
Recognizing Textual Entailment Using a Subsequence Kernel Method 

Rui Wang and Günter Neumann 

LT-lab, DFKI 
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany 

{wang.rui, neumann}@dfki.de 

Abstract 
We present a novel approach to recognizing Textual 
Entailment. Structural features are constructed from abstract 
tree descriptions, which are automatically extracted from 
syntactic dependency trees. These features are then applied 
in a subsequence-kernel-based classifier to learn whether an 
entailment relation holds between two texts. Our method 
makes use of machine learning techniques using a limited 
data set, no external knowledge bases (e.g. WordNet), and 
no handcrafted inference rules. We achieve an accuracy of 
74.5% for text pairs in the Information Extraction and 
Question Answering task, 63.6% for the RTE-2 test data, 
and 66.9% for the RET-3 test data. 

Introduction 

Recognizing Textual Entailment (RTE) is a concrete task 
based on a relationship between two plain texts, Text (T)
and Hypothesis (H). If the meaning of H can be inferred 
from the meaning of T, we say that T entails H. This task 
can be viewed as a binary classification task or as a 
probabilistic function mapping the pair T-H to a value 
between zero (not entailed) and one (fully entailed). 
Generally, the application of RTE falls into one of the 
following two categories: building a semantic model with 
the ability to perform inferences or improving the current 
NLP applications, cf. (Zanzotto and Moschitti, 2006). 

From a linguistic perspective, several possible types of 
textual entailment exist: syntactic entailment, like “I’m 
eating at home” entails “I’m eating”; semantic entailment, 
like “He loves her” entails “He likes her”; implicature, like 
“He beat Mary” entails “Mary is injured”.

From an NLP perspective, the goal of RTE is to find a 
common solution for several real-world NLP applications 
(Dagan and Glickman, 2004), which includes Information 
Extraction (IE), Information Retrieval (IR), Question 
Answering (QA), and SUMmarization (SUM). This is also 
the focus of the RTE challenges (Bar-Haim et al., 2006) 
organized by the PASCAL network in the last two years. 

Table 1 displays several examples from the RTE-2 data 
set. The first pair (id=13) belongs to syntactic entailment. 
The most relevant knowledge here is “[LN1] city of [LN2]” 
entails “[LN2] is located in [LN1]”, although T focuses on 
the earthquake event. The last pair (id=534) is a similar 
case with different structures in T. On the other hand, the 
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third pair (id=133) requires not only an understanding of 
concepts like “buy” and “takeover”, but also to understand 
the usage of “said”, which is a case of semantic entailment. 

These aspects motivate us to explore specialized 
entailment strategies for different NLP tasks. In other 
words, we want to find out the potential connections 
between entailment relations belonging to different 
linguistic layers for different applications. 

In this paper, we propose a novel approach towards 
structure-oriented cases based on observations of the data: 
1) H is usually textually shorter than T, 2) not all the 
information in T is relevant for the entailment relation, 3) 
the dissimilarity of relations among the same topics 
between T and H is of great importance. In brief, our 
primary method starts from H to T (i.e. in the opposite 
direction of the entailment relation), excluding irrelevant 
information from T. Then corresponding topics and 
relations on both sides are extracted. We represent the 
differences between T and H obtained before by means of 
a set of closed-class symbols, e.g., part-of-speech tags or 
grammatical function symbols. Finally, these acquired 
representations (named Entailment Patterns - EPs) are 
classified by means of subsequence kernels. 

The structure-oriented RTE method is combined with 
two robust backup strategies, which are responsible for 
those cases that are not handled by the acquired EPs. One 
is a similarity matcher applied on top of local dependency 
relations of T and H; the other is a simple Bag-of-Words 
(BoW) approach that calculates the overlapping ratio of H.
Thus, together with our main method, we make use of 
these three approaches to deal with different entailment 
cases in the implementation. 

Related Work 

Conventional methods for the RTE task define measures 
for the similarity between T and H either by assuming an 
independence between words (Corley and Mihalcea, 2005; 
Glickman, Dagan, and Koppel, 2005) in a BoW fashion or 
by exploiting syntactic interpretations. (Kouylekov and 
Magnini, 2006) propose the use of syntactic tree editing 
distance to detect entailment relations. Since they calculate 
the similarity between the two dependency trees of T and 
H directly, the noisy information may decrease accuracy. 
This observation, in fact, motivated us to start from H
towards the most relevant information in T.



Logical rules (Bos and Markert, 2005) or sequences of 
allowable rewrite rules (de Salvo Braz et al., 2005) are 
another fashion for tackling the RTE task. Of the best two 
teams in RTE-2, one (Tatu et al., 2006) proposed a 
knowledge representation model and a logical proof system, 
achieving about 10% better performance than the third best 
team. The other (Hickl et al., 2006) acquired more training 
data from the internet automatically, also achieving about 
10% better accuracy than the third best team. Consequently, 
obtaining more training data and embedding background 
knowledge were expected to be the focus of future research, 
as reported in the RTE-2 summary statement. However, 
except for the positive cases of SUM, T-H pairs are 
normally not very easy to collect automatically; multi-
annotator agreement is difficult to reach on most of the 
cases as well. The knowledge-based approach also has its 
caveats, since the logical rules mentioned above are 
designed manually, and hence require a high amount of 
specialized human expertise in different NLP areas. 

(Zanzotto and Moschitti, 2006) have utilized a tree 
kernel method for cross-pair similarity and showed an 
improvement, motivating us to investigate kernel-based 
methods. The main difference in our method is that we 
apply subsequence kernels on patterns constructed from the 
dependency trees of T and H, instead of applying tree 
kernels on complete parsing trees. This allows us, on the 
one hand, to identify the essential parts that indicate an 
entailment relationship, and on the other hand, to reduce 
computational complexity. 

Preprocessing and Backup Strategies 

We are using Minipar (Lin, 1998) as our preprocessing 
parser. Our first backup strategy is based on a node-edge-
node representation of the resulting dependency trees that 
expresses the local dependency relations found by Minipar,
while the second one is a straightforward BoW method, 

which we will not present in this paper, but which you can 
find out more about in (Corley and Mihalcea, 2005). 

A dependency structure consists of a set of triples. Each 
triple is a complex structure of the form <node1, relation, 
node2>, where node1 represents the head, node2 the 
modifier, and relation the dependency relation. For 
instance, the parsing result of H from pair (id=13) in Table 
1 is as follows (only some parts are shown): 

{<fin:C i shoot:V>, <shoot:V subj Goosen:N>, 
<shoot:V obj 69:N>, …} 
The inner structure of the nodes consists of the lemma 

and the Part-Of-Speech (POS) tag. In the rest of the paper, 
T and H will represent either the original texts or the 
dependency structures. 

Triple Set Matcher 
Chief requirements for the backup system are robustness 
and simplicity. Accordingly, we try to construct a 
similarity function which operates on two triple sets and 
determines how many triples of H are contained in T. The 
core assumption here is that the higher the number of 
matching triple elements, the more similar both sets and 
the more likely it is that T entails H. The similarity checker 
of two triples makes use of an approximate matching 
function: 
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Id Task Text Hypothesis Entailment

13 IE

Sunday's earthquake was felt in the southern Indian city of Madras  on the
mainland, as well as other parts of south India. The Naval meteorological office
in Port Blair said it was the second biggest aftershock after the Dec. 26
earthquake.

The city of Madras  is located in
Southern India .

YES

61 IE
Although they were born on different planets, Oscar-winning actor Nicolas
Cage 's new son  and Superman have something in common, both were named
Kal-el .

Nicolas Cage 's son  is called Kal-
el .

YES

133 SUM
Verizon Communications Inc. said  on Monday it would buy  long-distance
telephone company MCI Communications Inc. in a deal worth $6.75 billion,
giving Verizon a foothold in the market for serving large corporations.

Verizon Communications Inc.'s $6.7
billion takeover  of long-distance
provider MCI Inc. transformed the
telephone industry.

NO

307 IR Napkins, invitations and plain old paper cost more than they did a month ago. The cost of paper  is rising. YES

534 IE
The main library at 101 E. Franklin St. changes its solo and group exhibitions
monthly in the Gellman Room, the Second Floor Gallery, the Dooley Foyer  and
the Dooley Hall .

Dooley Foyer  is located in Dooley
Hall .

NO

Table 1 Examples from RTE-2



Note that in all cases a successful match between two 
nodes means that they have the same lemma and POS tag. 
The triple matcher is applied to the series of triple sets of T
and H, ignoring sentence boundaries. The motivation for 
returning the different matching cases is to perform a 
partial match instead of an exact one. Different cases (i.e. 
ignoring either the parent node or the child node, or the 
relation between nodes) might provide different indications 
for the similarity of T and H. Consequently, the similarity 
function can be defined more precisely based on the sum of 
the matched triple elements of H divided by the cardinality 
of H needed for normalization, 

Card(H) is the number of triples in H; a1 to a4 are the 
different weights for the different matching cases. 

Normalizing the sum of matching elements by the 
cardinality of H guarantees that 0  Similarity(T, H)   1.
A value of 0 means that H has nothing in common with T,
a value of 1 means that H is completely covered by T, and 
a value in between means that H is partially covered by T.

The weights (i.e. a1 to a4) learned from the corpus in the 
later stage imply that the different “amount of missing 
linguistic information” influences the entailment relation 
differently. 

A Structure-Oriented Approach 

Our approach is based on the hypothesis that some 
particular differences between T and H will block or 
change the entailment relationship. When judging the 
entailment relation, we initially assume that the 
relationship actually holds for each T-H pair (using the 
default value “YES”). The following steps are performed: 

• Locate keywords (i.e. nouns and verbs) in H, and connect 
them by means of the dependency tree in order to extract 
the sub-tree. A sub-tree without the inner yield is 
defined as a Tree Skeleton (TS), the left-most and right-
most nouns as Foot Nodes (FNs), the verb as Root Node
(RN). The path from a foot node to the root is called a 
Spine. Usually, all the keywords are contained in two 
spines viz. a left spine and a right spine. 

• Locate FNs, RN in T and form the TS of T.

• Generalize the two TSs using Closed-Class Symbols
(CCSs) from a set of a limited size. The set consists of 
dependency relation tags, some POS tags, etc. 

• Merge the spines obtained for T and H. The parts that do 
not match are called a Spine Difference (SD), usually, a 
left SD and a right SD. 

• Use subsequence kernels to perform the binary 
classification on patterns containing the two spine 
differences. 

Tree Skeleton Extraction 
The major motivation for firstly constructing the tree 
skeleton of H (TSH) is that H indicates how to extract 
relevant parts of T for the entailment relation. Firstly, we 
construct a keyword set using all the nouns and verbs in H.
Then we mark them in the dependency tree of H and 
extract the sub-tree by ignoring the inner yield. Normally, 
the root node of H (RNH) is the main verb of H; all the 
keywords are contained in the two spines of TSH.

Then we try to construct a tree skeleton from T (i.e. TST)
using the information of TSH. Before constructing TST, we 
need to extend the keyword set to hit the corresponding 
nodes in T. Thus, we apply a partial search using stemming 
and some word variation techniques on the substring level. 
For instance, the extended keyword set for the pair (id=61) 
in Table 1 is 

{call:V, nicolas:N, nicolas_cage:N, son:N, kal-el:N, 
kal:N} 
We identify these keywords in T. Since we have two 

foot nodes in H, two corresponding foot nodes will be 
marked in T accordingly. Starting from these two nodes, 
we traverse the dependency tree of T from bottom to top in 
order to identify the lowest common parent node, which 
we mark as RNT. Note that such a node can be a verb, a 
noun or a dependency relation. If the two foot nodes of T
belong to two sentences, a dummy node is created that 
connects the two spines. 

To sum up, the major pre-requisite for this algorithm is 
that both the tree skeleton of H and the tree skeleton of T
have two spines, each containing all the keywords of H. In 
practice, according to the experimental results we obtained 
from the RTE-2 data set, among all the 800 T-H pairs of 
the RTE-2 test set, we successfully extracted tree skeletons 
in 296 text pairs, i.e., 37% of the test data is covered by 
this step (see section Evaluation). 

Spine Generalization and Merging 
Next, we collapse some of the dependency relation names 
from Minipar to more generalized tag names, like 
collapsing <OBJ2> and <DESC> to <OBJ>. We group 
together all the nodes that have relation labels like 
<CONJ> or <PERSON>, since they either refer to the 
same entity or belong to one class of entities sharing some 
common characteristics. Lemmas are removed except for 
the keywords. Finally, we add all the tags into CCS , the 
set of Closed-Class Symbols. 

Since a tree skeleton actually consists of two connected 
spines (via the common root node), it can be transformed 
into a sequential structure. Figure 1 displays an example 
corresponding to the second pair (id=61) in Table 1. The 
general form of a sequential representation of a tree 
skeleton is: 

LSP #RN# RSP 
where RN is the root node label and LSP refers to the left 
spine and RSP to the right spine. Note that, LSP and RSP 
either represent the empty sequence (i.e. NULL) or a 
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sequence of (generalized) CCS symbols. On the basis of 
this representation, the comparison between the two tree 
skeletons is straightforward. In fact, it can be conducted in 
two steps: 1) merge the two LSPs by excluding the longest 
common prefix, and 2) merge the two RSPs by excluding 
the longest common suffix. Then the Spine Difference (SD) 
is defined as the remaining infixes, which consist of two 
parts, SDT and SDH. Each part can be either empty or a 
CCS sequence. For example, the two SDs of the example 
in Figure 1 (id=61) are (## is used as a special separator 
sign, LSD=Left Spine Difference, RDS=Right Spine 
Difference): 

LSDT(...)  ## LSDH(NULL)

RSDT(NULL) ## RSDH(NULL)

Pattern Representation 
We have observed that both the root node and the two 
neighboring dependency relations of it in a tree skeleton 
(i.e. <SUBJ> or <OBJ>) can play important roles in 
predicting the entailment relation as well. Therefore, we 
assign them two extra features referred to as Verb 
Consistency (VC) and Verb Relation Consistency (VRC). 
The former indicates whether two RNs have a similar 
meaning or not (e.g. “buy” and “sell” are not consistent), 
while the latter indicates whether the relations are 
contradicting (e.g. <SUBJ> and <OBJ> are contradicting). 
Considering verbs like “to kill”, VRC will essentially 
convey the direction of the action, that is, from the subject 
to the object. 

On top of LSD, RSD, VC, and VRC, we represent the 
differences between the tree skeletons TST and TSH by 
means of an Entailment Pattern (EP), which is a quadruple 
<LSD, RSD, VC, VRC>, where LSD and RSD are either 
NULL or CCS sequences; VC is a Boolean value, where 
true means that the two root node labels are consistent and 
false otherwise; VRC has a ternary value, where 1 means 
that both relations are consistent, -1 means at least one pair 
of corresponding relations is inconsistent, and 0 means 
RNT is not a verb1. The set of EPs actually defines the 
feature space for the subsequence kernels. 

1 Note that RNH is guaranteed to be a verb, because otherwise the pair 
will be delegated to the backup systems. 

Subsequence Kernels 
We have constructed two basic kernels for handling the 
LSD and the RSD part of an EP, and two trivial kernels for 
VC and VRC. They are combined linearly into a composite 
kernel, which performs the binary classification on them. 

Subsequence Kernel. Since all the spine differences SDs 
are either empty or CCS sequences, we can utilize 
subsequence kernel methods to represent features 
implicitly, cf. (Bunescu and Mooney, 2006). Our 
subsequence kernel function is, 

where T, T’, H, and H’ refer to all spine differences SDs 
from T and H; |T|, |T’|, |H|, and |H’| represent cardinalities 
of SDs; The kernel function KCCS(CCS, CCS’) checks 
whether the two argument CCSs are the same. 

Since the RTE task checks the relationship between T
and H, besides the SDs themselves, we need to consider 
collocations of some CCS subsequences between T and H
as well. 

Subsequence-Collocation Kernel. Essentially, this kernel 
evaluates the similarity of T and H by means of those CCS 
subsequences appearing on both sides. The kernel function 
is as follows: 

On top of these two kernels, together with the two trivial 
ones (i.e. KVC and KVRC), we use a composite kernel to 
combine them linearly with different weights: 

In experiments, γ and δ are learned from the training 
corpus; α and β are set equal to each other, and currently 
both are 1.

Evaluation

We have compared three approaches, the two backup 
systems (BoW and Triple Set Matcher - TSM, as baselines) 
and the subsequence kernel method plus backup strategies 
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(SK+BS) in different experiments. The first group of 
experiments is based on the RTE-2 and RTE-3 data; and 
the second group of experiments exploits data collected 
from MUC6, BinRel (Roth and Yih, 2004), and TREC2003. 
For the kernel-based classification, we used the classifier 
SMO from the WEKA toolkit (Witten and Frank, 1999). 
All the numbers shown in the following tables are the 
percents of accuracies, except in Table 3, the first and third 
rows are the percents of the T-H pairs matched by the main 
method. 

Experiments on RTE Data 
Both RTE-2 and RTE-3 data include the development set 
(800 T-H pairs, four tasks, IE, IR, QA, and SUM, and each 
task has 200 pairs) and the test set has the same size. 
Experiment A1 performs a 10-fold cross-validation (10-CV) 
on all the 1600 pairs of RTE-2 data; while Experiment A2 
uses the development set for training and the test set for 
testing; Experiment B uses the RTE-3 development set for 
training and the test set for testing, cf. Table 2: 

Systems\Tasks IE IR QA SUM ALL 
Exp A1: 10-CV on RTE-2 Dev+Test Set 

BoW 502 58.8 58.8 74 60.4 
TSM 50.8 57 62 70.8 60.2 

SK+BS 61.2 58.8 63.8 74 64.5 
Exp A2: Train: RTE-2 Dev Set; Test: RTE-2 Test Set 

BoW 50 56 60 66.5 58.1 
TSM 50 53 64.5 65 58.1 

SK+BS 62 61.5 64.5 66.5 63.6 
Exp B: Train: RTE-3 Dev Set; Test: RTE-3 Test Set 

SK+BS 58.5 70.5 79.5 59 66.9 
Table 2: Results on RTE Data 

For the IE task our method SK+BS obtained the highest 
improvement over the baseline systems on RTE-2 data, 
which suggests that the kernel method seems to be more 
appropriate if the underlying task conveys a more 
“relational nature.” The improvements for the other tasks 
are not so convincing as compared to the more “shallow” 
methods realized via BoW and TSM. Nevertheless, the 
overall result obtained in experiment A2 would have been 
among the top-4 of the RTE-2 challenge. Note that we do 
not exploit any additional knowledge source besides the 
dependency trees computed by Minipar.

Table 3 shows how SK+BS performs on top of the task-
specific pairs matched by our EPs: 

Exps\Tasks IE IR QA SUM ALL 
ExpA1:matched 63 18.3 36.3 16.3 33.5 
ExpA1:accuracy 64 67.1 66.2 73.9 66.2 
ExpA2:matched 64 23.5 44 17 37
ExpA2:accuracy 66.9 70.2 58.0 64.7 64.5 

Table 3: Performances of CCS  

2 The accuracy is actually 47.6%. Since random guess will achieve 50%, 
we take this for comparison. 

For the IE and QA pairs, the method SK+BS obtained 
the highest coverage. However, for IR and SUM pairs, 
although it achieves good accuracies, the number of 
covered cases is low, and hence the backup systems will 
deal with most of the cases for IR and SUM. According to 
the experiments, IE and QA pairs mostly choose TSM as a 
backup strategy, while IR pairs choose BoW; and for SUM 
pairs, BoW has already achieved the best performance, cf. 
Table 2. 

Experiments on Additional Data 
In order to get a deeper view of our method, we evaluated 
our systems using additional data. The results of the 
experiments achieved so far suggest that our method works 
well for the IE and QA tasks. Therefore, we decided to 
collect additional data from relevant sources (MUC, 
BinRel, and TREC2003) in order to test how our method 
performs for larger training sets. 

For IE pairs, we use Named-Entities (NEs) and their 
corresponding relation to construct H, and the sentence(s) 
containing them to construct T. Negative examples will be 
either incorrect NEs or incorrect relations. For QA pairs, H
consists of the question and the answer, and T is just the 
original sentence(s) containing the answer. Negative 
examples are those which do not have correct answers. 

In all, there are new 750 T-H pairs from which our 
patterns can match 460 pairs. Table 4 displays the results: 

Systems IE
(MUC,BinRel) 

QA
(TREC2003) Overall 

BoW 62.9 61.4 62.3 
TSM 64.9 62.3 63.8 
SK 76.3 65.7 74.5 

Table 4: Results on Extra Data 

The subsequence kernel (SK) method improves in both 
of the tasks, especially for the IE pairs. It seems that 
although our method can cover most of the QA pairs, the 
precision of the EPs still need improvements. We will 
discuss the gain and loss in detail in the following 
subsection. 

Discussions 
It seems to be a promising direction to develop task 
specific entailment operators. Our structure-oriented 
method actually performs a classification on the entailment 
cases before doing the predictions. The results have shown 
differences in accuracy among pairs of different tasks, cf. 
Figure 2. Our subsequence kernel method works 
successfully on structure-oriented T-H pairs, most of 
which come from IE and QA tasks. If both TST and TSH

can be transformed into two CCS sequences, the 
comparison performs well, as is the case for the last 
example (id=534) in Table 1. Note that “Dooley Foyer”
and “Dooley Hall” are a coordination, conveyed by the 
conjunction “and”. The similar cases, “work for”, a relation 
of a person and a company, or “is located in”, a relation 



between two location names are normally indicated by the 
preposition “of”. Based on these findings, taking into 
account the meaning of functional words more carefully 
might be helpful in improving RTE. Since the current RTE 
results have not been impressive when applying WordNet, 
lexical semantics of Closed-Class Word are worth 
considering. 

Some incorrect cases like the third example (id=133) in 
Table 1 suggest that extending the tree skeleton might be 
useful. The trick for correctly predicting the entailment 
relation in this example is the word “said”, which is not 
included in our current version, as we stop at the first 
common parent node in the dependency tree. 

Of course, our method still has low coverage, even for 
IE pairs. Since we have applied some fuzzy matching 
techniques on the substring level, “Southern Indian” and 
“Southern India” in the first example (id=13) in Table 1 
could be matched successfully. However, for person name 
abbreviations like “J.D.E.”, it is not trivial to make a 
connection with “J.D. Edwards”. A similar problem 
happens in temporal expressions like “13th of January 
1990” with “Jan. 13, ‘90”, as well. Obviously, we have to 
improve the matching strategy. 

Besides that, some other missed cases (mostly in the IR 
and SUM tasks) contain more than two foot nodes. For 
instance, consider the third example (id=133) in Table 1. 
The keyword set contains at least two company names, and 
other nouns like “telephone” and “industry”. Cases like this 
also account for low coverage. 

Conclusion and Future Work 

Applying different RTE strategies for different NLP task is 
a reasonable solution. According to our observations, IE 
and QA pairs are more structure-oriented cases, while IR 
and SUM pairs are not. We have utilized a subsequence 
kernel method to deal with the former group, and applied 
backup strategies for the latter group. The result shows the 
advantages of our method, as well as areas of future work. 
In particular, we will extend the structure of tree skeletons 
for handling more complex cases, and will consider lexical 
semantic aspects of functional words in more depth. 
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