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Abstract

Contextualized word embeddings provide bet-
ter initialization for neural networks that deal
with various natural language understanding
(NLU) tasks including Question Answering
(QA) and more recently, Question Generation
(QG). Apart from providing meaningful word
representations, pre-trained transformer mod-
els, such as BERT also provide self-attentions
which encode syntactic information that can
be probed for dependency parsing and POS-
tagging. In this paper, we show that the infor-
mation from self-attentions of BERT are use-
ful for language modeling of questions con-
ditioned on paragraph and answer phrases.
To control the attention span, we use semi-
diagonal mask and utilize a shared model for
encoding and decoding, unlike sequence-to-
sequence. We further employ copy mechanism
over self-attentions to achieve state-of-the-art
results for Question Generation on SQuAD
dataset.

1 Introduction

Automatic Question Generation (QG) is the task
of generating meaningful questions from text.
With more Question Answering (QA) datasets like
SQuAD (Rajpurkar et al., 2016) that has been re-
leased recently (Trischler et al., 2016; Choi et al.,
2018; Reddy et al., 2019; Yang et al., 2018), there
has been an increased interest in QG, as these
datasets can not only be used for creating QA mod-
els but also for QG models.

QG, similar to QA, gives an indication of ma-
chine’s ability to comprehend natural language text.
Both QA and QG are used by conversational agents.
A QG system can be used in the creation of arti-
ficial Question Answering datasets which in-turn
helps QA (Duan et al., 2017). It specifically can
be used in conversational agents for starting a con-
versation or draw attention to specific information

Figure 1: CopyBERT architecture for conditional ques-
tion generation: Given a sequence of length n, with
question tokens {qi}Qi=1, paragraph tokens {pi}Pi=1

with answer phrase {ai}Ai=1 and semi-diagonal mask
M (§3.2), the model explicitly uses H multi-headed
self-attention matrices from L layers of transformers
to create A ∈ Rn×n×L×H . This matrix along with
S ∈ Rn×L×H , obtained from the BERT sequence
output H ∈ Rn×h, is used to learn copy probabil-
ity pc(qi|.) (§3.3.2). Finally, a weighted combination
p(qi|.) is obtained with simple generation probability
pg(qi|.) (§3.1).

(Mostafazadeh et al., 2016). (Yao et al., 2012) and
(Nouri et al., 2011) use QG to create and augment
conversational characters. In a similar approach,
(Kuyten et al., 2012) creates a virtual instructor to
explain clinical documents. The contribution of
this paper can be summarized as follows:

• We introduce copy mechanism for BERT-
based models with a unified encoder-decoder
framework for question generation. We fur-
ther extend this copy mechanism using self-
attentions.

• Without loosing performance, we improve the
speed of training BERT-based language mod-
els by choosing predictions on output embed-
dings that are offset by one position.



2 Related Work

Most of the QG models that use neural networks
rely on a sequence to sequence architecture where a
paragraph and an answer is encoded appropriately
before decoding the question. (Sun et al., 2018)
uses an answer-position aware attention to enrich
the encoded input representation. Recently, Liu
et al. (2019) showed that learning to predict clue
words based on answer words helps in creating a
better QG system. With similar motivation, gated
self-networks were used by (Zhao et al., 2018) to
fuse appropriate information from paragraph be-
fore generating question. Self-attentions of a trans-
former can also be used to perform answer agnostic
Question Generation (Scialom et al., 2019). BERT
has shown remarkable results in NLU tasks. We
hypothesize that BERT can implicitly encode such
aspects of the input for QG. Using copy mecha-
nism (Gu et al., 2016) for QG is well motivated
(see Figure 2). We also hypothesize that using
self-attentions for copy mechanism can yield bet-
ter results than a model that only implicitly use
self-attentions for QG.

The pre-training task of masked language mod-
eling for BERT (Devlin et al., 2019) and other such
models (Joshi et al., 2019) make them suitable for
natural language generation tasks. Wang and Cho
(2019) argues that BERT can be used as a genera-
tive model. However, only few attempts have been
made so far to make use of these pre-trained mod-
els for conditional language modeling. Dong et al.
(2019) and Chan and Fan (2019) use a single BERT
model for both encoding and decoding and achieve
state-of-the-art results in QG. However, both of
them use the [MASK] token as input for predicting
the word in place, which makes the training slower
as it warranties recurrent generation (Chan and Fan,
2019) or generation with random masking (Dong
et al., 2019). Both models only consider the output
representations of BERT to do language modeling.
However, it is shown that BERT learns different lin-
guistic features in different layers (Jawahar et al.,
2019; Tenney et al., 2019; Hewitt and Manning,
2019) Similar to these works, we also employ a
shared architecture but make an explicit use of self-
attentions across layers, leading to similar or better
results at a fraction of their training cost.

3 Model

In sequence-to-sequence learning framework with
transformer architecture, a separate encoder and

Figure 2: Left: An example of question and paragraph
pair from SQuAD, where we see that most of the ques-
tion tokens are present in the paragraph, which can be
extracted during generation with copy mechanism mak-
ing it suitable for the task. Right: The attention plot of
self-copy (§3.3.2) mechanism as learnt by CopyBERT.

a decoder model is used . Such an application to
BERT will lead to high computational complexity.
To alleviate this, we use a shared model for encod-
ing and decoding. This not only leads to a reduced
number of parameters but also allow for cross at-
tentions between source and target words in each
layer of the transformer model. Such architecture
can be used in any conditional natural language
generation task. Here, we focus on QG.

3.1 Question Generation
For a sequence of paragraph tokens P =
[p1, p2, ..., pP ], start and end positions of an answer
phrase sa = (as, ae) in the paragraph and ques-
tion tokens Q = [q1, q2, ..., qQ] with p1 = bop,
pP = eop and qQ = eoq representing begin of
paragraph, end of paragraph and end of question
respectively, the task of question generation is to
maximize the likelihood of Q given P and sa. To
this end, with m such training examples, we maxi-
mize the following objective:

max
Θ

m∑
j=1

n∑
i=1

log p(q
(j)
i |q

(j)
<i , P

(j), sa)

where q<i represents previous question tokens
[q1, q2, ..., qi−1]. A fixed length n sequence is cre-
ated by concatenating P and Q with pad tokens
into S = [P ;Q]. Similar to (Devlin et al., 2019),
each input token is accompanied by a segment id
to differentiate between parts of text. The answer
tokens in the paragraph and the question tokens
are given segment ids 1 and rest 0, as illustrated in
Figure 1. We pass these as inputs to a pre-trained
BERT-based model.



3.2 Semi-diagonal Masking

To control the information flow, we employ a semi-
diagonal mask. A simple diagonal mask on the
self-attentions of the transformer decoder ensure
that each word only attends to the words that are
seen thus far (Vaswani et al., 2017). Self-attentions
of the encoder does not require such masking be-
cause the input words should inform each other
while encoding. Since we use a unified encoder-
decoder architecture, we ensure our masking is
such that each word in the paragraph attends to all
other words in the paragraph but not any of the
words in the question and each word in the ques-
tion only attends to previous words in the question
in addition to all the words in the paragraph. This
results in a semi-diagonal mask which is also pro-
posed by (Dong et al., 2019) and shown in Figure
1.

Formally, from S in §3.1, we have Ip =
[1, 2, ..., P ] as the sequence of paragraph indices
and Iq = [P +1, P +2, .., P +Q] as the sequence
of question indices with n = P +Q (ignoring the
pad tokens). The semi-diagonal mask M ∈ Rn×n

is defined as:

Mi,j =

−∞
(i ∈ Ip ∧ j ∈ Iq)∨
(i ∈ Iq ∧ j > i)

1, else

3.3 Copy Mechanism

Pre-trained transformer models not only yield bet-
ter contextual word embeddings but also give infor-
mative self-attentions (Hewitt and Manning, 2019;
Reif et al., 2019). We explicitly make use of
this pre-trained self-attentions into our QG mod-
els. This sets well with the copy mechanism (Gu
et al., 2016) for BERT that can be used for question
generation (Figure 2).

For the input sequence S with the semi-diagonal
mask M ∈ Rn×n and segment ids D, we first
encode with BERT(S,M, D) to obtain hidden rep-
resentations of the sequence H = {hi}ni=1 ∈
Rn×h. We then define copy probability pc(yi|.) :=
pc(yi|q<i, P, sa) as:

pc(yi|.) =

{∑P+i−1
k=1:yi=tk

pa(k|yi), tk ∈ Y
0, else

where pa(k|yi) ∈ R is the attention probability of
copying token tk ∈ Y = {P} ∪ {yj}i−1

j=1 (set of
all the paragraph tokens and question predictions

thus far) from input position k to question posi-
tion i. The distribution pa ∈ Rn is set to zero
for tokens not appearing in Y , whereas we add
the corresponding attention probabilities for tokens
occurring multiple times. We summarize these
per position probabilities compactly in a matrix
Pa ∈ Rn×n. Now, we define several methods to
obtain Pa with different copy mechanisms.

3.3.1 Normal Copy
First, we employ a simpler way to obtain attention
probabilities, called normal copy:

Pa = softmax(HWnH
T ) ∈ Rn×n

where Wn ∈ Rh×h is a parameter matrix.

3.3.2 Self-Copy
In a transformer architecture (Vaswani et al., 2017),
if there are L layers and H attention heads at each
layer, there will be M = L×H self-attention ma-
trices of size n× n. For example, in case of BERT-
Large model (Devlin et al., 2019), this would be
24× 16 = 384 such matrices. We reckon each of
these self-attention matrices carry unique informa-
tion. In this method for copy mechanism, called
self-copy, we obtain Pa as a weighted average of
all these self-attentions1.

We obtain at each time step, a probability score
for each of the M self-attention matrices in A ∈
n× n×M signifying their corresponding impor-
tance. Given a parameter matrix Wa ∈ Rh×M , we
obtain:

S = softmax(HWa) ∈ Rn×M

P̃a = S̃⊗1 Ã ∈ Rn×1×n

where S̃ ∈ Rn×1×M is a 3D tensor with added
dimension 2 to S, Ã ∈ Rn×M×n is reshaped 3D
self-attention matrices A and ⊗1 defines tensor
product along dimension 1 (Figure 1). The final
attention probabilities Pa are obtained by remov-
ing the dimension 2 from P̃a. This quantifies the
relative importance of per self-attention matrix per
question positions over all input positions.

3.3.3 Two-Hop Self-Copy
A self-attention matrix as mentioned above can be
considered as an adjacency matrix of a graph whose
nodes are words. The probability scores represent

1The semi-diagonal mask is applied to all such self-
attention matrices.



soft edge between two words. A self-attention ma-
trix, thus, can be considered as 1-hop attention.
We would like to explore 2-hop attentions, i.e, we
look for neighbouring nodes of neighbouring nodes.
Note that if Pa is an adjacency matrix, the nodes
that are connected in two hops is given by P2

a. Both
1-hop attentions and 2-hop attentions can be use-
ful for copying mechanism. Let P1-hop = Pa and
P2-hop = P′2a where P′a and Pa are defined as
mentioned in §3.3.2 with different parameters, then
we define two-hop self-copy as follows:

Pa(qi) = hiP1-hop(qi) + (1− hi)P2-hop(qi)

where hi = σ(hT
qiWh) and Wh ∈ Rh is a parame-

ter matrix.

3.4 Copy-Generate Probability
Once the copy probability pc is obtained, the com-
bined probability with generation probability pg is
defined as:

p(qi|.) = (1− ci)pg(qi|.) + cipc(qi|.)

where ci controls the probability to copy or gener-
ate:

ci = σ(hT
qi−1

w)

with hqi−1 ∈ Rh is the hidden representation for
the question token at position i − 1, w ∈ Rh is
a parameter vector and σ is sigmoid non-linearity.
The generation probability is given by:

pg(qi|.) = softmax(hT
qi−1

V)

where V ∈ Rh×|V | is a parameter matrix over input
vocabulary of size |V |.

4 Experiments

We apply the different variations of CopyBERT
model as mentioned in the previous section on
SQuAD v1.1 (Rajpurkar et al., 2016). For our
experiments, we follow the training / validation /
test split used in (Du et al., 2017).

4.1 Training Setup
For training, we used a batch size of 6, learning
rate of 3e−5 with early stopping. The loss reaches
its minimum in 3 epochs approximately. We also
trained with a batch size of 24 using gradient ac-
cumulation and found it gave similar results after
same number of optimization steps. We fixed the
maximum sequence length as 384 and choose the

Model BLEU4 METEOR ROUGE-L
CorefNQG (Du and Cardie, 2018) 15.16 19.12 -
SemdriftQG (Zhang and Bansal, 2019) 18.37 22.65 6.68
Recurrent-BERT (Chan and Fan, 2019) 20.33 23.88 48.23
UniLM (Dong et al., 2019) 22.12 25.06 51.07

BERT + No Copy 19.37 22.49 49.12
BERT + Normal Copy 20.30 23.03 49.35
BERT + Self-Copy (CopyBERT) 21.17 23.48 49.91
BERT + Two-Hop Self-Copy 20.90 23.37 49.89
SpanBERT + Self-Copy 22.71 24.48 51.60

Table 1: Question generation results on SQuAD test
split from Du et al. (2017).

doc stride of the paragraph that contains the answer
phrase in case of exceeded sequence length. We
decode using beam search with a beam width of 5
and stopping at the generated token eoq. In our ex-
periments we used [CLS] as bop token, [MASK]
as eop token and [SEP] as eoq token.

4.2 Evaluation Metrics and Models

For evaluating our model, we report standard met-
rics BLEU4, METEOR and ROUGE-L. As base-
lines, we take two of the non-BERT state-of-the-art
models (Du and Cardie, 2018; Zhang and Bansal,
2019) and with the two BERT based QG models
(Dong et al., 2019; Chan and Fan, 2019). We ex-
perimented with 4 settings: one without using any
copy mechanism (no copy), one using normal copy
(section 3.3.1), one using self-copy (section 3.3.2)
and finally with two-hop self-copy (section 3.3.3).

4.3 Results

We note that the baseline performance of BERT-
Large model with No Copy (19.37 BLEU4) is
comparable with the results reported by (Chan
and Fan, 2019) (20.33 BLEU4). We see a clear
increase in performance when Normal Copy is
used (20.30 BLEU4). Further, we see consider-
able gain in BLEU4 by using Self-Copy, support-
ing the hypothesis of using multi-layered, multi-
headed self-attentions for copy mechanism. In con-
trast to UniLM, which is a pre-trained model from
BERT-Large checkpoint with three sequence gen-
eration pre-training tasks (Dong et al., 2019) and
further fine-tuned on SQuAD dataset for 10 epochs
achieves 22.12 BLUE4 score. We show that we
could achieve comparable performance by only us-
ing self-copy mechanism.

To further test self-copy mechanism, we also ex-
perimented by initializing with a variant of BERT
called SpanBERT (Joshi et al., 2019), which is pre-
trained to predict longer masked spans to encourage
better entity masking and has already shown to im-



Figure 3: CopyBERT attention visualizations of copy probability on SQuAD examples. Top: Attention focused
paragraph tokens on y-axis and generated question tokens on x-axis, where we see that the learnt copy probabilities
consistently extract words from the paragraph context. Bottom: Long-span attention pattern over the paragraph
words (x-axis), where the copy probability looks for question words (y-axis) even when most of the question
words are present in the local context around the answer phrase.

prove QA results when compared to BERT (Joshi
et al., 2019)2. Although, Two-Hop Self-Copy did
not improve upon the Self-Copy, these attentions
serve as explainability of QG, a good intuition be-
hind copying different words, which we plan to
explore in our future work.

Figure 3 shows different attention patterns learnt
by CopyBERT, where we note that the model con-
sistently extracts words from input when available,
even with longer-spans.

4.4 Training Speed

CopyBERT trains significantly faster than UniLM
(Dong et al., 2019) which takes around 10 epochs to
achieve its best performance as the model only pre-
dicts some percentage of randomly chosen words in
the question. It took CopyBERT around 14 hours
on a single GPU with 12GB main memory to train
for 3 epochs, whereas UniLM took around 45 hours
on the same hardware to run for 10 epochs. We ex-

2Note that Self-Copy mechanism can be applied with any
BERT-like pre-trained model

pect Recurrent-BERT (Chan and Fan, 2019) to take
longer time to train due to its sequential nature3.

5 Conclusion

We showed that having a unified model relying ex-
plicitly on self-attentions with copy mechanism can
already give state-of-the-art, without additional pre-
training on generation tasks. We also sped up the
training of QG models that use BERT by choosing
predictions on output embeddings that are offset by
one position. This work shows the significance of
explicitly using self-attentions of BERT like mod-
els. These models can further be used in other
tasks such as abstractive summarization and ma-
chine translation to see qualitative improvements.
Pre-training CopyBERT with tasks akin to (Dong
et al., 2019) might further improve performance
on generation tasks and therefore can be a natural
extension of this work in the future.

3We could not compare its training time with ours as the
code for Recurrent-BERT is not openly available.
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