHnTnif

HnHrHnTnTrTnMATCHTRIPLE

:)&(

:)&(

:)&(

:)&&(

:),,,,,(

2211

22

11

2211

2121

==

==

==

===
><><−

Id Task Text Hypothesis Entailment

13 IE

Sunday's earthquake was felt in the southern Indian city of Madras on the
mainland, as well as other parts of south India. The Naval meteorological office
in Port Blair said it was the second biggest aftershock after the Dec. 26
earthquake.

The city of Madras is located in
Southern India .

YES

61 IE
Although they were born on different planets, Oscar-winning actor Nicolas
Cage 's new son and Superman have something in common, both were named
Kal-el .

Nicolas Cage 's son is called Kal-
el .

YES

133 SUM
Verizon Communications Inc. said on Monday it would buy long-distance
telephone company MCI Communications Inc. in a deal worth $6.75 billion,
giving Verizon a foothold in the market for serving large corporations.

Verizon Communications Inc.'s $6.7
billion takeover of long-distance
provider MCI Inc. transformed the
telephone industry.

NO

307 IR Napkins, invitations and plain old paper cost more than they did a month ago. The cost of paper is rising. YES

534 IE
The main library at 101 E. Franklin St. changes its solo and group exhibitions
monthly in the Gellman Room, the Second Floor Gallery, the Dooley Foyer and
the Dooley Hall .

Dooley Foyer is located in Dooley
Hall .

NO

Table 1 Examples from RTE-2

Note that in all cases a successful match between two
nodes means that they have the same lemma and POS tag.
The triple matcher is applied to the series of triple sets of T
and H, ignoring sentence boundaries. The motivation for
returning the different matching cases is to perform a
partial match instead of an exact one. Different cases (i.e.
ignoring either the parent node or the child node, or the
relation between nodes) might provide different indications
for the similarity of T and H. Consequently, the similarity
function can be defined more precisely based on the sum of
the matched triple elements of H divided by the cardinality
of H needed for normalization,

Card(H) is the number of triples in H; a1 to a4 are the
different weights for the different matching cases.

Normalizing the sum of matching elements by the
cardinality of H guarantees that 0 Similarity(T, H) 1.
A value of 0 means that H has nothing in common with T,
a value of 1 means that H is completely covered by T, and
a value in between means that H is partially covered by T.

The weights (i.e. a1 to a4) learned from the corpus in the
later stage imply that the different “amount of missing
linguistic information” influences the entailment relation
differently.

A Structure-Oriented Approach

Our approach is based on the hypothesis that some
particular differences between T and H will block or
change the entailment relationship. When judging the
entailment relation, we initially assume that the
relationship actually holds for each T-H pair (using the
default value “YES”). The following steps are performed:

• Locate keywords (i.e. nouns and verbs) in H, and connect
them by means of the dependency tree in order to extract
the sub-tree. A sub-tree without the inner yield is
defined as a Tree Skeleton (TS), the left-most and right-
most nouns as Foot Nodes (FNs), the verb as Root Node
(RN). The path from a foot node to the root is called a
Spine. Usually, all the keywords are contained in two
spines viz. a left spine and a right spine.

• Locate FNs, RN in T and form the TS of T.

• Generalize the two TSs using Closed-Class Symbols
(CCSs) from a set of a limited size. The set consists of
dependency relation tags, some POS tags, etc.

• Merge the spines obtained for T and H. The parts that do
not match are called a Spine Difference (SD), usually, a
left SD and a right SD.

• Use subsequence kernels to perform the binary
classification on patterns containing the two spine
differences.

Tree Skeleton Extraction
The major motivation for firstly constructing the tree
skeleton of H (TSH) is that H indicates how to extract
relevant parts of T for the entailment relation. Firstly, we
construct a keyword set using all the nouns and verbs in H.
Then we mark them in the dependency tree of H and
extract the sub-tree by ignoring the inner yield. Normally,
the root node of H (RNH) is the main verb of H; all the
keywords are contained in the two spines of TSH.

Then we try to construct a tree skeleton from T (i.e. TST)
using the information of TSH. Before constructing TST, we
need to extend the keyword set to hit the corresponding
nodes in T. Thus, we apply a partial search using stemming
and some word variation techniques on the substring level.
For instance, the extended keyword set for the pair (id=61)
in Table 1 is

{call:V, nicolas:N, nicolas_cage:N, son:N, kal-el:N,
kal:N}
We identify these keywords in T. Since we have two

foot nodes in H, two corresponding foot nodes will be
marked in T accordingly. Starting from these two nodes,
we traverse the dependency tree of T from bottom to top in
order to identify the lowest common parent node, which
we mark as RNT. Note that such a node can be a verb, a
noun or a dependency relation. If the two foot nodes of T
belong to two sentences, a dummy node is created that
connects the two spines.

To sum up, the major pre-requisite for this algorithm is
that both the tree skeleton of H and the tree skeleton of T
have two spines, each containing all the keywords of H. In
practice, according to the experimental results we obtained
from the RTE-2 data set, among all the 800 T-H pairs of
the RTE-2 test set, we successfully extracted tree skeletons
in 296 text pairs, i.e., 37% of the test data is covered by
this step (see section Evaluation).

Spine Generalization and Merging
Next, we collapse some of the dependency relation names
from Minipar to more generalized tag names, like
collapsing <OBJ2> and <DESC> to <OBJ>. We group
together all the nodes that have relation labels like
<CONJ> or <PERSON>, since they either refer to the
same entity or belong to one class of entities sharing some
common characteristics. Lemmas are removed except for
the keywords. Finally, we add all the tags into CCS , the
set of Closed-Class Symbols.

Since a tree skeleton actually consists of two connected
spines (via the common root node), it can be transformed
into a sequential structure. Figure 1 displays an example
corresponding to the second pair (id=61) in Table 1. The
general form of a sequential representation of a tree
skeleton is:

LSP #RN# RSP
where RN is the root node label and LSP refers to the left
spine and RSP to the right spine. Note that, LSP and RSP
either represent the empty sequence (i.e. NULL) or a

)

(

)(

1
),(

43

21

atchNumOfArgsMaMatchNumOfRighta

atchNumOfLeftMaatchNumOfFullMa

HCard
HTSimilarity

×+×+
×+××

=

sequence of (generalized) CCS symbols. On the basis of
this representation, the comparison between the two tree
skeletons is straightforward. In fact, it can be conducted in
two steps: 1) merge the two LSPs by excluding the longest
common prefix, and 2) merge the two RSPs by excluding
the longest common suffix. Then the Spine Difference (SD)
is defined as the remaining infixes, which consist of two
parts, SDT and SDH. Each part can be either empty or a
CCS sequence. For example, the two SDs of the example
in Figure 1 (id=61) are (## is used as a special separator
sign, LSD=Left Spine Difference, RDS=Right Spine
Difference):

LSDT(...) ## LSDH(NULL)

RSDT(NULL) ## RSDH(NULL)

Pattern Representation
We have observed that both the root node and the two
neighboring dependency relations of it in a tree skeleton
(i.e. <SUBJ> or <OBJ>) can play important roles in
predicting the entailment relation as well. Therefore, we
assign them two extra features referred to as Verb
Consistency (VC) and Verb Relation Consistency (VRC).
The former indicates whether two RNs have a similar
meaning or not (e.g. “buy” and “sell” are not consistent),
while the latter indicates whether the relations are
contradicting (e.g. <SUBJ> and <OBJ> are contradicting).
Considering verbs like “to kill”, VRC will essentially
convey the direction of the action, that is, from the subject
to the object.

On top of LSD, RSD, VC, and VRC, we represent the
differences between the tree skeletons TST and TSH by
means of an Entailment Pattern (EP), which is a quadruple
<LSD, RSD, VC, VRC>, where LSD and RSD are either
NULL or CCS sequences; VC is a Boolean value, where
true means that the two root node labels are consistent and
false otherwise; VRC has a ternary value, where 1 means
that both relations are consistent, -1 means at least one pair
of corresponding relations is inconsistent, and 0 means
RNT is not a verb1. The set of EPs actually defines the
feature space for the subsequence kernels.

1 Note that RNH is guaranteed to be a verb, because otherwise the pair
will be delegated to the backup systems.

Subsequence Kernels
We have constructed two basic kernels for handling the
LSD and the RSD part of an EP, and two trivial kernels for
VC and VRC. They are combined linearly into a composite
kernel, which performs the binary classification on them.

Subsequence Kernel. Since all the spine differences SDs
are either empty or CCS sequences, we can utilize
subsequence kernel methods to represent features
implicitly, cf. (Bunescu and Mooney, 2006). Our
subsequence kernel function is,

where T, T’, H, and H’ refer to all spine differences SDs
from T and H; |T|, |T’|, |H|, and |H’| represent cardinalities
of SDs; The kernel function KCCS(CCS, CCS’) checks
whether the two argument CCSs are the same.

Since the RTE task checks the relationship between T
and H, besides the SDs themselves, we need to consider
collocations of some CCS subsequences between T and H
as well.

Subsequence-Collocation Kernel. Essentially, this kernel
evaluates the similarity of T and H by means of those CCS
subsequences appearing on both sides. The kernel function
is as follows:

On top of these two kernels, together with the two trivial
ones (i.e. KVC and KVRC), we use a composite kernel to
combine them linearly with different weights:

In experiments, γ and δ are learned from the training
corpus; α and β are set equal to each other, and currently
both are 1.

Evaluation

We have compared three approaches, the two backup
systems (BoW and Triple Set Matcher - TSM, as baselines)
and the subsequence kernel method plus backup strategies

= =
+

= =
=

><><

||

1

|'|

1'
)

'
,(

||

1

|'|

1'
)

'
,(

)',',,(

H

j

H

j
j

CCS
j

CCS
CCS

K
T

i

T

i
i

CCS
i

CCS
CCS

K

HTHT
esubsequenc

K

= = = =

⋅=

><><
||

1

|'|

1'

||

1

|'|

1'
''),(),(

)',',,(
T

i

T

i

H

j

H

j
jjCCSiiCCS

ncollocatio

CCSCCSKCCSCCSK

HTHTK

VRCVCnCollocatioeSubsequencComposite KKKKK δγβα +++=

Figure 1: Examples of TSs

(SK+BS) in different experiments. The first group of
experiments is based on the RTE-2 and RTE-3 data; and
the second group of experiments exploits data collected
from MUC6, BinRel (Roth and Yih, 2004), and TREC2003.
For the kernel-based classification, we used the classifier
SMO from the WEKA toolkit (Witten and Frank, 1999).
All the numbers shown in the following tables are the
percents of accuracies, except in Table 3, the first and third
rows are the percents of the T-H pairs matched by the main
method.

Experiments on RTE Data
Both RTE-2 and RTE-3 data include the development set
(800 T-H pairs, four tasks, IE, IR, QA, and SUM, and each
task has 200 pairs) and the test set has the same size.
Experiment A1 performs a 10-fold cross-validation (10-CV)
on all the 1600 pairs of RTE-2 data; while Experiment A2
uses the development set for training and the test set for
testing; Experiment B uses the RTE-3 development set for
training and the test set for testing, cf. Table 2:

Systems\Tasks IE IR QA SUM ALL
Exp A1: 10-CV on RTE-2 Dev+Test Set

BoW 502 58.8 58.8 74 60.4
TSM 50.8 57 62 70.8 60.2

SK+BS 61.2 58.8 63.8 74 64.5
Exp A2: Train: RTE-2 Dev Set; Test: RTE-2 Test Set

BoW 50 56 60 66.5 58.1
TSM 50 53 64.5 65 58.1

SK+BS 62 61.5 64.5 66.5 63.6
Exp B: Train: RTE-3 Dev Set; Test: RTE-3 Test Set

SK+BS 58.5 70.5 79.5 59 66.9
Table 2: Results on RTE Data

For the IE task our method SK+BS obtained the highest
improvement over the baseline systems on RTE-2 data,
which suggests that the kernel method seems to be more
appropriate if the underlying task conveys a more
“relational nature.” The improvements for the other tasks
are not so convincing as compared to the more “shallow”
methods realized via BoW and TSM. Nevertheless, the
overall result obtained in experiment A2 would have been
among the top-4 of the RTE-2 challenge. Note that we do
not exploit any additional knowledge source besides the
dependency trees computed by Minipar.

Table 3 shows how SK+BS performs on top of the task-
specific pairs matched by our EPs:

Exps\Tasks IE IR QA SUM ALL
ExpA1:matched 63 18.3 36.3 16.3 33.5
ExpA1:accuracy 64 67.1 66.2 73.9 66.2
ExpA2:matched 64 23.5 44 17 37
ExpA2:accuracy 66.9 70.2 58.0 64.7 64.5

Table 3: Performances of CCS

2 The accuracy is actually 47.6%. Since random guess will achieve 50%,
we take this for comparison.

For the IE and QA pairs, the method SK+BS obtained
the highest coverage. However, for IR and SUM pairs,
although it achieves good accuracies, the number of
covered cases is low, and hence the backup systems will
deal with most of the cases for IR and SUM. According to
the experiments, IE and QA pairs mostly choose TSM as a
backup strategy, while IR pairs choose BoW; and for SUM
pairs, BoW has already achieved the best performance, cf.
Table 2.

Experiments on Additional Data
In order to get a deeper view of our method, we evaluated
our systems using additional data. The results of the
experiments achieved so far suggest that our method works
well for the IE and QA tasks. Therefore, we decided to
collect additional data from relevant sources (MUC,
BinRel, and TREC2003) in order to test how our method
performs for larger training sets.

For IE pairs, we use Named-Entities (NEs) and their
corresponding relation to construct H, and the sentence(s)
containing them to construct T. Negative examples will be
either incorrect NEs or incorrect relations. For QA pairs, H
consists of the question and the answer, and T is just the
original sentence(s) containing the answer. Negative
examples are those which do not have correct answers.

In all, there are new 750 T-H pairs from which our
patterns can match 460 pairs. Table 4 displays the results:

Systems IE
(MUC,BinRel)

QA
(TREC2003) Overall

BoW 62.9 61.4 62.3
TSM 64.9 62.3 63.8
SK 76.3 65.7 74.5

Table 4: Results on Extra Data

The subsequence kernel (SK) method improves in both
of the tasks, especially for the IE pairs. It seems that
although our method can cover most of the QA pairs, the
precision of the EPs still need improvements. We will
discuss the gain and loss in detail in the following
subsection.

Discussions
It seems to be a promising direction to develop task
specific entailment operators. Our structure-oriented
method actually performs a classification on the entailment
cases before doing the predictions. The results have shown
differences in accuracy among pairs of different tasks, cf.
Figure 2. Our subsequence kernel method works
successfully on structure-oriented T-H pairs, most of
which come from IE and QA tasks. If both TST and TSH

can be transformed into two CCS sequences, the
comparison performs well, as is the case for the last
example (id=534) in Table 1. Note that “Dooley Foyer”
and “Dooley Hall” are a coordination, conveyed by the
conjunction “and”. The similar cases, “work for”, a relation
of a person and a company, or “is located in”, a relation

between two location names are normally indicated by the
preposition “of”. Based on these findings, taking into
account the meaning of functional words more carefully
might be helpful in improving RTE. Since the current RTE
results have not been impressive when applying WordNet,
lexical semantics of Closed-Class Word are worth
considering.

Some incorrect cases like the third example (id=133) in
Table 1 suggest that extending the tree skeleton might be
useful. The trick for correctly predicting the entailment
relation in this example is the word “said”, which is not
included in our current version, as we stop at the first
common parent node in the dependency tree.

Of course, our method still has low coverage, even for
IE pairs. Since we have applied some fuzzy matching
techniques on the substring level, “Southern Indian” and
“Southern India” in the first example (id=13) in Table 1
could be matched successfully. However, for person name
abbreviations like “J.D.E.”, it is not trivial to make a
connection with “J.D. Edwards”. A similar problem
happens in temporal expressions like “13th of January
1990” with “Jan. 13, ‘90”, as well. Obviously, we have to
improve the matching strategy.

Besides that, some other missed cases (mostly in the IR
and SUM tasks) contain more than two foot nodes. For
instance, consider the third example (id=133) in Table 1.
The keyword set contains at least two company names, and
other nouns like “telephone” and “industry”. Cases like this
also account for low coverage.

Conclusion and Future Work

Applying different RTE strategies for different NLP task is
a reasonable solution. According to our observations, IE
and QA pairs are more structure-oriented cases, while IR
and SUM pairs are not. We have utilized a subsequence
kernel method to deal with the former group, and applied
backup strategies for the latter group. The result shows the
advantages of our method, as well as areas of future work.
In particular, we will extend the structure of tree skeletons
for handling more complex cases, and will consider lexical
semantic aspects of functional words in more depth.

Acknowledgements

The work presented here was partially supported by a
research grant from BMBF to the DFKI project HyLaP
(FKZ: 01 IW F02) and the EC-funded project QALL-ME.

References

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B. and Szpektor, I. 2006. The Second
PASCAL Recognising Textual Entailment Challenge. In
Proc. of the PASCAL RTE-2 Challenge, pp1-9.
Bos, J. and Markert, K. 2005. Combining Shallow and
Deep NLP Methods for Recognizing Textual Entailment.
In Proc. of the PASCAL RTE Challenge, pp65-68.
Bunescu, R. and Mooney, R. 2006. Subsequence Kernels
for Relation Extraction. In Proc. of the 19th Conference on
Neural Information Processing Systems.
Burger, J. and Ferro, L. 2005. Generating an Entailment
Corpus from News Headlines. In Proc. of the ACL
Workshop on Empirical Modeling of Semantic Equivalence
and Entailment, pp49–54.
Corley, C. and Mihalcea, R. 2005. Measuring the Semantic
Similarity of Texts. In Proc. of the ACL Workshop on
Empirical Modeling of Semantic Equivalence and
Entailment, pp13-18.
de Salvo Braz, R., Girju, R., Punyaka-nok, V., Roth, D.,
and Sammons, M. 2005. An Inference Model for Semantic
Entailment in Natural Language. In Proc. of the PASCAL
RTE Challenge, pp29-32.
Glickman, O., Dagan, I., and Koppel, M. 2005. Web based
Probabilistic Textual Entailment. In Proc. of the PASCAL
RTE Challenge, pp33-36.
Hickl, A., Williams, J., Bensley, J., Roberts, K., Rink, B.
and Shi, Y. 2006. Recognizing Textual Entailment with
LCC’s GROUNDHOG System. In Proc. of the PASCAL
RTE-2 Challenge, pp80-85.
Kouylekov, M. and Magnini, B. 2006. Tree Edit Distance
for Recognizing Textual Entailment: Estimating the Cost
of Insertion. In Proc. of the PASCAL RTE-2 Challenge,
pp68-73.
Lin, D. 1998. Dependency-based Evaluation of MINIPAR.
In Proceedings of the Workshop on Evaluation of Parsing
Systems at LREC 1998.
Roth, D. and Yih, W. 2004. A linear programming
formulation for global inference in natural language tasks.
In Proc. of the 8th Conference on Computational Natural
Language Learning, pp1-8.
Tatu, M., Iles, B., Slavik, J., Novischi, A. and Moldovan,
D. 2006. COGEX at the Second Recognizing Textual
Entailment Challenge. In Proc. of the PASCAL RTE-2
Challenge, pp104-109.
Witten, I. H. and Frank, E. 1999. Weka: Practical Machine
Learning Tools and Techniques with Java Implemen-
tations. Morgan Kaufmann.
Zanzotto, F.M. and Moschitti, A. 2006. Automatic
Learning of Textual Entailments with Cross-pair
Similarities. In Proc. of ACL2006, pp401-408.

Figure 2: Distribution of task-specific pairs.

