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Abstract

There has been a significant progress in the
field of extractive question answering (EQA)
in the recent years. However, most of them
rely on annotations of answer-spans in the cor-
responding passages. In this work, we ad-
dress the problem of EQA when no annota-
tions are present for the answer span, i.e.,
when the dataset contains only questions and
corresponding passages. Our method is based
on auto-encoding of the question that performs
a question answering (QA) task during encod-
ing and a question generation (QG) task during
decoding. Our method performs well in a zero-
shot setting and can provide an additional loss
that boosts performance for EQA.

1 Introduction

Extractive question answering (EQA) is the task of
finding an answer span to a question from a con-
text paragraph. Most of the deep learning models
for this task perform well when annotated data is
present. Scaling such models to new domains often
requires creation of new datasets (d’Hoffschmidt
et al., 2020; Lim et al., 2019; Trischler et al., 2017;
Kwiatkowski et al., 2019). However, collecting
labels for these corpora is expensive and time con-
suming which may involve multiple steps such as
article curation, question and answer sourcing. Al-
leviating the annotation efforts for any of these
steps is not only of research but also of practical
interest. In this work, we address the problem of
extracting answer spans to a question from unanno-
tated context paragraph.

Some works have already been proposed to solve
EQA in both semi-supervised and unsupervised
setting. Unsupervised methods focus on creating
a synthetic corpus and further train a supervised
model on the synthetic corpus (Lewis et al., 2019).
In semi-supervised methods the focus is on differ-
ent pre-training tasks that improve the initialization
of the EQA models (Dhingra et al., 2018; Glass

Figure 1: Schematic diagram of the proposed auto-
encoding scheme. To the right, is the semi-diagonal
mask on the self-attention layers for the decoding step.
It enables the uni-directional language model of the
question. We assume a latent distribution over possi-
ble answer spans, approximated by candidate phrases.
See §2 for details.

et al., 2020; Ram et al., 2021). Our work can be
categorized as the latter with one key difference: to
further perform question answering without anno-
tations on answer spans. To validate our approach,
we use the pre-trained BERT (Devlin et al., 2019)
model using SQuAD (Rajpurkar et al., 2016).

Specifically, our method employs a conditional
auto-encoding scheme that reconstructs question
given a passage while assuming a latent distribution
over the answer phrases. The encoder of our model
is a Question Answering (QA) model that jointly
encodes the context and the question to estimate
the probability distribution over possible answer
spans. This is further given as input along with
passage to the decoder which is a Question Genera-
tion (QG) model. We use a shared architecture for
both the encoder and the decoder. Therefore, our
model can be viewed as a self-supervised machine
comprehension model that learns from itself. We
list our contributions as follows:

• We propose a novel method to perform unsu-
pervised answer span extraction given a cor-
pus of questions and associated paragraphs.



• We obtain an accuracy of 90% on unsuper-
vised answer sentence selection.

• We obtain strong results (34.3 EM, 53.4 F1
on SQuAD dev set) for EQA when there is
no annotation on the answer spans (Rajpurkar
et al., 2016).

2 Method

Our model can be characterized as a discrete con-
ditional variational auto-encoder (CVAE), where
we seek to maximize the ground truth distribu-
tion of question given context pθ(Q|c) with the
assumption that there exist a latent variable an-
swer span. We can then maximize the log-
likelihood of pθ(Q|c) with this assumption by
the Evidence Lower Bound (ELBO) (Kingma and
Welling, 2013):

log pθ(Q|c) ≥ Ea∼qφ(a|c,Q)[log pθ(Q|a, c)]−

DKL[qφ(a|Q, c)||p(a|c)]
(1)

where Q is the question, c is the context, qφ is the
inference network, which estimates the probability
of an answer a given the question and context, and
pθ is the decoder model to estimate the distribution
pθ(Q|a, c). In our case, since the architecture is
shared, θ and φ represent the same set of parame-
ters. Our auto-encoding scheme consists of three
modules phrase extractor, encoder and decoder as
shown in Figure 1.

2.1 Phrase Extractor
For EQA, given that there is no supervised signal
for answer spans, an exhaustive search over all the
possible phrases would be sub-optimal as there can
be many phrases not suitable for natural language
questions (Trischler et al., 2017; Joshi et al., 2017).
We limit our potential answer phrases to the named
entities and tags from constituency trees 1. We
also allow overlapping answer phrases in the set
of candidate answer phrases. This is necessary
as the sub-phrases of a phrase can be answers to
different questions. We further remove the phrases
that overlapped with the question, because such
phrases can be more significant for generating the
question over the possible answer phrases. With
our chosen phrases, it is possible to achieve a best
70% EM and 88% F1 on SQuAD. These results
serve as upper bound on our model’s performance.

1We used https://github.com/allenai/allennlp for con-
stituency parsing and spaCy (Honnibal et al., 2020) for NER
to choose our answer candidates

Figure 2: Example on how token scores are obtained
from probabilities of overlapping phrases 3, the Gold
Dome and 3 statues and the Gold Dome

2.2 Encoder

Our encoder is a pre-trained BERT (Devlin et al.,
2019) model, which is referred to as the inference
network, that estimates q(a|Q, c) taking a para-
graph concatenated with the corresponding ques-
tion as input. This is similar to Devlin et al. (2019)
while encoding two different text segments. Each
token of the input is accompanied by a segment
feature that takes values 0 or 1 representing dif-
ferent segments of the input (i.e., the question or
the paragraph). Without a supervised signal, esti-
mating probabilities on individual phrases might
be difficult, so we decompose the probability of a
phrase by using the probability of its sentence as
follows:

q(asi |Q, c) = q(asi |si, Q, c)q(si|Q, c) (2)

where si is the i-th sentence, asi is one of the can-
didate phrases in it, Q and c are the question and
the context paragraph respectively. To obtain the
terms of the above expression, we define a scoring
function that takes two text segments as input and
outputs an affinity score. A text segment can either
be a sentence, a question or a phrase. Each text seg-
ment is embedded as a vector from BERT output
embeddings as follows:

vt =
1

|t|
∑
wi∈t

BERT(wi)

score(s, t) = vTs Wvt (3)

where t represents a text segment, BERT(wi) is
the output embedding of BERT model for token
wi, vt is the vector representation of the phrase t
obtained as an average of BERT embeddings of the
phrase tokens. The affinity score is obtained as a
bilinear product of the vector representations of the
text segments with learnable matrix W ∈ Rd×d.



The conditional probability of a sentence given
the question and the paragraph, q(si|Q, c), is ob-
tained as a softmax of the scoring function in Eq. 3
over all the sentences.

q(si|Q, c) =
exp(score(si, Q))∑
∀sk∈c exp(score(sk, Q))

Similarly, q(a(j)si |si, Q, c) is obtained as a softmax
of the scores between the question Q and the an-
swer phrase a(j)si over all answer phrases within the
i-th sentence si of c:

q(a(j)si |si, Q, c) =
exp(score(as

(j)
i , Q))∑

∀a(k)si
∈si

exp(score(a(k)si , Q))

With these two expressions, one can obtain the
probability distribution of the phrases from Eq. 2.
Now, we have probabilities over different (overlap-
ping) phrases and we transfer these phrase-level
probabilities into token-level scores to obtain a real
valued segment feature vector as follows (shown in
Figure 2):

ti =
∑

∀ai∈sj ;ti∈ai

q(ai|sj , Q, c)

The purpose of the binary segment features is
to differentiate some part of the text from the rest
and to signify connection between them. The pre-
trained weights of BERT model include segment
embeddings for input segment features 0 or 1. How-
ever, the output of the encoder model is a vector
of real numbers ∈ [0, 1]. To accommodate this in-
put whilst not loosing the well-informed weights
of BERT, we obtain the segment embeddings for
each token as an interpolation between the binary
segment embeddings of BERT:

vecseg(ti) = vecseg(0)ti + vecseg(1)(1− ti)

where vecseg(ti) is the segment embedding at posi-
tion i, given a segment feature ti ∈ [0, 1], vecseg(0)
and vecseg(1) are segment embeddings for the input
segment features 0 and 1 respectively.

2.3 Decoder
The decoder is a BERT model, which shares
weights with the encoder. It performs the task of
generating question given paragraph and the an-
swer span. Here we employ a unified transformer
architecture model similar to (Dong et al., 2019;
Varanasi et al., 2020; Chan and Fan, 2019).

Model Top-1
SUPERVISED

Selector (Min et al., 2018) 91.2
BR-MPGE-ASBase (Tian et al., 2020) 92.1

UNSUPERVISED

SBERT (Reimers and Gurevych, 2019) 63.5
TF-IDF (Min et al., 2018) 81.2
AutoEQA-GSBase 75.0

UNSUPERVISED ANSWER SPAN

AutoEQA-QGBase 87.6
AutoEQA-QGLarge 90.3

Table 1: Answer sentence accuracy at top-1 sentence
selection on SQuAD dev set (v1.1) (Rajpurkar et al.,
2016) at different levels of supervision. Base and Large
refers to bert-base and bert-large (Devlin et al., 2019)
models respectively.

To encode answer span, we use segment fea-
tures of BERT. The first term in Eq. 1 is an expec-
tation over an estimated distribution of the infer-
ence network. This requires sampling which can
be simulated by adding Gumbel-noise (Maddison
et al., 2016; Jang et al., 2016) to the distribution
and further taking the softmax with a scaling fac-
tor τ , which decides the peakiness of the distri-
bution. However during training, we allow soft
answer selection instead of choosing a single an-
swer. The probabilities on the answer phrases are
transferred as scores per token and these scores
are provided as soft segment ids for correspond-
ing tokens. Similar to Sun et al. (2018) and Dong
et al. (2019), we use a question generation model
to decode the question given a paragraph and an an-
swer phrase as input. We hypothesize that the tasks
of encoder and decoder complement each other
as one single transformer model perform both QA
and QG simultaneously. We use BERT based copy-
mechanism (Gu et al., 2016) while generating the
question as proposed by Varanasi et al. (2020). The
copy-mechanism interpolates the probability dis-
tribution over the vocabulary with the probability
distribution over the paragraph which is obtained
from self attention scores across different layers of
BERT.

3 Experiments

For EQA experiments, we used the SQuAD v1.1
(Rajpurkar et al., 2016) dataset and conducted both
sentence level and phrase level answer span se-
lection. We trained on paragraph-question pairs
without using the labels for answers (i.e., 87, 594



Model EM F1
BASELINE

Random (Rajpurkar et al., 2016) 1.3 4.3
Sliding Window (Rajpurkar et al., 2016) 13.0 20.0
Context Only (Kaushik and Lipton, 2018) 10.9 14.8

ANSWER SPAN SELECTION VIA PRE-TRAINING

Cloze Corpus + BIDAF+SA (Dhingra et al., 2018)γ 10.0 15.0
Cloze CorpusLarge (Dhingra et al., 2018)γ 28.0 35.8

Span Pre-trainBase (Glass et al., 2020)∗ 3.8 10.4
Span Pre-trainLarge (Glass et al., 2020)∗ 10.9 23.2

ANSWER SPAN SELECTION VIA AUTO-ENCODING QUESTION

AutoEQA-QGBase 32.59 49.4
AutoEQA-QGLarge 34.3 53.4

SUPERVISED

BERTBase (Devlin et al., 2018) 80.8 88.5
BERTLarge (Devlin et al., 2018) 84.1 90.9

Table 2: Comparison of different unsupervised and semi-supervised models on SQuAD dev set. γ is implemented
and reported by Lewis et al. (2019), * are the models provided by the authors.

paragraph-question pairs). We maximize the ob-
jective for log-likehood (first term in Eq. 1) where
we trained for 3 epochs on the training set and kept
the model that has the best log-likelihood of the
question. We observed that using KL-Divergence
term in the Eq. 1 causes posterior collapse rather
quickly. So we limit the weight to 0.1 while us-
ing simulated annealing for some iterations after
3rd epoch. As mentioned above, removing phrases
that are common with the question helped to avoid
local minima. We used bert-base-cased and bert-
large-cased (Devlin et al., 2018) models in our
experiments, with initial learning rate 3e−5 using
Adam (Kingma and Ba, 2015) optimizer with 0.1
proportion of linear warm-up for learning rate.

3.1 Unsupervised Sentence Level QA
Answer sentence selection is an important task that
benefits EQA further in terms of the accuracy and
speed. Min et al. (2018) showed that by reduc-
ing the context to a sentence, one can not only
reduce the training and inference time but also at
times obtain better accuracy. As we factored the
probability of a sentence into the probability of a
candidate answer phrase that it contains, our model
naturally scores a sentence high if it impacts the
likelihood of the question. We used a modified ver-
sion of SQuAD for answer-sentence span selection,
similar to Tian et al. (2020).2 Table 1 provides a

2We used spaCy for marking sentences

Figure 3: Average F1 scores for different question
types

comparison of our results on SQuAD dev set to
some of the unsupervised and supervised methods
on answer sentence selection task. We provide our
own baseline, AutoEQA-GSBase, by auto-encoding
a missing (gap) sentence from a SQuAD paragraph
instead of the question. We achieve 75% accuracy
on top-1 sentence. This suggests that the archi-
tecture of AutoEQA by design captures semantic
similarity necessary for question-answering.

TF-IDF (Min et al., 2018) uses word frequency
in the question and the sentence to provide a sim-
ilarity score. Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) is a state-of-the-art sentence
embedding model which is trained for Textual Sim-



ilarity tasks (STS). It is noteworthy that our model
AutoEQA-GSBase surpasses SBERT when there is
no supervision for both paragraph or answer span.
For supervised sentence selection models, Min et al.
(2018) uses sentence-aware question embeddings
to find similarity between sentences and questions
and Tian et al. (2020) uses multi-perspective graph
encoding to capture sentence relations to further
benefit answer-sentence selection task. While both
of these models use supervision with elaborate
architecture for answer sentence selection, they
only marginally outperform AutoEQA-QG model
in span unsupervised setting. This suggests the
potential for AutoEQA-QG loss to enhance for sen-
tence level EQA models.

3.2 Unsupervised Extractive Question
Answering

For evaluation on answer phrases, we compare our
model with other possible answer span selection
techniques. The baseline models use heuristics to
train on simple features that do not require annota-
tion for EQA. The first baseline model is the slid-
ing window approach reported by Rajpurkar et al.
(2016) that finds answers using word overlap with
the question. Secondly, they also propose a super-
vised logistic regression model which is trained on
hand crafted features. Kaushik and Lipton (2018)
use supervision to extract the most likely answer
span from the context but they completely ignore
the question. These models mark the baseline.

Secondly, we report models that pre-train on
answer span selection methods to improve EQA.
Dhingra et al. (2018) creates a noisy corpus from
Wikipedia articles where questions are sentences
with missing phrases called cloze questions. Re-
cently, Glass et al. (2020) created a similar cloze
question corpus with documents retrieved per each
cloze question using information retrieval methods.
Both models train on answer span selection that is
required for the task of EQA. From table 2, one can
see that AutoEQA out performs them with large
margin. The difference between EM and F1 scores
for our models suggests that there are more over-
laps between the model’s predictions and ground
truth though it does not predict the exact phrase.
This provides a scope of improvement on phrase
selection.

While the selection of candidate answer phrases
themselves can limit AutoEQA, some answer
phrases might be inherently difficult to learn. For

better understanding, we look at the performance
statistics on different question categories. Figure
3 shows the average F1 scores on different ques-
tion types. AutoEQA naturally performs better
in the question categories when, where, and what
attributing to the fact that the answers for these
questions tend to be named entities. The model
performed poorly in the why questions. This could
be because of their lengthy answer phrases. It is
interesting to note that (Lewis et al., 2019) too per-
formed badly in this category. The category other
refers to which and who questions combined with
no-question word questions. Overall, we seem to
see a correlation with answer types being Named
Entities and the model’s performance. Nearly 75%
of the predicted answers are less than 10 words
distant from the ground truth.

4 Related Works

Recently, data augmentation has become a popular
way to do unsupervised EQA (Lewis et al., 2019;
Li et al., 2020; Fabbri et al., 2020), where synthetic
questions are generated either by heuristics or by
unsupervised question generation methods. Brown
et al. (2020) show that very large-scale language
models can generate answers without supervision.
While these works have their own benefits, they are
different from the problem we intend to address
and hence can’t be compared directly. For example,
Lewis et al. (2019) achieves similar performance
to ours using millions of artificially created data
points for EQA corpora while we achieve our re-
sults by using only 87k training samples suggest-
ing the efficiency of our method when supervision
for question, paragraph pairs is provided.

5 Conclusion

In this work, we propose a novel method for Un-
supervised answer span selection. We showed that
using auto-encoding of question, one can get con-
siderable gains (34.3% EM and 53.4% F1 score).
Methods for unsupervised key phrase extraction
can benefit AutoEQA in choosing well-informed
and dynamic phrases.
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