DESIGN PRINCIPLES OF THE DISCO
SYSTEM

Gunter Neumann*

Deutsches Forschungszentrum fiir Kinstliche Intelligenz
Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, Germany

neumann@dfki.uni-sbh.de
To appear in: Proceedings of the TWLT 5, Twente, Netherlands, 1993.

ABSTRACT

In this paper we introduce the basic design
principles of the DISCO system, a Natural
Language analysis and generation system.
In particular we describe the DISCO DE-
VELOPMENT SHELL, the basic tool for the
integration of natural language compo-
nents in the DISCO system, and its appli-
cation in the cosMA (COoperative Sched-
ule MAnagement Agent) system.

Following an object oriented architec-
tural model we introduce a two-step ap-
proach, where in the first phase the archi-
tecture is developed independently of spe-
cific components to be used and of a par-
ticular flow of control. In the second phase
the “frame system” is instantiated by the
integration of existing components as well
as by defining the particular flow of con-
trol between these components. Because
of the object—oriented paradigm it is easy
to augment the frame system, which in-
creases the flexibility of the whole system

*The research underlying this paper was sup-
ported by a research grant, FKZ ITW 9002 0,
from the German Bundesministerium fur
Forschung und Technologie to the DFKI project
DISCO.

with respect to new applications. The de-
velopment of the COSMA system will serve
as an example of this claim.

1 INTRODUCTION

Today’s natural language systems are
large software products. They consist of
serveral mutually connected components
of different kinds, each developed by dif-
ferent researchers often placed on differ-
ent locations. The integration of these
components has therefore become a soft-
ware engineering and mangement prob-
lem. We will consider the project DIS-
co (DIalogue Systems for COoperating
agents) from this perspective.

DISCO’s primary goal is the process-
ing of multiagent natural language dia-
logue. Multiagent capabilities make it
an appropriate front end for autonomous
cooperative agents, which will be exem-
plified by the cosMa system (COopera-
tive Scheduling MAnagement system) de-
scribed in section 4.

The project DISCO as a whole is a four-
year, eight-person research effort fund-
ed by the German Ministry for Research

and Technology. DISCO is completing its

fourth year. The first task of the develop-
ment of the DISCO system was to provide
a uniform core formalism based on unifi-
The second

was the construction of a modular archi-

cation of feature structures.

tecture orthogonal to the representation
formalism, as a platform for experimen-
tation. Third, research and construction
of dialogue components is ongoing, as is
(fourth) investigation of the interface be-
tween dialogue components and multia-
gent systems.

We will emphasize in this paper the sec-
ond phase, i.e. the description of the un-
derlying architecture. The solutions to the
other tasks will be reported briefly in the
next section.

2 OVERVIEW OF THE DIS-
CO SYSTEM

The linguistic core machinery extends a
constraint-based approach of linguistic de-
scription [Pollard and Sag, 1987]. In this
paradigm linguistic objects are described
by a set of constraints which express mu-
tually co-occurence restrictions of phono-
logical, syntactic and semantic informa-
tion. A fundamental aspect of these the-
ories is that they are declarative, i.e. they
only describe what constraints are neces-
sary to describe linguistic objects not the
way in what order the constraints involved
are to be solved.

Such a uniform view has not only a lot
of advantages for linguistic description but
also for the design of Natural Language
systems because it leads to more com-
pact systems. If, for example, the differ-
ent stratas (e.g., syntax, semantics) would
be represented and processed in different
modules than a complex internal flow of
control between these modules would be
necessary if the mutual co-occurence re-
strictions should be maintained. Using an

uniform approach instead allows to pro-
cess these constraints in an incremental
and parallel way by the very same con-
straint solving algorithm.

Figure 1 shows graphically the structure
of the linguistic kernel.

NLL expression

NLL

,,,,,,

DISCO

Grammar
(+ Lexicon)
Parser Generator
TDL
Udine
X2morf
Scanning
Utterance

Figure 1: Overview of the DISCO kernel.

Uniform Core Formalism The lin-
guistic knowledge is specified in the
typed feature formalism TDL [Schafer and
Krieger, 1992], which incorporates the
unification engine UDiNe. TDL is the ex-
clusive formal device employed to speci-
fy grammar rules, lexical entries and all
other linguistic knowledge relevant for the
grammar. UDiNe serves also as the basic
machinery for linguistic processing (e.g.,

during parsing, generation or speech act
recognition).

In TDL, typed feature structures can be
defined through simple or multiple inher-
itance relations. TDL performs full type
expansion at compile-time, i.e., if in a type
definition a type inherits from other types
or if the value of an attribute is restrict-
ed to a type, these types are replaced by
the associated feature structures with only
limited simplification.?

Unification of feature structures in TDL
and elsewhere in the system is executed
by the unfier UDiNe, which is one of the
most comprehensive unifiers so far imple-
It comprises full negation, in-
cluding negation of co-references, and full
disjunction. UDiNe provides for so-called
distributed disjunction through which dis-
junctive information can be kept as lo-

mented.

cal as possible in the structural specifica-
tion. The main advantage of distributed
disjunction is that it helps to avoid the
translation of structures containing dis-
junctions into a disjunctive normal form,
which, given the size of structures in ques-
tion, could lead to a serious efficiency
problem. UDiNe has a mechanism for
treating feature values defined as func-
tional constraints.

Grammar The DISCO grammar is a
German grammar whose syntactic part
was developed by and described in [Net-
ter, 1993] and which has an integrated se-
mantic representation described in [Ner-
bonne, 1992], [Kasper, 1993]. The style of
the grammar follows very much the spirit
of Head Driven Phrase Structure Gram-

mar (HPSG) [Pollard and Sag, 1987], [Pol-

IThere is now a new version of TDL available,
which enables partial or delayed type expansion,
the incremental definition of types, negation, dis-
junctive types and partitioning. However this
version needs still to be integrated into the whole
system.

lard and Sag, to appear]. The grammar is
reversible in the sense that it is used for
both parsing and generation.

Present coverage of German in the DIS-
co grammar? includes on the

e nominal level: determiners and nu-
merals, bare plurals and mass nouns,
postnominal prepositional phrases,

nominal ellipsis

complex and sim-
ple adjective phrases, attributive and
predicative functions

e adjectival level:

o verb level: V-initial, V-second and V-
final, modal verbs and construction of
verb complexes

e clausal level: free insertion of ad-
juncts, topicalization, sentence types
(Y/N and WH-interrogatives, imper-

atives, declaratives).

In addition, the grammar has been ex-
tended to include multiword lexemes, per-
mitting opaque idioms to reside in the lex-
icon. Fig. 2 shows an example of such
an entry. This example demonstrates al-
so the uniform representation of different
levels of linguistic information in HPSG.

Semantic information is represented
within the grammar following the ideas
of constraint-based semantics [Nerbonne,
1992]. The current status of semantic rep-
resentation in the DISCO project is de-
scribed in [Kasper, 1993]. It follows the
practice to specify the semantic repre-
sentation only partially up to a level of
‘quasi-logical form’” which leaves for ex-
ample some contextual restrictions out of
consideration. These are left to a sec-
ond step of semantic interpretation. Such
quasi-logical forms contain the following
kind of information:

?The following is not a complete list of the
current coverage. A detailed description can be
found 1n [Netter, 1993].

HEAD

LOCAL
SUBCAT ()
LEXICAL +

SYN

[PRED time

HOUR
MIN [2]

STEM (cardinal)

CAT
SEM

MORPH <

np -

MAJ

HEAD [VALUE] ’ HEAD[NUM sg] ’|HEAD [VALUE] ’

N+

STEM (uhr) STEM (cardinal) >

Figure 2: An example of a multi-word lexeme (taken from [Netter, 93]) that covers

time expressions such as “14 Uhr 30” (2.30 p.m.).

o predicate-argument-structure
e thematic roles of arguments
e the modification relation

e sortal and selectional restrictions on
predicate-argument structures and
modification. These have proved

be very

disambiguation especially of PP-
attachment ambiguities (see [Kasper,

1993)).

to efficient means for

NLL Although the core formalism has
a great deal of power, the DISCO sys-
tem also provides a logical form module
which facilitates translation into various
types of back-end systems. NLL is a
representation of standard predicate logic,
with lambda abstraction and several fea-
tures that support representation of nat-
ural language constructions [Laubsch and

Nerbonne, 1991]. These include

o Named predicate argument positions

ship(agt:John th:shipment-47
time:15-Mar)

e Plural terms
Jim and John are shippers.
(exist 7x shipper(inst/i:7x) =
(argl:+{Jim,John} arg2:7x))

e l.ocation terms
John is in Saarbricken on the Saar.
located(th:John
loc:reg-X{SB,on-fn(Saar) })
e Restricted parameters

o Generalized quantifiers

e Complex determiners

Modularity is achieved by providing
several types of interfaces. NLL struc-
tures may be created using constructor
functions, a structure parser, or a feature
description language.

The goal of modifiability is realized
through the implementation of NLL using
the compiler tools, Zebu (a LISP version
of Yacc, [Laubsch, 1992]) and REFINE.

Processing Components In the fol-
lowing we describe briefly the main pro-
cessing components of the linguistic kernel

(cf. fig. 1).

Scanning The scanner is mainly re-
sponsible for preprocessing the input
string. It i1s implemented in LEX and
YACC. The scanner can expand abbre-
viations into their full forms, as for ex-
ample “h” into “Uhr”, “Jan.” into “Jan-
uar”, etc. For tokens algorithmically en-
coding their denotations the scanner also
performs a morphological analysis by as-
signing a feature structure to them. Such
tokens are, above all, cardinal and ordinal
numbers, e.g., “12”7 and “12.”, but also
complex time and date expressions, such

as “14:31:15” or “12.03.1993”.

Morphology The morphological com-
ponent receives as input those tokens
which have not been analysed by the scan-
It produces as output a feature
structure which contains as a key or in-
dex the lemma of the respective item,
as well as other relevant morphosyntac-

ner.

tic information which uniquely identifies
the form. During generation, the morpho-
logical component receives as input a fea-
ture structure description of the form to
be produced.

At present, the morphological informa-
tion is precompiled into a morphological
full form lexicon, so that runtime process-
ing reduces to the lookup of full forms
and the initialization of the lexical com-
ponent with the associated feature struc-
tures. The precompilation is performed by
the X2MORF system described in [Trost,
1991]. Part of this system was redesigned
with the results that the feature part is
now also specified in TDL, and that the
morphology can be integrated into the sys-
tem for a full runtime analysis.

Parsing The parser is a bidirection-
al bottom-up chart parser which oper-
ates on a context-free backbone implicit-
ly contained in the grammar. The pars-
er provides parameterized general parsing

strategies, as well as giving control over
the processing of individual rules. For
example, it is possible to set the control
strategy to a breadth-first strategy, to give
priority to certain rules, or to determine in
which order types of daughters, e.g., head
daughters, adjunct daughters etc., as well
as individual daughters in a specific rule
are processed. In addition, the parser pro-
vides the facility to filter out useless tasks,
i.e., tasks where a rule application can be
predicted to eventually fail due to an in-
evitable unification failure.

Generation The surface generator cur-
rently of the
semantic-head-driven algorithm described
in [Shieber et al., 1991]. It is a (syntac-
tic) bottom-up process guided by seman-
tic information passed top-down. Given
a semantic representation expressed as a
typed feature structures it generates all

in use 1s a variant

expressions permitted by the grammar.
Instead of using a full-form lexicon as
it is the case for [Shieber et al., 1991]
the generator yields as output a sequence
of feature structure containing the lexical
stems together with morphosyntacic infor-
mation. These elements are then passed
to the morphological component which
computes the appropriate surface forms.

Speech act component The current
DISCO system incorporates a first proto-
type of a surface speech act component
developed by and described in more de-
tail in [Hinkelman and Spackman, 1992].

In linking text to task, it is crucial to
capture not only propositional content of
linguistic expressions but also the attitude
or intention behind them. Speech acts,
or utterances construed as actions, serve
this purpose. An agent is assumed to be
an inference system with a planning al-
gorithm. The planner constructs chains
of actions that would, if executed, result

in the achievements of the agent’s goal.
Plan recognition then consists in revers-
ing this process, taking observed actions
as evidence for the intentions.

In the approach followed in the DISCO
system the HPSG framework is used to
represent the necessary inference rules for
speech act recognition (e.g. simple impli-
cations can be expressed using negation
and distributed disjunction).?
this kind of representation the relation-

Based on

ship between sentence types and coven-
tionalized speech acts (like INFORM or RE-
QUEST) can be expressed declaratively in
the grammar. Parsing of an expression
now not only yields an propositional con-
tent but also the possible types of speech
acts. The current version of the speech
act component offers solutions to the fol-

lowing subproblems:

o general linkage between utterances
and intentions

e specific mechanisms linking speech
acts to surface representations

e reliable, n-way speech acts.

3 THE DISCO DEVELOP-
MENT SHELL

The architecture of the DISCO system and
COSMA have both been realized using the
DISCO DEVELOPMENT SHELL, which was
developed by the author and which we are
now going to present in more detail.

The use of modern programming tech-
niques in system integration is crucial to
support the following desiderata:

e modularity of NLP components

3The current approach only supports speech
act recognition but it is planned to use the same
basic approach also for the planning of speech
acts (see [Hinkelman and Spackman, 1992]).

e cxperimentation with flow of control
e incorporation of new modules

e building of subsystems and stan-
dalone applications

e accommodation of alternative mod-
ules with similar functionality

In order to perform the tasks mentioned
above we have chosen a two—step approach
to realize DISCQ’s architecture:

1. In a first step the architecture is de-
scribed and developed independent-
ly of the components to be used
and of the particular flow of control.
Possible components are viewed as
black boxes and the flow of control
is described independently of specif-
ic components. In such an abstract
view the architecture realizes only a
schema called the frame—system.

2. Next the frame-system has to be ‘in-
stantiated’ by the integration of exist-
ing modules and by defining the par-
ticular flow of control between these
modules.

It is useful to divide the system com-
ponents into different types according
to their specific tasks. Currently, we

distinguish:*

e tool components (e.g., graphic de-
vices, printer, debugger, errror han-

dler)

e natural language
components (e.g., morphology, pars-

er, generator, speech act recognition)

e control component

*We do not assume that this list is complete.
For example, it 1s also possible to have knowledge
sources as components of the frame system.

In order to obtain a high degree of flex-
ibility and robustness (especially during
the development phase of a system) the
control unit directs and monitors the flow
of information between the other compo-
nents. The important tasks of the control
unit are:

e to direct the data flow between the
individual components

e to define which components should
run together to form a ‘subsystem’

e to check the data received from one
component before they are sent to an-
other one

e to manage global memory and call
specific tools

There is a command level for direct
communication with the kernel. The pur-
pose of the command level is to provide
commands that allow users to run subsys-
tems, to activate or inactivate tracing of
modules and to specify printing devices.
Users may also specify values for global
variables interactively or with configura-
tion files for each module.

Object Oriented Design If a new
component must be integrated, one would
like to concentrate only on those parts
that are of specific interest for these new
components. Algorithms or data which
are common to all components (or compo-
nents of a specific type) should be defined
only once and then be added automatical-
ly for each new component without side-
effects to other already integrated compo-
nents.

We have choosen an object—oriented
programming style (OOP style) using the
Common Lisp Object System (CLOS) in
order to realize the two-step approach

described above. In the object—oriented

paradigm a program is viewed as a set
of objects that are manipulated by ac-
tions. The state of each object and the ac-
tions that manipulate the state are defined
once and for all when the object is creat-
ed. The essential ingredients of object—
oriented programming are objects, class-
es and inheritance. Objects are modules
that encapsulate data and operations on
that data. Every object is an instance of
a specific class which determines its struc-
ture and behaviour. [Inheritance allows
new classes to specialize already defined
classes. The result is a hierarchy of class-
es where classes inherit the behaviour (da-
ta and operations) from superclasses. The
advantage for the programmer is that she
need only specify to what extend the new
class differes from the class(es) it inherits
from. This supports the design of mod-
ular and robust systems that are easy to
use and extend.?

CLOS The main programming lan-
guage for the DISCO project is Common
Lisp. Because CLOS is defined to be
a standard language extension to Com-
mon Lisp it is easy to combine ‘ordinary’
Lisp code with OOP style. CLOS al-
lows us to define an hierarchical organiza-
tion of classes that models the relationship
among the various kinds of objects. Fur-
thermore, because CLOS supports mul-
tiple inheritance it is possible to define
methods that are defined for particular
combinations of classes. Therefore a large
amount of control flow is automatically re-
alized by CLOS. This helps us to concen-
trate on the individual properties of new
components, which simplifies and speeds
up their integration extremly. Of course,
CLOS itself does not enforce modularity

>The reader should consult e.g., [Keene, 1988]
for an excellent introduction into CLOS if more
detailed information on object oriented program-
ming is of interest.

or makes it possible to organize programs
poorly; it is just a tool that helps us to
achieve such modular systems.

DISCO’s Class Hierachy The DIS-
CO DEVELOPMENT SHELL consists of the
class hierarchy and the specification of
class specific methods. Every type of com-
ponent and its specializations are defined
as CLOS classes. Figure 3 shows a portion
of the current hierarchy.

MODULE is the most general class. All
other classes inherit its data structure and
associated methods. The class LANGUAGE
COMPONENT subsumes all modules of the
current system which are responsible for
language processing. A module that is ac-
tually used in the system is an instance of
one of the classes.

New modules are added to the sys-
tem by associating a class with them.
CLOS supports dynamic extension of the
class hierarchy so that new types can be
added even at run-time. For example,
if we wanted to add a new parser mod-
ule we would either use the already exist-
ing class PARSER or define a new class,
say ALTERNATIVE-PARSER. In the first
case we assume that we only need the
methods that have already been defined
for the PARSER class.
case we would have to add new methods

In the second

or could specialize some of the methods
that ALTERNATIVE-PARSER inherits from
PARSER. In principle it could also happen
that the new parser shares many proper-
ties with DISCO-PARSER. In that case we
would have to refine the parser subnet in
order to avoid redundancy.

Protocols The flow of control between
a set of components is mediated by means
of protocols.
fined for the class controller. They specify
the set of language components to be used

Protocols are methods de-

and the input/output relation between the

language components. All current proto-
cols are defined using the same structure
as shown in fig. 4.

The controller uses the generic function
CALL-COMPONENT to activate an individ-
ual language component instance, special-
ized to the appropriate subclass. Con-
trol flow is determined by the sequence of
CALL-COMPONENT invocations.
calls, output is verified and converted to
the following component’s input format by
calling the generic function CHECK-AND-
TRANSFORM. This mechanism is very im-
portant to support robustness especially
during the development phase of the sys-
tem. Specific methods are defined for each
module that indicate what to do if a mod-

Between

ule does not come up with a correct re-
sult. These methods are activated by the
controller during the call of CHECK-AND-
TRANSFORM.
the system further processing is then in-
terrupted and the user is informed about

In the current version of

the problem that occured.

For example, the output of MOR-
PHOLOGY defines the input to PARSER
and so on. By calling (CHECK-AND-
TRANSFORM CONTROLLER MORPHOLO-
GY PARSER) the controller checks whether
the morphology yielded a valid output and
eventually transforms the output for the
parser. If MORPHOLOGY detects an un-
known word X further processing is in-
terrupted and the user receives a message
notifying him that X is unknown to the
morphological component.

Some Remarks If two adjacent com-
ponents have been proven to work to-
gether without problems CHECK-AND-
TRANSFORM need not be called for them
as 1t is the case for the components
COMPONENT; and COMPONENT; in the
example shown in fig. 5.

Input and output for the whole system

is specifed using general communication

Module

Tool Controller Command-Shell

Trace Handler
Scanner

Lisp Scanner Yacc Scanner

X2morf

Morphix

Language Component

Printer W

Morphology Lexicon

NLL

Parser

Disco Parser

Figure 3: A portion of the current class hierarchie in the DISCO system.

call-component controller com 0nent1

p p

check-and-transform controller com 0nent1 com 0nent2
p p

call-component controller com 0nent2

p p

check-and-transform controller com 0nent2 com onent3
p p

(call-component controller components)

(check-and-transform controller component(,_yy component,)

(call-component controller component,)

Figure 4: Schematic structure of protocols.

channels. In the normal case this is the
standard terminal input/output stream of
Common Lisp. In the COSMA system
an e-mail interface for standard e-mail is
used as the principle communication chan-
nel. Besides the general input/output de-
vice the controller also manages working
and long-term memory. These memories
are used to process a sequence of sen-
tences. In this case the controller stores
each analysed sentence in long—term mem-

ory.

The architecture by itself is not restrict-
ed to pipeline processing but would be
used in modeling cascade or blackboard
architectures as well.
the working memory can be used to real-
ize the (possibly structured) blackboard.
This has already been partially realized in

In the latter case

the current version. In principle, the ar-
chitecture appeals to be general enough to
realize negotiation-based architectures.

Current Subsystems For grammar
debugging 1t is possible to run server-
al subsystems (called standalone applica-
tions), which are activated via the com-
mand level. For example, one might want
to run the parser and generator without
morphology or only the set of components
necessary during analysis aso. In each
case the same functionality is available as
well as the same set of tools. In principle
it would be possible for a user to define
protocols himself e.g., to test self—written
modules because the integration of mod-
ules and the definition of protocols takes
place in a standardized fashion.

Component-2

Output
L 1

Component-1

Input

N s s~ N = ’
Input/Output from/to general device (e.g., email)

’ \ 4 MR ’

Component-4

QOutput

Figure 5: Flow of control between four components. In this protocol component 2

and 3 interact directly. The controller views them as being one component (indicated

by the dotted lines around them).

4 OVERVIEW OF THE COS-
MA SYSTEM

In this final section we will give a brief
overview of the COSMA system. The
principle idea behind the COSMA system
is to support scheduling of appointments
between several human participants by
means of distributed intelligent calendar
assistents. Instead of using a central-
ized solution where only a global calendar
database is maintained we have choosen
a distributed solution. Scheduling of ap-
pointments between several participants is
than viewed as a cooperative negotiation
dialogue between the different agents.

We assume that each person has its own
(therefore local) calendar database avail-
able on her computer where each calen-

dar is managed by an individual planning
component. Each COSMA system consists
of three basic components

o An intelligent assistent that keeps
and manages the calendar database

o A graphical user interface to the cal-
endar data—base application planner

e The natural language system DISCO

It is assumed that electronic mail will
be used as a basic communication chan-
nel. Information concerning the schedule
of particular appointments (e.g., request
to arrange a meeting, cancelation of a pre-
viously setup appointment or other infor-
mation relevant in performing some nego-
tiation) is sent around the set of relevant
participants via e-mail. Using standard

e-mail software has the advantage that
scheduling of appointments can be done
in a distributed and asychronous way.

Natural language (NL) comes into play
because we allow humans to participate
who have no calendar assistent available.
The only restriction is that they have elec-
tronic mail available. Such a (poor) per-
son is responsible for mantaining an old—
fashioned calendar but is allowed to use
natural language during appoinment nego-
tiation. Consequently, each COSMA sys-
tem needs to be able to process natural
language, either to understand a NL dia-
logue contribution or to produce one.

Each user of a COSMA system has ac-
cess to the calendar data—base by means
of a graphical user interface. The graphi-
cal user interface — developed by Stephen
Spackman who named the tool DUI —
is used to display and update existing
items and enter new items into the data—
The intelligent calendar manager
The
current version (developed by the AKA-
MOD group of the DFKI) consists of time

processing functions, a finite-state proto-

base.
maintains the calendar database.

col for arranging appointments, and an
action memory storing the protocol state
and original e-mail for each arrangement
in progress. The principle task of the DIs-
CO system is to extract that information
from an natural language expression that
can be used by the calendar manager. DIS-
CO is also responsible for the production
of natural language text from the inter-
nal representation of scheduling informa-
tion computed by the calendar manager.
The produced text is sent in addition to
the internal structure of scheduling ex-
pressions to the participants via e-mail.
[Busemann, 1993] describes the current
approach for generating natural language
expressions in COSMA in more detail.

Short Example Figure 6 gives an
overview of a configuration where three
participants, a human (Tick) and two
cosMAs (Trick, Track) are involved.

A possible appointment scheduling is as
follows (abstracting away from details):
Track to Trick and Tick:
arrange(meeting, 21.10.1992,1p.m.)
Trick to Track:
accept(meeting)

Tick to Track:

Ich bin mit dem Termin einverstanden. (/
accept the appointment).

Track to Trick and Tick:
confirm(meeting)

In words: Track wanted to arrange a
meeting and sends this request to Trick
and Tick (in form of an internal planning
expression). Trick automatically sends an
acception. Because there are no conflict-
ing entries in his calendar data—base, Tick
sends an acception using NL. Track will
update its calendar while sending a con-
firmation to the two participants notify-
ing them that all participants accepted the
appointment.

The current version of the system is able
to handle more complex dialogs, e.g., ap-
pointment scheduling initiated by a non-
COSMA user, cancellation and modifica-
tion of already set up appointments.

5 CONCLUSION

In this paper we have given an overview
of the DISCO system and a detailed de-
scription of the DISCO DEVELOPMENT
SHELL. The DISCO DEVELOPMENT SHELL
has been proven very useful in setting up
the COSMA system.
integrate the new modules independent-
ly from the rest of the system. Existing

It was possible to

modules have been exchanged by new ones
without the need of adding new meth-

ods.

Because different researchers were

TICK TRACK
\ { 3\
Planner
e-mail DISCO
Emailer /
] DUI <~
l J \
\ v
TRICK
{ N\
Human comain e-mail Human
(traditional) Planner (loves Al)
DISCO

d

DUI

This Cosma is authorized

to make appointments

Figure 6: General Overview of the Sample Scenarios

able to run subsystems the development
of the whole system could be done in a
distributed way. Therefore eight very dif-
ferent modules have been intergrated in
less than three weeks including test phas-
es.

Based on these experiences we believe
that the oject—oriented architectual mod-
el of our approach is a fruitful basis for
managing large—scale projects. It makes
it possible to develop the basis of a whole
system in parallel to the development of
the individual components. Therefore it is
possible to take into account restrictions
and modifications of each component as
early as possible.

References

[Busemann and Harbusch, 1993]
Stephan Busemann and Karin Har-
busch, editors. Proc. DFKI Workshop
on Natural Language Systems: Mod-
ularity and Re-usability, Saarbricken,
germany, 1993.

[Busemann, 1993] S. Busemann. Towards
the configuration of generation systems:
Some initial ideas.

Harbusch [1993].

In Busemann and

[Hinkelman and Spackman, 1992]
Elizabeth A. Hinkelman and Stephen P.
Spackman. Abductive speech act recog-
nition, corporate agents and the cos-
ma system. In W. J. Black, G. Sabah,
and T. J. Wachtel, editors, Abduction,
Beliefs and Context: Proceedings of
the second ESPRIT PLUS workshop in

computational pragmatics, 1992.

[Inc., 1990] Reasoning Systems Inc. Re-
fine user’s guide. Technical report, Palo

Alto, CA, 1990.

[Kasper, 1993] Walter Kasper.

tion of syntax and semantics in feature

Integra-

structures. In Busemann and Harbusch

[1993].
[Keene, 1988] Sonya E. Keene. Object-

Oriented Programming in Common
Lisp. A Programmer’s Guide to CLOS.
Addision-Wesley, 1988.

[Laubsch and Nerbonne, 1991] J. Laub-
sch and J. Nerbonne. An overview of
nll. Technical report, Hewlett-Packard
Laboraties, Palo Alto, CA, 1991.

[Laubsch, 1992] J. Laubsch. Zebu: A tool
for specifying reversible lalr(1) parsers.
Technical report, Hewlett-Packard Lab-
oraties, Palo Alto, CA, 1992.

[Nerbonne, 1992]
John Nerbonne. Constraint-based se-
mantics. In Paul Dekker and Martin
Stokhof, editors, Proceedings of the §th
Amsterdam Colloguium, pages 425-444.
Institute for Logic, Language and Com-

putation, 1992. also DFKI RR-92-18.

[Netter, 1993] Klaus Netter. Architecture
and coverage of the disco grammar. In

Busemann and Harbusch [1993].

[Pollard and Sag, 1987] C. Pollard and
I. A. Sag. Information Based Syntax
and Semantics, Volume 1. Center for

the Study of Language and Information
Stanford, 1987.

[Pollard and Sag, to appear]
C. Pollard and I. M. Sag. Information
Based Syntax and Semantics, Volume 2.
Center for the Study of Language and
Information Stanford, to appear.

[Schéfer and Krieger, 1992] Ulrich
Schafer and Hans-Ulrich Krieger. TDL

extra-light User’s Guide: Franz Allegro
Common LISP Version. DISCO, 1992.

[Shieber et al., 1991] S. M. Shieber,
F. C. N. Pereira, G. van Noord, and

R. C. Moore. Semantic-head-driven
generation. Computational Linguistics,

16:30-42, 1991.

[Trost, 1991] Harald Trost. X2MORF:
A morphological component based
on augmented two-level morphology.
Technical Report RR-91-04, Deutsches
Forschungsinstitut fiur Kunstliche Intel-
ligenz, Saarbricken, Germany, 1991.

