
Genetic Algorithms for data-driven Web
Question Answering

Alejandro G. Figueroa and Günter Neumann {figueroa|neumann}@dfki.de
DFKI LT-Lab, Stuhlsatzenhausweg 3, D - 66123, Saarbrücken, Germany

Abstract
We present1 an evolutionary approach for the computation of exact answers to Natural
Languages (NL) questions. Answers are extracted directly from the N–best snippets,
which have been identified by a standard web search engine using NL questions. The
core idea of our evolutionary approach to web question answering is to search for
those substrings in the snippets, whose contexts are most similar to contexts of al-
ready known answers. This context model together with the words mentioned in the
NL question are used to evaluate the fitness of answer candidates, which are actually
randomly selected substrings from randomly selected sentences of the snippets. New
answer candidates are then created by applying specialised operators for crossover
and mutation, which either stretch and shrink the substring of an answer candidate or
transpose the span to new sentences. Since we have no predefined notion of patterns,
our context alignment methods are very dynamic and strictly data-driven. We assessed
our system with seven different data sets of question/answer pairs. The results show
that this approach is promising, especially when it deals with specific questions.

Keywords
Genetic algorithms, Question Answering, Web Mining, Natural Language Processing.

1 Introduction

Question Answering Systems (QAS) try to find exact answers to natural language ques-
tions submitted by users, by looking for answers in a set of available information
sources, which can be spread on a single machine or all over the Internet, in partic-
ular, Web QAS focus solely on extracting answers from the whole Web.

In most cases, a natural language question represents some sort of close relation
between entities, where the answer is the missing part of this relation: one or more en-
tities, or the kind of relation that entities hold (Lita and Carbonell (2004)). To illustrate
this, consider the following relation between two sorts of entities:

Inventor invented Invention

In this instructive example, “inventor” and “invention” are entities, and the relation they
hold is “invented”. The missing part of the relation can be one or more entities:

Who invented Invention?
What invented Inventor?

1The work presented here was partially supported by a research grant from the German Federal Ministry
of Education, Science, Research and Technology (BMBF) to the DFKI project HyLaP (FKZ: 01 IW F02) and the
EC-funded project QALL-ME.

c©200X by the Massachusetts Institute of Technology Evolutionary Computation www(www): www-www

A. Figueroa and G. Neumann

In the same way, the missing element may aim at the relation that entities hold:

How are Inventor and Invention related?
What is the relation between Inventor and Invention?

The Web Question Answering Problem can then be viewed as the problem of
searching for a set of strings that represent correct answers to a queryQ, in other words,
a set of strings that are likely to be the missing member of the relation established by
the prompted question.

To begin with a formal description, consider S to be a set consisting exclusively of
the σ different sentences extracted from a set ϕ of N snippets, Ss is the s-th sentence in
σ, 1 ≤ s ≤ σ. Let us also consider Bsk1k2 as an n-gram (subsequence of n terms from a
given sequence) of β = k2 − k1 + 1 words in Ss which starts at position k1 and ends at
position k2, len(Ss) ≥ k2 ≥ k1 ≥ 1. If k1 = k2, Bsk1k2 is an uni-gram. The Web Question
Answering Problem consists then in finding the n-gram that successfully fulfils:

max K(Bsk1k2 , Q) (1)

Where K is a function which states how likely the n-gram represents a right answer to
Q. In other words, how likely Bsk1k2 plays the role of the missing part of the relation
established by the query. It seems that there is no standard function K that effectively
solves this problem for any kind of question Q and any given set of n-grams. To
illustrate this model, consider the following set of sentences:

S = {S1 = “Igor Sikorsky invented the helicopter”,

S2 = “The tea bag was invented by Thomas Sullivan”}

Some n-grams extracted from S are: B112=“Igor Sikorsky”, B223=“tea bag” and
B278=“Thomas Sullivan”. Usually, Bsk1k2 should not contain a set of Q∗ banned terms,
which are in the submitted query or it should not be in the stop list 2 % of the language:

Bsk′k′′ 6∈ Q∗, ∀ k′ , k′′ , k1 ≤ k′ ≤ k′′ ≤ k2

Bsk′k′ 6∈ %, ∀ k′ , k1 ≤ k′ ≤ k2

This conventional assumption is due to the fact that elements of a stop-list or from the
query are unlikely to be the missing part of the relation established by the prompted
question. In the illustrative example, B255=“invented” and B144=“the” can not be con-
sidered acceptable answers, because “invented” belongs to the set of banned terms Q∗,
and “the” belongs to the stop-list %.

In general, Web QAS have two major components (Echihabi and Marcu (2003)):

1. A search engine which retrieves a set of promising documents from the collection
along with a brief description of relevant passages called snippets.

2. An answer extraction module which gets answers from relevant documents
and/or snippets.

The former necessarily involves the efficient indexing of documents and the design
of a fast algorithm that computes snippets. The latter has to do with identifying

2A stop list consists entirely of extremely common words which are useless to index documents such as
articles, adverbials or adpositions.

2 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

correctly the answer to the request of the user on the previously selected set of doc-
uments. For the efficiency sake, extracting answers straightforwardly from snippets
is clearly desirable, in that way, QAS avoid downloading and processing a wealth of
documents. Certainly, this is not an easy task. On the one hand, snippets provide:
(a) localised contextual paragraphs that are highly related to the query, (b) these
localised contextual paragraphs express ideas and concepts by means of different
paraphrases, which consist primarily of morphological, semantical, orthographical
and syntactical variations of these ideas and concepts (Savary and Jacquemin (2000)),
which makes easier the identification of promising answer candidates. On the other
hand, search engines insert intentional breaks in snippets, in order to show relations
amongst words relevant to the query, which are separated by a large span of text.
This makes snippets ungrammatical, and therefore, the answer extraction task and the
identification of contextual cues is more difficult and dependent upon the algorithm
that computes snippets. To illustrate this, consider the following question and set of
retrieved snippets as an example: “When was Albert Einstein born?”

1. The nobel prize of physics Albert Einstein was born in 1879 in Ulm, Germany.

2. Born: 14 March 1879 in Ulm, Württemberg, Germany.

3. Physics nobel prize Albert Einstein was born at Ulm, in Württemberg, Germany,
on March 14, 1879.

4. Died 18 Apr 1955 (born 14 Mar 1879) German-American physicist.

5. Briefwechsel Einstein / Born 1916 - 1955, Albert Einstein, Hedwig Born, ... Kun-
den, die Bücher von Albert Einstein gekauft haben, haben auch Bücher dieser

6. When was Einstein born? 1911 1879 1954. 2. Where was Einstein born? Ulm,
Germany Jerusalem, Israel New York, USA ... Albert Einstein was married:

Looking closer at the retrieved snippets, we observe that snippets one to four pro-
vide four different pieces of text that represent different paraphrases of the same under-
lying idea. The correct answer can be found in each snippet, but it is written in different
forms (“14 March 1879”,“1879”,“March 14, 1879” and “14 Mar 1879”). The fourth snip-
pet also provides an orthographical variation of the right answer (“14 March 1879”⇔
“14 Mar 1879”), where “March” is shortened to “Mar”. In addition, the first and third
snippets are morphological variations of the same concept (“the nobel prize of physics Al-
bert Einstein” ⇔ “physics nobel prize Albert Einstein”). Furthermore, snippets three and
four are semantic variations (“physics nobel prize Albert Einstein” ⇔ “German-American
physicist”). The last two snippets show breaks inserted deliberately by the search en-
gine (marked as “. . .”). Additionally, they also reveal two other main drawbacks to
snippets: they are written in different languages and they can provide wrong answers
(“When was Einstein born? 1911 1879 1954.”).

Broadly speaking, the difficulty of discovering the answer to a question has to do
with successfully uncovering the missing part of the relation established by the query.
The complexity of this uncovering task is due not only to the formulation of the ques-
tion, the underlying linguistic phenomena on the corpus also contributes substantially
to the difficulty of the task. In natural language documents, we do not only find un-
countable variations that express the same entities, many words can also signal at the

Evolutionary Computation Volume www, Number www 3

A. Figueroa and G. Neumann

same relation (i.e. “invented”,“discovered”,“was created”). In deed, the linguistic phe-
nomena presented in natural language corpus is much more complex than considering
only possible variations of entities and relations. It inevitably involves reference reso-
lution, complex syntactical and semantical relations, inference, world knowledge, etc.

For the practical purpose of attempting to uncover the right answer, traditional
QAS start by analysing the query, in order to select an adequate strategy for satisfacto-
rily answering the question (Moldovan et al. (2004); Chalendar et al. (2003); Chen et al.
(2004); Dumais et al. (2001); Neumann and Sacaleanu (2006)). This initial phase is called
Query Analysis and it usually aims for determining the Expected Answer Type (EAT). At
this primary step, the answer is assigned to one of a set of distinct and separate cat-
egories (i.e. location, name, number), and this categorisation constrains and guides the
whole answering process. The number of categories vary from approach to approach.
Some strategies use a wide range of narrow categories (Echihabi et al. (2004)), in con-
trast to other approaches, where the number is restricted to a few, but broad and gen-
eral categories (Moldovan et al. (2004)). As well as the EAT, Query Analysis provides
the semantic content and syntactical relations with the answer.

Many answer extraction modules try to disclose these relations by taking advan-
tage of the redundancy provided by different information sources. This redundancy
significantly increases the probability of finding a re-writing of the query, called para-
phrase, in which the answer can easily be identified. Similarly, a huge set of paraphrases
considerably decreases the need for deep linguistic processing like anaphora resolu-
tion, uncovering complex syntactical or semantical relations, synonym resolution (Du-
mais et al. (2002)). In some cases, it reduces the extraction to the use of regular expres-
sions (Echihabi et al. (2004)). Normally, QAS extract paraphrases at the sentence level
(Echihabi et al. (2004)). The rules for identifying paraphrases can be written manually
or learnt automatically (Dumais et al. (2002); Echihabi et al. (2004)), and they can con-
sist of pre-parsed trees (Echihabi et al. (2004)), or simple string based manipulations
(Dumais et al. (2002)). Paraphrases are learnt by retrieving sentences that contain pre-
viously known question-answer pairs. For example in (Echihabi et al. (2004)), anchor
terms (like “Lennon 1980”) are directly sent to the Web, in order to retrieve sentences
that contain query and answer terms. Patterns are taken from this set of sentences, and
their likelihood is computed in proportion to their redundancy on the Web afterwards.
In both cases, the new set of retrieved sentences is matched with known paraphrases
in order to extract new answers. This context matching method is the major advan-
tage of this strategy, but it is also its main drawback. If the context of the new answer
does not properly match the previously annotated context, the correct answer will not
be identified, even though it can be readily distinguished by means of some linguistic
pattern.

Hence, linguistic processing is still the central core of the best current QAS
(Moldovan et al. (2004)). (Rinaldi et al. (2003)) present a domain-specific QAS which
aims for finding answers in a set of technical documents by means of paraphrases. In
this strategy, paraphrases are not only string based manipulations or word reordering
matching, they are also considered as different syntactical variations and mapped to
the same logical representation. From this representation, called Minimal Logical Form
(Mollá et al. (2000)), they extracted answers by means of a logical proof. As a result,
they observed that domain-specific QAS must deal effectively with unknown specific
lexicon, abbreviations and acronyms, and for this reason, linguistic processing is still a
vital issue, though it requires a large amount of processing time and its implementation
takes a sustained and hard effort.

4 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

Due to the huge amount of paraphrases on the Web and its growing multilingual-
ity, statistical methods are also used for extracting answers. In (Echihabi and Marcu
(2003)), a statistical strategy is presented which scores a given sentence and a substring
of the sentence, that is expected to be the answer, according to the query. The scor-
ing strategy takes advantage of a distance metric between the sentence and the query
based on the noisy channel. As a result of testing this strategy, any empirical relation
between the type of the question and the performance of the system could be identified.
Moreover, this kind of strategy obtains many inexact answers. This is a major problem
for statistical-based approaches, because they frequently get inexact answers. The ob-
tained answers usually consist of substrings of the answer, the answer surrounded by
some context words, or strings highly closed to answers. Although, data-driven an-
swer extractors get many inexact answers, they are normally preferred to other kinds
of extractors, because they are easy to re-train, are intend to be independent of the
language and demand less computational resources. In contrast to answer extractors
based largely on linguistic processing, which extract exact answers, they demand more
computational resources and are dependent upon the language. All things considered,
QAS are greatly encouraged to take advantage of both approaches, while they are try-
ing to cope with new questions prompted by users. Hence, one of the open research
questions is: When is it appropriate to use deep processing, statistical based approaches
and strategies based on distributional patterns (like frequency counts or n-grams)?.

The answer to this question has to do with the trade-off between the implementa-
tion of rule-based and easy re-trainable data-driven systems. Therefore, the burning is-
sue of successfully combining different kinds of strategies, in order to re-rank answers,
has taken off. In QA jargon, this re-ranking step is widely know as answer validation.
In (Echihabi et al. (2004)), a strategy for combining the output of different kinds of an-
swer extractors is introduced. This re-ranker is based on a Maximum Entropy Linear
Classifier, which was trained on a set of 48 different types of features such as ranking in
the answer extraction modules, redundancy and negative feedback. Results show that
a good strategy for combing answer extractors can considerably improve the overall
performance of QAS (see also Moldovan et al. (2004)). The major drawbacks to this
sort of method are: (a) every time the system attempts to answer a particular question,
the reranker and many answer extractors must be fully executed, and (b) it necessarily
needs the special design of a re-ranking strategy.

We show how the intrinsic nature of Genetic Algorithms (GA) can contribute to sat-
isfactory answer this open question and how GA can certainly help to considerably de-
crease the dependency upon patterns seen on training data, analogously to significantly
increase the probability of matching new sentences with paraphrases taken from previ-
ously annotated question-answer pairs. We begin with GAQA, a core genetic algorithm
that directly learns syntactical distributional patterns from contextual pairs {sentence,
answer} extracted from previously answered questions. For this sole purpose, GAQA
uses contextual tuples that are wholly consistent with the EAT of the new prompted
question, and these syntactical patterns are properly aligned with new sentences in
order to discover answers to this new query afterwards. GAQAstates how likely an
n-gram represents an answer by means of a fitness function K which aligns these dis-
tributional patterns in a word by word fashion. This pattern alignment is similar in
nature to (Echihabi et al. (2004)), but GAQAdoes not take into account any pre-defined
ranked pattern and considers pairs corresponding to wrong answers, that is, it attempts
to be robust and avoids any manual annotation, which is always a extremely demand-
ing task. GAQAis for this reason strongly data-driven and it only makes allowances

Evolutionary Computation Volume www, Number www 5

A. Figueroa and G. Neumann

for a language dependent stop-list and for the Web as a target corpus. GAQAis there-
fore highly independent upon the language and easily retrainable. Secondly, because
of the absolute dependence on annotated contextual patterns that GAQAstill suffers, we
propose the next two strategies based largely on GA for significantly enhancing GAQA:

GASCA The full implementation of a complete set of rules for all possible para-
phrases of each particular kind of query is without a doubt undesirable, due to the
high variability of texts written in natural language. On the other hand, because of
this great variability, learning all possible paraphrases inevitably involves processing
and annotating a large-scale corpus. Without a shadow of doubt, this is also an unde-
sirable scenario while we are considering QAS that deal efficiently with several kinds
of questions. Consequently, taking advantage of available patterns in a more flexible
way is encouraging, that is, taking into account partial matches between patterns on
training tuples and new sentences. In GAQA, this matching is grounded on some de-
tectable syntactical distributional patterns of behaviour across words and/or blocks
of words respecting the EAT, which are recognisable by their relative position (Belkin
and Goldsmith (2002); Schuetze (1997)). These recognisable syntactical patterns help
then to distinguish strings that behave like the EAT and therefore promising answers.
Indeed, we have to account for two inescapable facts, while GAQAis performing this
alignment: (a) blocks of words within new sentences can be fully aligned with some
patterns on the training data or (b) this alignment can be slightly distorted by some
meaningless words within new sentences leading GAQAto completely miss appropri-
ate answers. Empirically testing many possible distorted alignments is therefore a basic
and essential aspect of significantly lessening the total dependence upon the training
set. However, as long as we account for more seriously distorted alignments, their
number increases exponentially. Here, Genetic Algorithms come into play, if we inter-
pret blocks of words as blocks of adjacent ones and zeros, which signal whether a block
of words should be properly aligned or not, and recall the Schemata Theorem which
claims that these compact blocks are most likely to be propagated into next generations
with a probability proportional to the fitness of individuals that carry them (Holland
(2005)), that is, proportional to the contribution of the block to the alignment with the
EAT, then Genetic Algorithms are a suitable search heuristic for readily finding out an
alignment of blocks of words that best fits training patterns, because these compact
blocks will pass on over generations causing a quick convergence. Naturally, this syn-
tactical dependence between words and the EAT can be clearly seen as the interaction
between different genes in a chromosome. In GA jargon, this interaction is known as
epistasis (Holland (2005); Coello (2004)) and the intrinsic behaviour of these syntacti-
cal distributional patterns helps GA to construct building blocks that leads them to
quickly move towards an optimal or highly close to the optimal alignment. The degree
of epistasis is predominantly given by the relation amongst words within aligned blocks
and blocks of words that are directly related to the EAT, deceptive problems are for this
reason avoided (Coello (2004); Goldberg (1989)).

PreGA The extraction process considered in GAQAand GASCAare based mainly on
syntactical patterns directly learnt from annotated data. The major drawback to these
strategies is that if there is not enough syntactical evidence to properly align contextual
patterns, the answer will not be unambiguously identified, even though it can be read-
ily distinguished by means of some linguistic pattern. Consequently, many strings will
give the misleading and spurious impression of behaving as if they were the EAT, but
with a low likelihood. In some cases, right answers can be easily distinguished by some
close semantic relation to the query instead of some syntactical distributional patterns.

6 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

However, discriminating beforehand the appropriate method for finding out the cor-
rect answer to a particular question is also a complex task and successfully combining
several outputs of different strategies involves the especial design of a purpose-built
reranking strategy. As long as generations go by, the population of GAQAshare the
same value on the genes and these values on the genes, which are likely to survive af-
ter several generations, can be interpreted as promising contextual patterns. Given the
fact that GA subsequently discover these promising patterns, while they are searching
for an answer, it can be concluded that they intrinsically offer a mechanism for strictly
and effectively controlling the application of linguistic processing during this search,
thereby ensuring a framework in which a proper balance between data-driven and lin-
guistic processing can simultaneously guide the search. This is an important factor,
because of the processing time that linguistic processing or the complete execution of
several answer extractors usually requires. As well as that, this balance provides a way
of improving the exactness of answers as a result of combining extraction strategies of
different natures. Accordingly, in PreGA, this linguistic processing is based solely on
computing a semantic representation of promising sentences, which are detected by
means of the value of a special gene that implicitly ranks sentences.

For the purpose of the assessment of our methods, experiments were carried out
considering the three most common sorts of entity and a set of six different relations.
Also, our experiments took into account the CLEF3 corpus, which considers rigorously
questions on several kinds of entity and relation. Results suggest that the presented
methods can cope with specific questions, specially with those questions whose an-
swers are inserted into contexts, for which a large amount of morpho-syntactical vari-
ations does not exist . Results show also that our methods are robust to noisy training
data and substantially reduce the need of manual annotations as well as lessen the de-
pendence upon external lexical resources such as lists of locations or names. Moreover,
PreGA is capable of getting more exact answers.

This work is organised as follows: the next section introduces the related work,
section 3 deals at greater length with the design of the fitness functions for our strate-
gies, this means thoroughly discussing the syntactical word by word alignment and
its combinatorial explosion, section 4 presents our core GAQAand the two correspond-
ing enhancements, section 5 describes our experiments and results in details, section 6
focuses attention on diverse future work directions, and section 7, draws some conclu-
sions.

2 Related work

Some few approaches have applied Genetic Algorithms to Natural Language Processing
(NLP) tasks: Machine Translation (Otto and Riff (2004)), and the inference of grammars
from finite language samples (Keller and Lutz (1997); Aycinena et al. (2003)). As far as
we are concerned, two other applications of GA to tasks closely related to QAS exist in
the literature (Tiedemann (2005a,b); Day et al. (2006)).

The performance of Web QAS is wholly dependent upon the rank and amount of
relevant documents fetched by the search engine. Simply stated, if the right answer
is not in the retrieved passages, Web QAS will not be able to answer the question, or
what is worse, they can return a wrong answer. Queries are for this reason expanded
with, normally weighed, features in order to command or bias search engines in favour
of documents with some promising characteristics. Unfortunately, many expansion

3http://www.clef-campaign.org/

Evolutionary Computation Volume www, Number www 7

A. Figueroa and G. Neumann

features exist, especially linguistic features, and what is more, the selection of the right
features relies strongly upon the type of query and the target document collection. In
order to maximise retrieval performance, GA are used for learning the optimal set of
linguistic features for each type of question by carrying out a systematic search and
optimising the parameters for a previously annotated set of pairs {question, answer}
(Tiedemann (2005a,b)). This sort of optimisation improves the retrieval performance
about 15%.

Incidentally, some spans of text within the query are particularly more useful for
its classification, and thus for determining an answering strategy. For example, in the
following question “What is the biggest city in the United States?”, the most important
cue is “city”, and indicates that the answer starts with a capital letter. This sort of
cues are called query informers and are distinguished by segmenting and labelling query
terms. The accuracy of the strategies, like Conditional Random Fields (CRF) models,
for differentiating query informers depends substantially upon the selection of training
features. GA have been accordingly used for choosing the subset of training features
that optimises the accuracy of models such as CRF (Day et al. (2006)).

3 Syntactical word by word alignment

This section deals at length with the alignment between sentences and syntactical pat-
terns. Firstly, we focus special attention on the acquisition process of the syntactical
distributional patterns of the EAT. Secondly, we go over the word by word alignment,
especially its complexity. Consequently, the goal functions of GAQAand GASCAare
introduced. In order to clearly present our work, PreGA is fully described in a later
section.

3.1 Acquiring syntactical distributional patterns of behaviour across words
respecting the EAT

Let us assume that all pairs {answer, sentence} are stored up in a QA-STORE, which
is indexed by the EAT. These pairs are obtained from previous questions answered by
an external system and GAQAaccesses the QA-STOREby means of the EAT correspond-
ing to the new question, which is initially computed by an external QUERY-ANALYZER.
Once tuples are retrieved from the QA-STORE, they are filtered and the answer is im-
mediately replaced with w0 in every retrieved pair afterwards. w0 is an n-gram not in
the dictionary W t of all words in the selected tuples, | W t | is accordingly the number
of different terms in W t. This preliminary filtering consists simply in permanently re-
moving every tuple in which its sentence contain only terms belonging to the stop-list
and/or all its terms does not occur or occurs only once within the snippets (retrieved
for this new question).

To begin with the detailed description of this acquisition process, consider St to
be a set consisting solely of the σt different sentences taken from the QA-STORE. Stst is
the st-th sentence in σt, 1 ≤ st ≤ σt. For the simplicity sake, it is reasonably assumed
that the answer occurs only once in its respective sentence, and X is a binary variable
which:

Xstik =
{

1 if the word wi is in the sentence Stst at position k
0 otherwise.

Where 1 ≤ i ≤| W t | and len(Stst) ≥ k ≥ 1. Consider also τ(Stst) as the position of w0

in the sentence Stst . Table 1 shows the value of τ(Stst) for working QA-STOREtuples.

8 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

In two sentences, the answer occurs at the beginning of the sentence, in the other two
sentences, the answer is at the end:

Who invented the Radio?
w0 Stst τ(Stst)

Nikola Tesla Nikola Tesla invented the radio in... 1
The radio was invented by Nikola Tesla 6

Guillermo Marconni Guillermo Marconni invented the radio in... 1
The radio was invented by Guillermo Marconni 6

Table 1: τ(Stst) for the illustrative QA-STOREtuples.

Next, it is calculated the frequency freql in which a word wi is to the left of w0

with ε words between them:

freql(wi, ε) =
σt∑
st=1

Xsti(τ(St
st

)−ε−1) (2)

freql models the strength or the degree of the relation or correlation between the
EAT and a word wi to the left in a sentence Stst . In a similar way, it is computed the
frequency of wi to the right of w0 with ε words between them:

freqr(wi, ε) =
σt∑
st=1

Xsi(τ(St
st

)+ε+1) (3)

Lastly, frequencies are normalised in order to eliminate the bias in favour of highly
frequent words. Eventually, the corresponding probabilities Pr and Pl are defined as:

Pl(wi, ε) =
freql(wi, ε)
freq(wi)

Pr(wi, ε) =
freqr(wi, ε)
freq(wi)

(4)

In the illustrative example, the values for Pl and Pr are respectively:

Pl ε
wi 0 1 2 3 4

invented 0 0.5 0 0 0
the 0 0 0 0 0.5

radio 0 0 0 0.5 0
in 0 0 0 0 0

was 0 0 1 0 0
by 1 0 0 0 0

Pr ε
wi 0 1 2 3 4

invented 0.5 0 0 0 0
the 0 0.5 0 0 0

radio 0 0 0.5 0 0
in 0 0 0 1 0

was 0 0 0 0 0
by 0 0 0 0 0

Table 2: Pl and Pr for the instructive QA-STOREtuples.

Where the frequency freq(wi) is four for “invented”, “the” and “radio”, whereas the
value for “in”, “was” and “by” is two. The obtained model is properly aligned by GAQA
with new sentences in order to discriminate answers to new prompted questions.

3.2 Word by Word Alignment

In this section, we describe the alignment methods performed by GAQAand GASCAin
detail. To start with a comprehensive description of our alignment strategies, let us

Evolutionary Computation Volume www, Number www 9

A. Figueroa and G. Neumann

K(B∗, Q) =
∑

∀Ss∈S:B∗∈Ssτ(S∗s)−1∑
k=1

α(wsk, Q)Pl(wsk, τ(S∗s)− k − 1) +
len(S∗s)∑

k=τ(S∗s)+1

α(wsk, Q)Pr(wsk, k − τ(S∗s)− 1)

(5)

recall the fact that S is a set consisting of the σ different sentences taken from a set ϕ
of N snippets. Ss is then the s-th sentence in S, 1 ≤ s ≤ σ, and S∗s is its corresponding
sentence whereB∗ is already replaced with the special string w0. In addition, len(S∗s) is
the number of words in S∗s , W is the dictionary of all words in the snippets, and |W | is
the number of different terms in W . With the express purpose of neatly illustrating our
alignments, consider that the next new question Q is sent to the search engine: “Who
invented the helicopter?”. For simplicity, let us account for only one retrieved sentence:
S1=“The helicopter was invented by Igor Sikorsky”. Let us also assume that the bi-gram
B∗ = B167=“Igor Sikorsky” is been tested. Consequently, S∗1=“The helicopter was invented
by w0” and len(S∗1) = 6.

3.2.1 Simple word by word Alignment
When B∗ is evaluated according to Q, we obtain two sentences from the QA-STORE
that provide with alignment (see table 1):

The radio was invented by Nikola Tesla
The radio was invented by Guillermo Marconni
The helicopter was invented by Igor Sikorsky

Table 3: Sample of alignment.

The likelihood or fitness K of a n-gram B∗ as a correct answer is given by the for-
mula 5. In this equation, wsk is the word at position k within the sentence S∗s and
α(wsk, Q) is a special weight for every wsk which is also in the query Q. K assigns
a higher fitness to n-grams with a similar syntactical behaviour to answers in the QA-
STORE. This degree of similarity is directly proportional to the contribution of con-
textual words to the alignment between B∗ and answers in the QA-STORE. As was
fully discussed, this alignment is grounded on the relative position in which these con-
textual words occur and their contribution is specially weighted in favour of query
terms, this way the goal function is smoothed in order to choose strings near aligned
terms within the submitted question, which are plausibly closer to the right answer.
The fitness function K also accounts for every occurrence of B∗ in S, and therefore it
makes allowance for the contribution of all its contextual alignments. Consequently,
K naturally prefers relatively frequent strings, which behave like the EAT, and as a
result, it avoids some incorrect answers, which are somewhat unlikely to frequently
occur within localised contextual snippets. In our working example, the probability of
“the” and “invented” is one, the probability of “was” and “by” is 0.5 (see table 2), then
K(B∗, Q) = 2 ∗ 0.5 + 1 ∗ 1 + 2 ∗ 0.5 + 1 ∗ 1 = 4.

In this concrete example, α(wsk, Q) is equal to two for query terms, otherwise one.

10 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

It is worth also to observe that this fitness is calculated every time GAQAdirectly tests an
n-gram, thus the number of times thatK must be computed in order to find out the best
answer candidate is given by the number of possible n-grams in the retrieved snippets.
If we retrieve an average of σ̄ sentences per snippet, and we assume Ῡ as the average
number of words on a sentence, the Number of Possible Answers (NPA) is given by:

NPA =
N ∗ σ̄ ∗ Ῡ ∗ (Ῡ− 1)

2
(6)

The factor Ῡ(Ῡ−1)
2 represents the number of possible n-grams of different length.

For simple values like N = 30, σ̄=2, Ῡ=11, there are 3300 possible answers, while N =
60 are 6600, N = 120 are 13200, and N = 240 are 26400. NPA provides however only a
near approximation, because it does not account for highly frequent n-grams, especially
uni-grams like stop words and query terms. At this point, it is good to highlight: (a)
the recommended number of snippets to extract answers ranges between 50 and 200
(Dumais et al. (2002)), (b) all n-grams are potential answers for a strategy which does
not make allowances for any lexicon or external knowledge that helps it to distinguish
signs from words or different spellings of the same word, (c) wrong answers can be
found in this set of answer candidates as well as different variations of right answers
such as synonyms, (d) correct answer strings will not be necessary in a context closely
related to the query or their contexts could not be correctly aligned, (e) spurious and
misleading answers can have a greater likelihood than right answers, for instance some
EAT combinations which share a similar syntactical behaviour equally (i. e. DATES
and LOCATIONS), and (f) intentional inserted breaks in snippets make any contextual
matching more difficult.

3.2.2 Full word by word Alignment
The alignment strategy presented in equation 5 still suffers from an absolute depen-
dence upon learnt syntactical patterns. The following retrieved sentence S1 serves to
amply illustrate this great dependence: ”The helicopter was really invented in 1939 by Igor
Sikorsky in Kyiv”. Thus, the word-by-word alignment respecting the answer with tuples
in the QA-STORElooks like as follows (see table 1):

The radio was invented by Nikola Tesla
The radio was invented by Guillermo Marconni

... really invented in 1939 by Igor Sikorsky in Kyiv

Table 4: Sample of alignment.

The only match is due to the preposition “by”. Consequently, the syntac-
tic fitness of the answer candidate B∗=“Igor Sikorsky” according to equation 5 is
K(“IgorSikorsky”, Q) = 1∗1 = 1. Looking at table 4, it is clear that words like “really”
or prepositional phrases such as “in 1939” do not contribute significantly to enhance
the fitness of B∗ and seriously distort the alignment. In general, two phenomena can
have noticeable impact on the alignment:

1. Proliferation Some words are more likely than others to occur with its modifiers.
Two clear examples are noun-adjective and verb-adverb combinations. As a natural
consequence, it is not certain if they are likely to occur along with their modifiers

Evolutionary Computation Volume www, Number www 11

A. Figueroa and G. Neumann

in the training data or not. In the instructive example, “really” does not occur along
with “invented” in training tuples.

2. Distortion Some constituents such as Propositional Phrases (PP) are more likely than
others to occur in different orders within sentences or by being arbitrarily inserted.
Some good examples are: “in 1939 by Igor Sikorsky”, “by Igor Sikorsky in 1939”, “a
man called”, “a man named”, etc.

It is certainly worth to remark pointedly: (a) taking into account Proliferation
and Distortion partly alleviate the effects of intentional breaks on the alignment, and
(b) removing words not necessary leads to increase the syntactic fitness, because the
alignment depends crucially upon distributional patterns presented on training tuples.
Thus, many combinations must be directly tested in order to determinate exactly the
best syntactic fitness for an answer candidate. As a result of mitigating the effects of
proliferation and distortion in our instructive example, one possible optimal alignment is
shown in table 3 and the syntactic fitness ofB∗ is exactly calculated as follows (equation
5):

K(“Igor Sikorsky”, Q) = 2 ∗ 0.5 + 1 ∗ 1 + 2 ∗ 0.5 + 1 ∗ 1 = 4

To start with a formal description of this alignment strategy, let us think on the fol-
lowing sentence S∗1 =“The Helicopter was really invented in 1939 by w0 in Kyiv” and
len(S∗1) = 11. Let us also assume that Pl(wi, ε) and Pr(wi, ε) are functions as defined in
the previous section. Consider now an aligned sentence S

′

s in which words from S∗s are
temporarily removed in such a way that the remaining words maximise the likelihood
of B∗ to the EAT. In particular, an aligned sentence S

′

1 is “The Helicopter was * invented *
* by w0 in Kyiv”4. For the purpose of keeping track of words that remain on S

′

s, consider
the next binary variable:

Yk(S
′

s) =
{

1 if the word at position k is in the aligned sentence S
′

s

0 otherwise.

Where 1 ≤ k ≤ len(S
′

s). In our instructive sentence S
′

1, Y4 = Y6 = Y7 = Y9 = 0 and
Y1 = Y2 = Y3 = Y5 = Y8 = Y10 = Y11 = 1. The number of remaining words (NRW)
between the word at position k and w0 within S

′

s is defined as follows:

NRW (k, S
′

s) =

∑τ(S

′
s)−1

j=k+1 Yj(S
′

s) if k < τ(S
′

s).
0 if k = τ(S

′

s).∑k−1
j=τ(S′s)+1

Yj(S
′

s) if k > τ(S
′

s).

In our working example, NRW (11, S
′

1) = NRW (5, S
′

1) = 1. Since the goal is to dis-
cover an alignment that maximises the syntactic fitness of the answer candidate with
respect to its context, the new function A takes into account the set of values for Yk as
follows:

A(S
′

s, Q) =
τ(S
′
s)−1∑
k=1

α(wsk, Q)Yk(S
′

s)Pl(wi, NRW (k, S
′

s) + δl)+

len(S
′
s)∑

k=τ(S′s)+1

α(wsk, Q)Yk(S
′

s)Pr(wi, NRW (k, S
′

s) + δr) (7)

4The removed words are signalled by means of a star.

12 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

In this equation, δl and δr are the left and right offset respectively. An offset attempts to
tackle the displacement of contextual terms head-on. In natural language texts, some
combinations of constituents or words are more likely than others to be swapped or
inserted within sentences or training tuples. The most critical displacement is due to
terms or constituents next to w0 on the training set, because they can grossly distort the
alignment by displacing a whole block of aligned words while sentences in retrieved
snippets are being aligned with tuples in the QA-STORE. This kind of inevitable distor-
tion is therefore doubly important and two ways of dealing with it exist: (a) increasing
the number of training tuples by means of a set of manual or automatical rules that
swap and/or insert words according to each particular kind of question or linguistic
role, and (b) testing different aligned sentences S

′

s. The first option necessarily involves
the design of a set of rules and a wealth of data processing while our methods are
building the acquisition model, and the former, testing an enormous number of un-
grammatical sentences. In the following aligned sentence, offsets are marked with a
“+”: “The Helicopter was * invented * * by + + + w0 + + in 1909”, the values of the respec-
tive offsets are δl = 3 and δr = 2. In the example, “+ + +” could match a string like
“a man named” on the QA-STORE. Certainly, when δl = δr = 0 and Yk(S

′

s) = 1 ∀k, A
returns the same value as K. It is good to observe that A does not change the answer
candidate B∗, because it aims specifically for maximising the similarities between the
context of B∗ and the model acquired from tuples extracted from the QA-STOREby
properly testing temporal values of Yk(S

′

s). In order to be consistent with K, A also
particularly favours n-grams near query terms by means of the same weight α(wsk, Q).
At this point, we can explicitly define a new function K∗, which make allowances for
the best contextual alignment of all occurrences of an answer candidate B∗:

K∗(B∗, Q) =
∑

∀Ss∈S:B∗∈Ss

max∀S′s→S∗s A(S
′

s, Q) (8)

It is clear that K∗ does not take into account all possible alignments, but the num-
ber of contextual alignments exponentially increases as long as: (a) the number of
words also increases, and (b) we take into account more complex linguistic phenomena.
To begin with our discussion about the complexity of this syntactical alignment, let us
consider lenl(S∗s) = τ(S∗s) − 1 as the number of words to the left of the answer candi-
date, and lenr(S∗s) = len(S∗s)− τ(S∗s) is the number of words to the right. All possible
combinations of lenl(S∗s) words are given by lenl(S∗s)!. Here, we consider each word
different from each other. It is a good approximation, because sentences are split into
small pieces of text in which each word rarely occurs more than once. Similarly, the
number of combinations to the right of w0 is lenr(S∗s)!. Incidentally, every combination
of words to the left can occur simultaneously along with any combination of words to
the right. The total number of Contextual Alignments (CA) of a sentence S∗s is then
given by:

CA(S∗s) = lenl(S∗s)! ∗ lenr(S∗s)!

In addition, consider that words can be arbitrarily removed from both contexts.
Combinations regarding different context lengths must then be taken into account
(lenl(S∗s),lenl(S∗s)− 1,. . .,0). Therefore, the number of contextual alignments is defined
as follows:

CA(S∗s) =
lenl(S

∗
s)∑

j=0

j! ∗
lenr(S∗s)∑
j=0

j! =⇒ CA∗1 =
8∑
j=0

j! ∗
2∑
j=0

j! = 46234 ∗ 4 = 184936

Evolutionary Computation Volume www, Number www 13

A. Figueroa and G. Neumann

For our working sentence S∗1 (τ(S∗1) = 9), the number of possible word alignments
CA∗1 is 184936. If we aim to be consistent with the syntactical nature of our methods,
we must account for word orderings which are deliberately restricted to combinations
that preserve their relative position. The number of contextual combinations is then:

CA(S∗s) =
lenl(S

∗
s)∑

j=0

(
lenl(S∗s)

j

)
∗
lenr(S∗s)∑
j=0

(
lenr(S∗s)

j

)
=⇒ CA∗1 =

8∑
j=0

(
8
j

)
∗

2∑
j=0

(
2
j

)

CA∗1 = 256 ∗ 4 = 1024

In the example, the number of possible alignments without fully considering the ef-
fects of the offsets is 1024. Naturally, this imposed restriction decreases drastically the
number of contextual alignments, but all effects of offsets are not considered yet. The
current formula takes into account only when values for offsets are zero. At the same
time that the value for any of the offsets is greater than zero, the corresponding word
next to w0 must be aligned. Similarly, the number of new possible combinations due to
the left and right context respectively are:

∆l ∗
lenl(S

∗
s)−1∑

j=0

(
lenl(S∗s)− 1

j

)
∆r ∗

lenr(S∗s)−1∑
j=0

(
lenr(S∗s)− 1

j

)

Conversely, this effect increases considerably CA, because offsets add a number
of alignments proportional to ∆l and ∆r, which are upper bounds for their respective
offsets. The number of contextual alignments is eventually defined as follows:

CA(S∗s) =

lenl(S
∗
s)∑

j=0

(
Ll
j

)
+ ∆l ∗

lenl(S
∗
s)−1∑

j=0

(
lenl(S∗s)− 1

j

) ∗
lenr(S∗s)∑

j=0

(
lenr(S∗s)
j

)
+ ∆r ∗

lenr(S∗s)−1∑
j=0

(
lenr(S∗s)− 1

j

)
Regarding the working example, if values for ∆l = 5 and ∆r = 5 are considered, then
the number of possible combinations is 12544:

CA∗1 =

 8∑
j=0

(
8
j

)
+ 5 ∗

7∑
j=0

(
7
j

) ∗
 2∑
j=0

(
2
j

)
+ 5 ∗

1∑
j=0

(
1
j

)
= (256 + 5 ∗ 128) ∗ (4 + 5 ∗ 2) = 896 ∗ 14 = 12544

In actual fact, this result accounts for the contribution to the alignment of only one tuple
{sentence, answer candidate} consisting of ten contextual words. However, the overall
number dramatically increases due to the following two factors: (a) for each sentence,
many answer candidates are feasible, and (b) the number of sentences is larger than
one. Using the result in the previous section, a rough approximation of the number of
contextual alignments for a small set of thirty snippets is given by CA∗(S) ≈ 3300 ∗
12544 ≈ 41395200. Consequently, efficient search algorithms are necessary to early
detect promising answer candidates and test their best alignments.

14 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

4 Genetic Algorithms for Extracting Answers

This section focuses on the remaining components of GAQAand GASCA, the parameter
selection of our strategies and it deals at length with the full description of PreGA.

4.1 The Genetic Algorithm for syntactical alignment (GAQA)

GAQAis described in algorithm 1. The input for this algorithm is T (the number of itera-
tions), S (the set of sentences extracted from the snippets), I (the size of the population),
% is the stop-list of the language, pm (the probability of mutation) and pc (the crossover
probability). Pl and Pr are also inputs for GAQAand regard the syntactic model (see
section 3.1).

Algorithm 1: GAQA

input: T ,S,Pl,Pr ,I ,pm,pc,%

begin1
t← 0;BestFound← ∅;2
AC[t]← createInitialPopulation(I ,S,%);3
EvaluatePopulation(AC[t],Pl,Pr);4
while (t < T) do5

t++;6
CAC← Crossover(AC[t-1],pc);7
MAC←Mutate(AC[t-1],pm);8
EvaluatePopulation(AC[t],Pl,Pr);9
AC[t]← selectPopulation(CAC,MAC,AC[t-1]);10

end11
return BestFound12

end13

In GAQA, a chromosome is the tuple {s, k1,k2}, where its genes represent the sentence Ss
and the boundaries of the n-gram B∗ in this sentence. In the illustrative chomosome in
figure 1, the value 2 represents the sentence index, and the last two numbers are the
position of the boundary words of bi-gram B21314.

Figure 1: GAQAChromosome.

In this codification, two sorts of detectable distributional pattern can be recog-
nised. First, if the position of the answer in the sentence observes a fixed pattern, it
will be recognised by k1 and k2. This position can reveal some cues about which sort
of relationship between the query and the answer exists. In particular, if questions aim
for an answer that is usually the subject of the sentence, the genes k1 and k2 will con-
verge to values which signal the beginning of the sentence (if it is not in passive form).
If the answer does not observe any fixed pattern, different values of k1 and k2 will be
spread unevenly across individuals in the population, becauseK takes into account the
alignment of all occurrences of an n-gram while it is evaluating individuals, as a result
these individuals will share the same fitness value and thus seen as different equally
fit “points” in the search space that represent the same answer, but not necessarily in-
serted into the same context. This sort of pattern is however distinguished hardly in
some order-free languages in which some constituents can occur in several parts of the
sentence or can be omitted such as subjects in Spanish. In these cases, the convergence
of these genes will rely strongly upon the amount of redundancy or some linguistic

Evolutionary Computation Volume www, Number www 15

A. Figueroa and G. Neumann

processing that unveils language specific hidden relations. Second, the first gene im-
plicitly ranks sentences according to their contextual evidence. To illustrate this, let us
think on the following pair:
{“The Helicopter was invented in 1939 by Igor Sikorsky in Kyiv”,“in 1939 by Igor Sikorsky”}
when GAQAaligns this pair with tuples on the QA-STORE(see table 3), it discovers
enough contextual evidence (K = 4) to consider “in 1939 by Igor Sikorsky” to be a
promising n-gram, though it is an unacceptable answer. Here, the interesting fact is
that this gene signals if relevant contextual evidence can be found in the corresponding
sentence, even though the exact answer can not be easily identified. It is worth not-
ing that “in 1939 by Igor Sikorsky” will be probably lower ranked than “Igor Sikorsky”,
because of their corresponding frequencies on the retrieved snippets.

GAQAcreates an initial solution by choosing a random sentence Ss and two random
cutting points afterwards: the beginning of the answer candidate k1 ∈ [1, len(Ss)], and
the end k2 ∈ [k1, len(Ss)]. Another pair of cutting points is chosen every time the
answer candidate contains a query word or belongs to the stop-list. Mutation (Figure 2)
consists in randomly changing a value of a gene to an individual by choosing randomly
a number r between 0 and 1. If r < 0.33, the index of the sentence of the answer
candidate is changed. If the answer candidate exceeds the limit of the new sentence,
then a sequence of words of the same length at the end of the new sentence is chosen.
If 0.33 ≤ r ≤ 0.66, the start index k1 of the answer candidate is changed. If another
random number rj is smaller than 0.5 and k1 is greater than one, the next word to the
left is added to the answer candidate. If rj > 0.5 and k2−k1 > 0 then the leftmost word
to the left is is removed. If r > 0.66, the end position of the answer candidate is changed
in a similar way as the initial position, taking into account that 0 ≤ k2 − k1 < len(Ss).
In brief, if the position of the answer strictly observes a specific pattern (i. e. subjects in
some languages), mutation tries to discover another sentence by chance, in which this
pattern matches an n-gram that is more likely to be the answer, mutation also arbitrarily
test other n-grams within the same context.

Figure 2: GAQAMutation operator.

Crossing over two individuals {s1, k11, k12} and {s2, k21, k22} consists in
exchanging their genes by computing the next values:

α1 = min{k11, k21}, α∗2 = min{k12, k22}
α∗3 = max{k11, k21}, α4 = min{max{k12, k22}, len(S1)}

Offspring are generated by setting their phenotype in the following way:
{s1, α1, α4} and {s2, α

∗
3, α
∗
2}. These offspring aim principally for testing the con-

text of the current parents, in which α1 and α∗3 are their left boundaries, α∗2 and α4

16 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

are their right boundaries. A concrete example are the parents “Tesla in 1896” and “by
Guglielmo Marconni” extracted from the sentences S1 = “The real inventor of the radio was
Nikola Tesla in 1896.” and S2 = “The radio was really invented by Guglielmo Marconni.”
respectively. Their corresponding chromosome representation are {1,9,11} and {2,6,8}.
Hence, the alpha values are α1 = 6, α∗3 = 9, α∗2 = 8 and α4 = 11, thus offspring are
given by {1,6,11} and {2,9,8}. In words, the first offspring seeks to enlarge the n-gram
corresponding to the first parent and the second to shrink in length the second parent.
The size of this enlargement and reduction are integrally related to the location of
n-grams within parents. By and large sentences with different length are normally
crossed-over. For this reason, the operator must always check to see whether the right
boundary of the enlargement α4 fits the limits of the first offspring (α4 ≤ len(S1)).
Another vital thing is abnormal individuals (i. e. {2,9,8}), an abnormal individual
comes from the reduction and is due exclusively to the complete absence of overlap
between the position of their parents within sentences (k12 < k21 ∨ k22 < k11), this
absence directly derives the fulfilment of the inequality α∗3 > α∗2. Accordingly, the
operator must check to see if it is necessary to swap the values for α∗3 and α∗2 and if the
new right boundary is within the limits of the sentence S2. The new values for α∗2 and
α∗3 are therefore computed as follows:

α2 = min{max{α∗3, α∗2}, len(S2)}, α3 = min{α∗3, α∗2}

In the illustrative example, α2 = 8 and α3 = 8, thus the new offspring is {2,8,8}. Hence,
crossing over these two example parents generates the following two offspring: “radio
was Nikola Tesla in 1856” and “Marconni”. The fitness of offspring is eventually com-
puted according to equation 5.

Indeed, not changing the gene concerning the index of the sentence and keeping
substrings from parents in offspring are a sort of inversion strategy, because it brings
offspring closer to their parents and avoid the fact that they can move from one re-
gion to another, playing an explorative instead of an exploitative role. GAQAselects
individuals at the end of each iteration according to their fitness value by means of
a proportional mechanism. GAQAtakes advantage of this selection strategy as a way of
dealing directly with individuals which represent stop-words and contain query terms.
Due to their high frequency and ambiguous syntactical behaviour, the probability that
some contextual words provide them with alignment significantly increases, giving the
misleading impression of answers, taking over offspring and passing on over genera-
tions. Since these individuals are undesirable, GAQArecombines all individuals in the
population and selects the next population from these generated individuals and their
parents afterwards, this way GAQAaccounts for a larger population from which it can
choose desirable individuals and the best still pass from one generation to the other. As
a logical consequence, pm and pc are set to one, avoiding a fine adjustment to these pa-
rameters. The size of the population is I = 20 and it runs T = 25 iterations, this means
it can theoretically tests at most 500 different individuals. It is worth to observe exper-
imentally that about 50 different individuals are really tested during the whole search
because stronger individuals gradually take over populations, hence, these values are
rightly interpreted as a state in which the population finally converges.

The implicit parallelism of GA helps to quickly identify the most promising sen-
tences and strings according to query keywords and the syntactic behaviour of the EAT.
This approach differs fundamentally from a traditional query keyword matching rank-
ing in: (a) GAQAdo not need to test all sentences and/or strings, because GA quickly
find cue patterns that guide the search. In GAQA, these patterns are indexes of the most

Evolutionary Computation Volume www, Number www 17

A. Figueroa and G. Neumann

promising sentences, or some regular distribution of the position of the answer within
sentences. (b) these cue patterns weigh the effect of query terms and the likelihood of
the answer candidate to the EAT. (c) the fitness of the answer candidate is calculated
according to these cue patterns, causing answer candidates with more context are rel-
atively stronger individuals and more likely to survive. (d) due to fact that stronger
individuals survive, these cue patterns lead the search towards the most promising an-
swer candidates. As a result, GAQAtests principally the most promising strings. In fact,
it is especially important to only consider promising individuals, because GAQAmust
check if the context of each occurrence of an answer candidate matches the acquired
model.

4.2 GA for Syntactic Contextual Alignment (GASCA)

In GAQA, promising answers are subsequently discovered by means of the simple word
by word alignment defined in equation 5. These promising individuals gradually take
over populations as long as generations go by. GASCAaims specifically for improving
the context matching of these promising individuals by performing the full word by
word alignment described in section 3.2.2. GAQAinteracts directly with GASCA, every
time it generates a new offspring, by sending an answer candidate B∗ and the set of
sentences S. GASCAreturns consequently the new fitness according to equation 8. Al-
gorithm 2 shows the flow of GASCA, which in line three replaces the answer candidate
string with w0 and in line eight picks individuals of the next generation according to
the proportional mechanism.

Algorithm 2: GASCA

input: T ,S,Pl,Pr ,I ,pm,pc,w0,B∗

begin1
t←0;BestFound← ∅;2
S←replace(S,B∗,w0);3
AC[0]← createInitialPopulation(I ,S);4
EvaluatePopulation(AC[0],Pl,Pr ,S);5
while (t < T) do6

t++;7
AC[t]←selectPopulation(AC[t-1]);8
CAC←Crossover(AC[t],pc);9
MAC←Mutate(AC[t],pm);10
evaluatePopulation(AC[t],Pl,Pr ,S,w0);11

end12
return BestFound13

end14

One fundamental aspect of this interaction strategy is the cached fitness. Every
time GASCAcalculates the fitness of an individual which has not previously sent by
GAQA, it stores its new fitness in a cache. This cache brings about a sharp reduction in
the processing time, because best answer candidates are sent several times from GAQA.
However, GASCAdoes not absolutely guarantee that every time it runs, it will compute
the same best alignment. But, the reason to favour this cache at the expense of qual-
ity of solutions is three-fold: (a) GASCAoptimizes the context for each occurrence of
the answer candidate, this means several runs can slightly differ in the fitness of some
contextual alignments (equation 7), but these increases and decreases have a marginal
impact, because the sum in equation 8 considerably lessens these minor differences
in the final fitness, (b) the optimal alignment is not strictly necessary, but being fast
and closer to the optimal alignment is enough to solve this problem, and (c) param-

18 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

eters were mainly manually set by inspecting their stability after several runs. These
parameters are as follows: the population size is I = 10, the number of generations
T = 30,pc = 0.8, and pm = 0.1.

Figure 3: GASCAChromosome.

The chromosome (figure 3) is based mainly on a binary representation of a sentence,
where a value of one is assigned in every case that a word is considered in the align-
ment, otherwise zero. The gene corresponding tow0 is replaced with two genes that are
natural numbers and correspond to the offsets. The individual in figure 3 represents
the aligned sentence S

′

1 =“The Helicopter was invented by w0 + + in”5, and its offsets are
“0” and “2” for its left and right contexts respectively. GASCAcreates an initial solution
by computing a random number for each word in the sentence S

′

s. For every random
number greater than 0.5, the value of the corresponding word is one, otherwise is 0.
If any of the adjacent words of the answer is plugged to one, then a random value for
the offset is computed, otherwise it is assumed to be zero. This random number is se-
lected from 1 to len(S

′

s), that is, the length of the sentence is used as a bound for the
offset. Mutation randomly changes a value of a gene to an individual by choosing two
random numbers (r1, r2) between 0 and 1. If r1 ≤ 0.5, the left context of the answer
candidate is changed. If r2 > 0.5 and the word to the left of the answer candidate is
considered in the alignment (the gene is one), then the offset is changed. The new value
for the offset is a random number between 0 and the length of the sentence. Otherwise,
the value of a random gene is flipped from one to zero or vice versa. If 0.5 < r1 ≤ 1,
the right context of the answer candidate is changed in a similar way. In short, muta-
tion aims specifically for finding out a word by chance, which displaces the contextual
alignment.

Crossing over two individuals consists in cutting them at two randomly selected
points. One cutting point is picked from each context. In order to avoid checking
the consistency of the offset in offspring: (a) Instead of tails, heads are exchanged af-
terwards, and (b) words next to the answer candidate are not considered as cutting
points. In figure 4, the aligned sentences S

′

1 and S
′′

1 =“The First Helicopter was invented
in 1939 by w0” are crossed over at the past tense verb “invented” and the noun “Kyiv”.
Offspring represent the next two aligned sentences: “The First Helicopter was invented by
w0 + + in” and “The Helicopter was invented in 1939 by w0”.

Figure 4: GASCACross Over.

5The corresponding S∗1 is “The First Helicopter was invented in 1939 by w0 in Kyiv”.

Evolutionary Computation Volume www, Number www 19

A. Figueroa and G. Neumann

In GASCA, one main advantage of the coding and reproduction mechanisms is that
the left and right context converge independently. If one context is properly aligned,
their corresponding phenotypes will pass on over generations, because individuals
which carry these genes will have a better fitness and will be for this reason more
likely to survive. As a consequence, this independence leads to simultaneously dis-
cover evidence on both contexts, bringing about a quicker convergence and causing a
substantial reduction in the number of tested ungrammatical sentences. This simulta-
neous convergence is due solely to the non-existence of epitasis between both contexts.
A final remark is that, unlike conventional methods, GASCAdiscovers the best patterns,
along with the answer, that are necessary to extract answers in this context. These pat-
terns are traditionally hand-written or learnt and manually filtered beforehand.

4.3 Predication and Data-driven syntactic alignment (PreGA)

Due to the syntactical nature of the extraction process in GAQAand GASCA, a natural
way of enriching this alignment is by adding semantics. PreGA attempts to enhance the
performance of GAQAby adding external semantic knowledge. This section discusses
two possible choices of semantic processing and describes PreGA in details.

4.3.1 Semantic Analysis: Predication
There are two possible ways of directly enhancing this extraction process by the addi-
tion of semantic knowledge: (a) corpus driven semantics like Latent Semantic Analysis
(LSA) (Landauer et al. (1998)), (b) some linguistic out–of–the–box tools for semantic
processing. Since answer candidates are subsequently discovered by properly align-
ing their context with contextual syntactic patterns, which are logically deduced from
previously annotated {question, sentence, answer} tuples, external semantic process-
ing is clearly encouraged, causing the robustness and performance of the system to
be vastly improved. Accordingly, the absolute dependency upon the training data is
markedly decreased. Another reason is that, on the one hand, the query is seen as a
relation amongst many entities, on the other hand, LSA provides of semantic relations
between pair of terms. Consequently, LSA seems not to be adequate to distinguish
clearly the semantic relation amongst a set of entities (Kintsch (1998)). A final reason is
the existence of tools like Montylingua6, which computes a semantic representation of
a raw text in English. It specifically extracts {subject, verb, objects} tuples, which are a
predicate-argument representation of sentences in a given text.

The real and strong motivation behind the use of predication is that it provides
a semantic relation between the predicate and arguments. In this representation, the
predicate is clearly seen as the relation that entities hold, while arguments are inter-
preted broadly as entities. To illustrate, consider the next sentence “Igor Sikorsky in-
vented the helicopter in 1939 in Kyiv.”. MontyLingua provides the following predicate-
arguments representation for this sentence:

invent(Igor Sikorsky,helicopter,in 1939,in Kyiv)

In this example, it is clear that the answer matches the subject (first argument),
which can be clearly differentiated by its syntactic behaviour. Taking into account the
predicate-arguments representation of the query, the search of its missing part can be
interpreted clearly as the search for a sentence in the text with a similar predicate-
arguments representation, in which, the argument (or the predicate) corresponding to
the answer syntactically behaves like the EAT, and some other arguments and/or the

6http://web.media.mit.edu/ hugo/montylingua/

20 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

predicate in both predicate-arguments representations match. To illustrate this, con-
sider the following query: “Who invented the helicopter?”. The predicate-arguments rep-
resentation provided by MontyLingua is as follows:

invent(Who,airship)

Comparing both predicate-arguments representations, it becomes clear that the
subject “Who” matches the subject “Igor Sikorsky”. At the same time, the large-scale
redundancy of the Web steeply increases the probability of finding a rewriting of the
query, where the answer can be easily identified by means of this alignment strategy.

One noteworthy intrinsic feature of our MontyLingua API is a cache, which stores
previous predicate analysis and works in a similar way to GASCA, consequently, it also
brings about a marked reduction in the processing time. This is a significant factor,
because predicate analysis is also computer demanding.

4.3.2 The predicate-arguments and data-driven genetic algorithm
PreGA uses the same parameters and a similar chromosome representation to GAQA, but
completely replaces some of its components. The partial replacement consists princi-
pally of a new mutation operator and a purpose-built goal function, which take ad-
vantage of predicate analysis in order to enrich the syntactical data-driven alignment of
GAQA. This new mutation operator chooses a random sentence with a uniform prob-
ability. Then, a predicate analysis is performed to the picked sentence and one of its
arguments is randomly selected afterwards. Only arguments consisting entirely of
numbers and letters are taken into account. The sole purpose of this operator is to
systematically explore the fitness of objects/arguments belonging to sentences on the
document. Highly frequent arguments are consequently more likely to be selected. The
fitness function of an answer candidate or individual B∗ respecting to the query Q is
given by:

Kp(B∗, Q) = K(B∗, Q) ∗Kl(B∗, Q) (9)

Where Kl(B∗, Q) is the “linguistic fitness” of the individual and K(B∗, Q) is its fit-
ness according to the annotated context (equation 5). This product allows to calculate
Kl(B∗, Q), only when K(B∗, Q) > 0. Accordingly, only individuals with some contex-
tual evidence are further tested. Kl(B∗, Q) is defined as follows:

Kl(B∗, Q) =
∑

∀Ss∈S:B∗∈Ss

γ(Ss, Q)∗

1 + η(Ss, Q)
∑

o∈obj(Ss)

J(B∗, o)

1 + η(B∗, Ss)
∑

q∈obj(Q)

∑
o∈obj(Ss)

J(q, o)

 (10)

γ(Ss, Q) is a binary variable, where its value is one whenever the verb of the sen-
tence Ss matches the verb of the query, is otherwise zero. γ(Ss, Q) considers only sen-
tences where the verb of the sentence and query match, even though their senses are
not the same. At this point, synonyms are not considered on the ground that PreGA
trusts implicitly in the massive redundancy of the Web. η(Ss, Q) is a binary variable,
where its value is one whenever the subject of the sentence Ss and the query match,
otherwise is zero. η(B∗, Ss) is similar to η(Ss, Q), but its value is one whenever the in-
dividual matches the subject of the sentence Ss. obj(Ss) is a function which returns the
arguments of the sentence, excluding the subject, and obj(Q) is an homologous func-
tion for the query. Each argument within the predicate of the query is compared with

Evolutionary Computation Volume www, Number www 21

A. Figueroa and G. Neumann

each argument in the predicate of the sentence according to the Jaccard measure (Cohen
et al. (2003)). The Jaccard measure J is a ratio between the number of terms that occur
in both strings, and the total number of different terms in both sequences. For instance,
consider B1=“Sikorsky” and B2=“Igor Sikorsky”, J(B1, B2) = |B1∩B2|

|B1∪B2| = 0.5.
It is clear that the denominator is always greater or equal to the numerator, thus

the value of J is between one and zero. η(Ss, Q) and the sum of values of J aim for:
(a) clearly differentiating the sense of the verb presented on the sentence Ss and the
query Q, and (b) directly measuring the semantical bonding between the query Q and
a particular sentence Ss on the text. In the instructive example, only one retrieved
sentence is considered: “Igor Sikorsky invented the helicopter in 1939 in Kiev.”, thus, the
value for Kl is computed as follows:

Kl(“Igor Sikorsky”, “Who invented the helicopter?”) = 1 ∗ (1 + 1 ∗ 1) ∗ (1 + 0 ∗ 1) = 2

All in all, PreGA takes advantage of predicate analysis in order to enrich the align-
ment of annotated contextual patterns with the context of new answer candidates. This
predicate analysis is performed as long as PreGA tentatively identifies similarities in
both contexts (K(B∗, Q) > 0 in equation 5), consequently, the application of linguistic
processing is carefully balanced and the strong dependency of the alignment on the
annotated data significantly decreases. Moreover, as long as the gene representing the
sentence index converges, PreGA saves computational time by taking advantage of the
inherent cache provided by our MontyLingua API. Nevertheless, PreGA still remains
heavy dependent upon patterns seen on the training data, while it is selecting a new
answer string (K(B∗, Q) > 0 in equation 5).

5 Experiments

For the purpose of the assessment of our methods, experiments were carried out con-
sidering a set of six different relations and the three most common sorts of entity: PER-
SON, LOCATION, DATE as well. Additionally, our experiments also made allowances
for a set of heterogeneous relations aiming at a particular kind of entity. Accord-
ingly, this section fully describes the evaluation metric, data-sets, external resources
and presents a discussion at a greater length of the obtained results as well as a base-
line.

5.1 Evaluation Metric

In order to assess the performance of QAS, the standard metric of Mean Reciprocal Rank
(MRR) is used. MRR rewards each answer according to its position in the ranking, by
assigning each the inverse of its position. The MRR (see Lita and Carbonell (2004)) of a
system is the average value for a set Qu of Qn questions:

MRR =
1
Qn

.
∑
∀q∈Qu

1
rank answerq

(11)

5.2 Experimental Settings

Table 5 shows six out of the seven considered data-sets, which were formally split into
two sets: training and testing. The former was directly sent to an external system in
order to retrieve training tuples. We tried to avoid manual annotations at all costs
by taking into account right and wrong pairs. The latter set was separately sent to
each individual method and our Baseline . Table 5 also shows the templates used for
retrieving testing and training snippets as well as the size of the corresponding sets.

22 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

Data-set Template Total Training Testing
Inventors who invented the {invention}? 272 87 185
Presidents who is the President of {country}? 120 33 87
Composers who composed the {symphony}? 180 80 100

Prime Ministers who is the Prime Minister of {country}? 103 29 74
Locations where is the {monument/city}? 120 37 73

Dates when was {person} born? 4000 2160 145

Table 5: Different data-sets.

The last data-set is the standard CLEF-2004 data-set, which refers to answers from
1994/1995 newspapers articles. The 169 who-questions were directly sent to our exter-
nal system. Each right answered question was taken into account as a member of the
training set and every unanswered question was considered as part of the testing set.
The tuples where manually checked in order to effectively remove all pairs {sentence,
answer} which contains a wrong answer. These who-typed questions consider sev-
eral topics and wrong answers, even tough they are few, they can have a considerable
impact on the model. Indeed, this manual annotation is a demanding task.

The external system7 implements the approach presented in (Figueroa and Neu-
mann (2006)). This system identifies answers by modelling the strength of the syntactic
relations between words. Similarly to our GA-based methods, these syntactic relations
are discriminated on the ground of the frequency of the relative positions of words
within sentences. As well as that, this system extracts answers from web snippets, it
supplies for this reason suitable context for the alignment of our GA-based strategies.
In addition, this system makes use of some specialised modules for extracting answers,
that is modules that account for traditional regular expressions and a lexical database
of locations, namely WordNet8. The MRR values obtained by this external system are
0.69, 0.74 and 0.50 for English questions aiming at Dates, Locations and Persons respec-
tively.

The back-end to the search engine was provided by Google API9. On the one hand,
Google usually returns at least one snippet containing an answer (considering ques-
tions in table 5), on the other hand, Google is more likely to truncate sentences than
other search engines such as MSN Search10. Google API differs from Google Search
(the front-end) in the bias in favour of advertisements, cookies, history and personal
profiles as well as other preferences.

Three additional remarks are: (a) the weights α(wsk, Q) were set as in section 3.2.1,
(b) snippets were tokenized by means of spaces and standard punctuation signs: colon,
semicolon, coma, dot as well, and (c) the EAT was identified by simply Wh–keyword
matching. Templates in table 5 were especially designed so to avoid any query analysis
error.

5.3 Baseline

If a term is likely to be an index of a collection, it is highly possible that a subset of
documents will provide enough localised context to unambiguously identify its role
and significance. The idea is therefore to exploit the likelihood of a term as an index of
a collection of snippets in order to approximately estimate how difficult it is to sharply

7This system is currently available at http://experimental-quetal.dfki.de/
8WordNet can be freely downloaded at http://wordnet.princeton.edu/
9http://code.google.com/apis/ajaxsearch/

10http://search.msn.com/developer

Evolutionary Computation Volume www, Number www 23

A. Figueroa and G. Neumann

distinguish if it is the answer to a question or not. Our baseline is for this reason based
on the term frequency-inverse document frequency (td-idf), which is the traditional metric
of a term as index in Information Retrieval. But, since we are dealing with web snippets,
td-idf is changed as follows:

tf − idf(wi) =
freq(wi)

max∀wi∈W freq(wi)
∗ log

(
| ϕ |

nd(wi, ϕ)

)
(12)

Where nd returns the numbed of snippets containing the word wi ∈ W . Instead of
counting the frequency on each snippet, the idf is weighted proportional to the nor-
malised frequency of wi in the whole collection. Essentially, due to the size of snippets,
they are small pieces of text and the original normalised term frequency does not draw
a distinction between words in each web snippet, all of them can be considered as an
index of the snippet. However, we are not interested in the set of indexes of each snip-
pet, but rather, aim for computing the likelihood of strings as indexes of the whole
collection.

Algorithm 3: Baseline

input: ϕ, %
begin1

words←extractAllWords(ϕ);2
rank←tdidf(words);3
rank←filterWords(rank,%);4
rank←filterRareStrings(rank);5
return rank;6

end7

The input of the baseline is the snippets ϕ and a stop-list. Line 2 extracts all words from
the document. Line three looks for the most frequent word and computes the td-idf
according to equation 12. Line four filters words that are in the given stop-list. Line five
filters strings that contains numerical and/or alphabetic characters. In this step, strings
that an answer extractor will easily identify as non answers are removed:math symbols,
html tags, special characters. Eventually, line six returns the ranked answer candidates.

5.4 Results

The next table shows an overview of the obtained results:

Strategy MRR Total 1 2 3 4 5 AA
Baseline 0.376 403 137 92 78 42 41 13

GAQA 0.497 415 242 78 38 31 12 14
GAQA+GASCA 0.512 437 240 97 38 35 13 14

PreGA 0.373 344 155 101 33 23 10 22

Table 6: Overview of the results per strategy (out of 624 questions).

All data-sets consider a total of 713 questions. In 63 cases, an answer was found,
which was not provided by the corpus (AA), for instance, in case of inventions, which
their inventors are unclear such as “The Radio”, the corpus11 provides “Guglielmo Mar-
coni”, but we can easily find on the Web: “Nicola Tesla invented the Radio”. In the CLEF

11http://corporate.britannica.com/press/inventions.html

24 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

corpus this ambiguity is more often, due to the fact that some answers are out of date
and the retrieved snippets contain updated information. In 89 cases, no answer was
manually found on the best 30 retrieved snippets (NAS). In some cases, the answer was
in a large span of text which was intentionally replaced with a break. In other cases, the
retrieved snippets contained a localised context in which the answer did not occur, due
to a marked bias in favour of some words within the query with a strong likelihood as
indexes of another collections of documents where the answer hardly occurs. For in-
stance, the query “Who invented the supermarket?” retrieves strings like “The supermarket
giant claims the move will bring voice over Internet protocol . . . the man who really invented the
Internet”. In this particular case, on-line advertisements of supermarkets have a strong
influence over the terms “invented” and “supermarket”. In actual fact, only the first five
ranked answer strings were considered for calculating the MRR score. Our strategies
still found answers to other questions in lower-ranked positions, which do not con-
tribute to the final score. In particular, the question “Who invented the Lego?”, two of our
methods found an answer ranked at position six. As well as that, Alternative Answers
(AAs) were not taken into account in the final MRR score.

It is worth to observe experimentally that our strategies are more likely to find
uni-grams as answers than whole answer strings. In the case of who-typed questions,
surnames are usually more frequent within web snippets than names or full names.
Since our strategies make allowance for the alignment of every occurrence of an an-
swer candidate, they are also inherently biased by frequency counting. Consequently,
surnames tend to be naturally preferred to names and full names. A good example is
in the set of Composers12, “Schubert” is more likely than “Franz Schubert” or “Franz”. In
general, it is well-know that statistical oriented approaches often extract these kinds of
inexact answer (see also Echihabi et al. (2004)).

PreGA performed as the Baseline . On the one hand, PreGA discovered answers
to a lower number of questions, on the other hand, PreGA ranks right answers higher,
it achieves therefore a better distribution of the answer rank. These are two sufficient
reasons for their similar MRR scores. In addition, it is clear, GAQAand GAQA+GASCA
outperforms PreGA. Furthermore, by considering only results upon table 6, it can be
concluded that the flexible alignment of GAQA+GASCAperforms slightly better than
GAQAand their answer rank distributions are similar. Accordingly, they also finished
with a similar MRR score.

Broadly speaking, the best systems that take part into the TREC competitions score
an MRR value between 0.5 and 0.8. This score is computed over a wider variety of
questions which are usually harder to answer. These systems therefore necessarily in-
corporate knowledge resources, specialised document retrieval, answer selection and
validation. Under these concrete facts, results obtained by GAQAand GAQA+GASCA
(0.497 and 0.512 respectively) seem to be positively encouraging. The following table
shows results regarding each data-set:

12http://en.wikipedia.org/wiki/List of Composers by name

Evolutionary Computation Volume www, Number www 25

A. Figueroa and G. Neumann

Corpus Questions NAS Baseline GAQA GAQA+GASCA PreGA
CLEF-2004 75 24 0.309 0.387 0.261 0.261
Inventions 185 28 0.421 0.502 0.452 0.546
Presidents 89 1 0.524 0.571 0.629 0.222

Prime Ministers 76 5 0.473 0.706 0.714 0.197
Composers 100 23 0.315 0.500 0.489 0.584
Locations 43 1 0.568 0.638 0.684 0.507

Dates 145 7 0.173 0.365 0.450 0.266

Table 7: MRR overview.

GAQA+GASCAachieved the best MRR score for four out of seven data-sets, while
PreGA finished with the best score for two data-sets. In four data-sets, the Baseline
outperformed PreGA. As a reasonable conclusion, the data-driven enrichment tended
to perform better than our enhancement based mainly on predication. Given the highly
variable MRR score achieved by PreGA, it can be concluded that the predication anal-
ysis provided by MontyLingua covers wider paraphrases that usually occur in some
contexts/topics than others.

The approach presented on (Lita and Carbonell (2004)) scored a MRR value of 0.54
for a set of who-typed questions from the TREC 9, 10 and 11 corpus, and the evaluation
was strict with respect to answer patterns provided by TREC. In (Dumais et al. (2002)),
they obtained a MRR value of 0.45 for 500 TREC-9 questions. In (Charles et al. (2001)),
a score about 0.5 was obtained for different configurations of their system. Their set
of questions also aimed at names of persons, and the criteria for considering the con-
tribution of correct answers to the MRR value is similar to ours. They also considered
only names as correct answers, semantically related terms were not taken into account.
Their ranking strategy seems to be likely to find full names as answers , takes advan-
tage of simple syntactical patterns and their methods aim at a fixed corpus (TREC) as a
target, this means that they know a priori how answers occur on the corpus. In contrast
to our methods, which distinguish more strings as answers (not only full names), but
they use the Web as a target. Hence, they do not know a priori how answers occur on
the retrieved snippets. This intrinsic factor has an impact on the MRR values, but not
on the real performance of the system. In more practical terms, we consider as a right
answer the exact string match with the answer in the corpus, a more complete name
description, only the surname or the name. Right answers do not make allowance for
orthographical variations in order to reduce the ambiguity of the evaluation. Hyphens
were removed.

In (Figueroa and Neumann (2006)), a data-driven strategy for extracting predicted
answers from web snippets was presented. This strategy was evaluated by observing
the distribution of answers within the rank of predicted answers. This method was
properly assessed considering the set of questions provided by CLEF-2004, where it
finished with a MRR value of 0.69 for questions aiming for a DATE as an answer, while
it scored 0.74 for questions aiming for a LOCATION and 0.50 for questions aiming for
a PERSON. Since this strategy takes advantage of a lexical database of locations and a
set of regular expressions for dates during the answer extraction step, our results seems
greatly motivating. More to this comparison, the answer extraction for the EAT PER-
SON is based mainly on identifying sequences of capital letters on predicted answers.
Thus, it is similar in nature to our strategies. The MRR value for this kind of question
was 0.5, which is lower than the values obtained by GAQAand GASCAfor a similar sort

26 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

of question. It is also important to comment that the CLEF-2004 is more heterogeneous
than the set considered here, and the values achieved by our methods for the CLEF-
2004 corpus are computed from the set of questions that the external system could not
answer, and this external system is based mainly on this strategy, these values are for
this reason evidently not comparable. But, it is perfect clear that our strategies success-
fully answered questions that this external system did not.

Regarding the set of locations13, the approach presented on (Figueroa and Atkin-
son (2006)) scored an MRR value about 0.8 for a similar data-set and the Web as a
target corpus. This approach takes advantage of external lexical resources. GAQAand
GAQA+GASCAscored 0.638 and 0.684 respectively for a subset of the same set of ques-
tions. But, our methods are independent upon a lexical database of locations. In this
type of entity, correct answers were the country or the city. With regards to questions
aiming at a DATE14, correct answers were considered: the year, the month and year or
the full date.

Baseline GAQA GAQA+GASCA PreGA
Baseline 1 0.2899 0.2050 0.1878

GAQA 0.2899 1 0.640 0.380
GAQA+GASCA 0.2050 0.640 1 0.3038

PreGA 0.1878 0.380 0.3038 1

Table 8: Average Correlation Coefficient between each pair of strategies.

Another key issue relating to the evaluation of Question Answering Systems is the
distribution of the rank of the answer achieved by different strategies. Since MRR does
not show any distinction between different distributions of the answer, the correlation
coefficient between each pair of ranks was computed. The average value for each pair
of methods is shown table 8. It is fairly evident that this coefficient does not make a
sharp distinction, but it helps to draw broad conclusions like the similarity between the
ranks of GAQAand GAQA+GASCA. The following four tables describe results achieved
by each strategy for each data-set:

Corpus Questions NAS MRR 1 2 3 4 5 AA
CLEF-2004 75 24 0.309 9 6 5 3 2 2
Inventions 185 28 0.421 39 24 20 8 11 10
Presidents 89 1 0.524 32 17 12 4 3 0

Prime Ministers 76 5 0.473 20 15 12 5 4 0
Composers 100 23 0.315 13 14 8 3 4 0
Locations 43 1 0.568 16 8 7 3 1 1

Dates 145 7 0.173 8 8 14 16 16 0

Table 9: Results obtained by the Baseline .

Given the fact that the proposed Baseline ranks uni-grams according to an ap-
proximation of their likelihood as index of the set of retrieved snippets and this likeli-
hood gives a simple notion of how sharp the role of a particular word within this set
can be determined, it can be concluded that answers are more likely to play a role as
an index, if the question aims for a President, Prime Minister or Location. Since our

13http://www.glasssteelandstone.com
14http://www.famousbirthdays.com/bday 123.html

Evolutionary Computation Volume www, Number www 27

A. Figueroa and G. Neumann

methods are also more efficient in coping with these sorts of question, it seems that it is
easier to identify the right answer on their corresponding collections of snippets. Con-
trary to dates, which do not usually play a role of index. It seems therefore to be more
difficult to readily distinguish their role on the text, hence, whether they are answers or
not. This drawback is usually lessened by means of purpose-built regular expressions,
which are normally language dependent.

Corpus Questions NAS MRR 1 2 3 4 5 AA
CLEF-2004 75 24 0.387 13 2 1 1 0 3
Inventions 185 28 0.502 64 12 7 5 1 10
Presidents 89 1 0.571 42 12 4 3 1 0

Prime Ministers 76 5 0.706 42 8 8 5 1 0
Composers 100 23 0.500 30 11 4 6 1 0
Locations 43 1 0.638 23 4 0 3 2 1

Dates 145 7 0.365 28 29 14 8 6 0

Table 10: Results obtained by the GAQA.

The table above shows results for GAQA. Best results were obtained for the data-
sets regarding Presidents, Prime Ministers15 and Locations. GAQAoutperformed the
Baseline on every data-set. Given the lower MRR scores achieved by GAQAon the
CLEF and Dates data-sets, it can be concluded that the amount of training data is not
the only significant factor for identifying answers on snippets readily. This meaningful
difference in the score of CLEF data-set can be seen as a sharper difference between the
contexts of the training and testing sets.

Corpus Questions NAS MRR 1 2 3 4 5 AA
CLEF-2004 75 24 0.261 8 7 1 3 1 2
Inventions 185 28 0.452 52 20 5 6 4 11
Presidents 89 1 0.629 46 10 9 3 3 0

Prime Ministers 76 5 0.714 41 16 2 4 0 0
Composers 100 23 0.489 28 15 1 5 3 0
Locations 43 1 0.684 26 1 4 0 1 1

Dates 145 7 0.450 39 28 16 14 1 0

Table 11: Results obtained by the GAQA+GASCA.

The table above shows results for the two-staged GAQA+GASCA. Apart from the
CLEF data-set, all results are better than the presented Baseline . For three data-sets
GAQAoutperforms GAQA+GASCA: CLEF, Inventions and Composers. The huge differ-
ence between the data-set of dates and presidents shows that the alignment can be
highly sensitive to intentional breaks on snippets and the addition of contextual words
such as adverbs and adjectives.

15http://en.wikipedia.org/wiki/List of State leaders

28 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

Corpus Questions NAS MRR 1 2 3 4 5 AA
CLEF-2004 75 24 0.261 8 7 1 3 1 2
Inventions 185 28 0.546 69 9 3 2 2 19
Presidents 89 1 0.222 0 31 8 4 2 0

Prime Ministers 76 5 0.197 0 22 6 4 0 0
Composers 100 23 0.584 41 5 3 2 0 0
Locations 43 1 0.507 17 4 2 2 3 1

Dates 145 7 0.266 20 23 10 6 2 0

Table 12: Results obtained by the PreGA.

The table above shows the contribution of predication to the alignment. Results
show that predication did not improve substantially the performance of the system. Ac-
cording to this table, results split data-sets into two different groups where the differ-
ence can be interpreted as a result of the quality of the predication analysis performed by
MontyLingua. Due to two determining factors, MontyLingua can not readily identify
the predicate and/or arguments. First, it is unclear if MontiLingua can deal efficiently
with all possible paraphrases presented on snippets, especially relative clauses. Sec-
ondly, ungrammatical snippets seriously distort the predication analysis. On the whole,
PreGA can not fully analyse sentences with intentional breaks, PreGA can not therefore
easily discover right answer strings to some kinds of question on retrieved snippets.

But, it is important to duly note that our approach has its limitations. When our
methods try to answer questions that aim at a LOCATION or DATE, they can not read-
ily distinguish the learnt syntactic behaviour of the EAT in retrieved snippets, because
both behave similarly in English (as in another languages), both are indeed locations
one in time and the other in the space. This is a crucial aspect, when our system aims for
a birthplace or birthday, which usually co-occur within the same span of text. Another
thing is that exists a larger amount of variations for expressing the same date than the
same location (see example in the first section). This number of variations has a vital
impact on the fitness function, while the system is considering the occurrences to be
aligned. Hence, we can explain the low performance on the data-set regarding dates.
In this case, a date normalisation strategy is necessary.

Corpus Baseline GAQA GAQA+GASCA PreGA
CLEF-2004 23.5 1909 41995 7550
Inventions 76.12 1609 37870 30826
Presidents 29.31 5293.95 103040.8 10084.24

Prime Ministers 27.66 6468.9 123169.67 11632.9
Composers 70.14 2511.16 58943.7 32203
Locations 27.66 6468.9 121356.67 11632.90

Dates 81.16 99232.17 813696.6 123647

Table 13: Average execution time for each strategy vs. data-set (milliseconds).

Another inescapable fact is that our strategies missed some answers, because the
goal function properly evaluates individuals, but if the answer is in expressed in a way
which was not learnt by the system, the answer is then missed or it is highly possible
missed. If the answer is in a learnt form, but its frequency is low and the contextual
evidence is not strong enough to guide the search, then our methods can start looking
for answers in another region of the answer space where they will not find the answer.

Evolutionary Computation Volume www, Number www 29

A. Figueroa and G. Neumann

This drawback has to do with the quality of the training data and it is an inherent
disadvantage to data-driven approaches.

All strategies demanded more time for answering date-questions, because of the
large amount of training data. Results suggest that the deep answer-context alignment
can be used for increasing the accuracy of the answer extraction stage, but at some
point, it turns to require a huge amount of computational resources. Results also sug-
gest that ad-hoc linguistic processing improves the accuracy and performance of our
methods. But, if this linguistic support is not adequate, data-driven approaches tend to
perform better. Overall, data-driven approaches obtain a good performance, but they
need a huge amount of different contextual paraphrases and computational resources
in order to sharply identify the answer from its context.

Figure 5: NPA versus Execution time ratio.

In addition, an extra baseline was implemented in order to measure the contribu-
tion of GA to speed the search up. This new baseline performs an exhaustive search
through the whole answer space, evaluating the fitness of individuals according to
equation 5. This baseline was compared with GAQAby fetching N = 50 snippets for
each question in the test set of Prime Ministers. This comparison assists us in checking
the following four aspects. First, the respective estimate of NPA is 5500 (equation 6),
while its average empirical value was 7481.57 with a standard deviation of ± 855.84.
Second, the average execution time ratio of this new baseline to GAQAis 1.97 with a
standard deviation of ± 0.69. Since, GAQAand the new baseline share the same goal
function, the increase showed in figure 5 corresponds directly to the grown in size of
the answer space. Then, the larger the answer space is, the faster GAQAis with respect
to the baseline. Third, GAQAdid not discover an answer ranked top five by the new
baseline for the following two countries: “Japan” and “Niger”. Lastly, the MRR value
of Google for this test set was 0.447. This value concerns the rank of the first snippet,
within the top five, containing the correct answer, and it is noticeably lower than the
value obtained by GAQAand GAQA+GASCAas well as the Baseline . All things consid-
ered, GAQAprovides a faster search that finds right answers and misses few ones.

30 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

6 Future work

One possible way of enhancing our methods is by the addition of morphology knowl-
edge to the search. To illustrate this, let us think on the following sentence: “The sun-
glasses were invented by James Ayscough.”:

The radio was invented by Nikola Tesla
The radio was invented by Guillermo Marconni
The sunglasses were invented by James Ayscough

Table 14: Effects of morphological inflections on the alignment.

when GAQAaligns this sentence with tuples on the QA-STORE(see table 1), it
discovers enough contextual evidence to consider “James Ayscough” to be a promising
n-gram. But, the interesting fact here is that the word “were” does not contribute to
the alignment, bringing about a decrease in the value of the fitness from four to three
(see section 3.2.1). In many NLP tasks, words are stemmed in order to avoid counting
several morphological inflections of the same term as occurrence of different words.
This allows their real occurrences to be reflected. Normally, this process consists of
splitting the term into its stem and ending. For example, the stem “kiss” can be found
in words like “kiss” and “kissed” (kiss+ed) as well as “kisses” (kiss+es). Then, any
occurrence of one of this three variations is considered as an occurrence of the stem
of the word (“kiss”). But, identifying and removing endings of some words is only
a rough approximation, because some irregular verbs like: “be”,“go”, etc, inexorably
leads the task to use additional linguistic knowledge. It is worth to highlight that
two different words can share the same stem, such as: “neutralise” and “neutron”
(van Rijsbergen (1979)). In our instructive example in table 14, the alignment after
morphological analysis is as follows:

The radio be invent by Nikola Tesla
The radio be invent by Guillermo Marconni
The sunglasses be invent by James Ayscough

Table 15: Alignment of stemmed words.

Morphology analysis aims for reducing the variability of natural language texts,
and hence has a stronger impact upon the alignment of sentences in languages with a
richer Morphology such as German and Spanish. For example, the word combination
“was invented” can be translated into Spanish as “fue inventado” or “fue inventada”. For-
tunately, tools, like MontyLingua, that perform this morphological analysis exist for
several languages and are available for public usage on the Internet16. Accordingly, in
the working example in table 15, the fitness after morphology analysis is four.

With regards to multilinguality, it is positively encouraging to extend our strate-
gies to other languages, especially free-order languages, because this extension would
consist chiefly of replacing the QA-STOREand the stop-list. Obviously, the performance
in the new language will rely upon its redundancy on the Web.

Another possible way of enriching our search is by making use of syntactic infor-

16http://members.unine.ch/jacques.savoy/clef/index.html

Evolutionary Computation Volume www, Number www 31

A. Figueroa and G. Neumann

mation such as part-of the speech (POS) tags. A part-of speech17 is a lexical category that
defines the specific syntactic or morphological behaviour of a word. Common cate-
gories include nouns, verbs, adjectives and adverbs, among others. POS tagging maps
then each word to a particular part-of speech on the grounds of its definition and
context. But, this mapping is extremely hard, because a vast number of word-forms
are ambiguous, and thus having a list of pre-defined mappings is not enough. Like
morphology analysis, tools18 that automatically tag natural language texts exist (i. e.
MontyLingua for English). The POS tags for our illustrative example are sketched in
table 16:

The radio was invented by Nikola Tesla
DT NN VBD VBN IN NNP NNP
The radio was invented by Guillermo Marconni
DT NN VBD VBN IN NNP NNP
The sunglasses were invented by James Ayscough
DT NNS VBD VBN IN NNP NNP

Table 16: Sample of a tagged alignment.

In the example, it can be observed that the answer follows a concrete pattern (NNP
NNP), which can be inferred from the QA-STORE. This inferred pattern can be used
for filtering answer candidates, reducing hence the search space, and improving conse-
quently the performance. Additionally, the reason for the misalignment can be deduced
from table 16: the lexical category NNS (plural noun) differs from NN (singular noun)
and brings about an inflection in the past tense of the verb (VBD) “be”. Similarly to
words, lexical categories can also be aligned, equally their distribution can be learnt by
observing their relative position to the EAT. Here, multiobjective optimisation can per-
form a “bi-dimensional” search, where one function evaluates answer candidates at the
word level and the other at the POS level. However, these relative POS distributions
can also neatly be incorporated into equation 5 as the weights α(wsk, Q).

To illustrate another possible way of adding POS tags to the search, let us recall
the sentence S1 presented in section 3.2.2: “The helicopter was really invented in 1939 by
Igor Sikorsky in Kyiv”. The POS tagged version of S1 is as follows:

The/DT helicopter/NN was/VBD really/RB invented/VBN in/IN 1939/CD by/IN Igor/NNP
Sikorsky/NNP in/IN Kyiv/NNP

GASCAcan speed up the search by including POS information in its operators. For
example, the mutation operator of GASCAcould foresee that some lexical categories,
like RB, are more unlikely to supply alignment, and selects therefore genes and their
phenotypes according to a probability distribution that models this likelihood, while it
is mutating an individual. One last remark regarding POS tags, web snippets contains
truncated sentences, and thus the syntactic analysis carried out in these sentences is
quite inexact. But, if sentences in the QA-STOREare also taken from web snippets,
errors in the syntactic analysis would also be properly aligned, causing a mitigation of
the unfortunate effects of truncation upon POS tagging.

17http://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html
18http://nlp.stanford.edu/software/lex-parser.shtml

32 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

GASCAcan also take advantage of additional syntactic information such as parse
trees. A parse tree is a tree that represents the syntactic structure of a sentence according
to some formal grammar. Figure 6 shows the parse tree for our working sentence S1 in-
troduced in section 3.2.2. In this tree, the Propositional Phrase (PP) “in 1939” is in a frame
signalling that it provides misalignment. Therefore, GASCAcan speed up the search by
swapping the value of a group of genes corresponding to constituents, such as PPs,
instead of single words. Additionally, the QA-STOREcan also consist of parse trees, and
a GA-based strategy would accordingly align trees instead of words to discover new
answers.

Figure 6: Parse Tree for S1.

Since GASCAand PreGA got better results on different data-sets, it is greatly en-
couraging to take advantage of the ideas of (Tiedemann (2005a,b); Day et al. (2006))
for selecting answering strategies according to a set of given features extracted from
the query. Furthermore, these ideas can also be extended to rerank and validate an-
swers. These kinds of task are somehow hard to do in question answering systems (for
example, see (Moldovan et al. (2004))).

Our strategies achieved good results taking advantage only of simple codifica-
tions, this is a promising factor, because genes can be added in order to improve the
answer extraction process. In our methods, all occurrences of an answer candidate
are equally fit, they do not draw any distinction between the contribution of different
sentences to the final fitness, though these occurrences are inserted into completely dif-
ferent contexts. This distinction can help to give major priority to high fit sentences,
causing a finer balance of the application of ad-hoc linguistic processing. Another ex-
tension in the gene representation is due to GASCA, the addition of two genes that signal
the degree of compactness of the aligned blocks of words could be used particularly to
distinguish the level of reliability of both contexts. In PreGA, the coding can be fur-
ther exploited in order to answer more complex questions or perform more specific
linguistic processing such as deep parsing.

7 Conclusions

Results obtained by GAQAshows that it is possible to extract answers from the Web to
natural language questions by properly aligning previously annotated contexts with
new sentences, in such a way that, this alignment lessens the dependence upon exter-

Evolutionary Computation Volume www, Number www 33

A. Figueroa and G. Neumann

nal lexical resources and it is robust to noisy training data, therefore, it substantially
reduces the need of manual annotations or pre-defined ranked patterns. Specifically,
results suggest that our strategies can cope with specific questions, specially those ques-
tions whose answers are inserted into contexts, for which do not exist a large amount
of morpho-syntactical variations, this way the probability of matching patterns seen
on training data and the context of new sentences increases. Additionally, results also
show that GAQAcan distinguish answers to some kinds of question (i. e. composers),
for which the collection does not provide the necessary context to discriminate their
role within snippets, this is, answers that are more difficult to be easily identified.

The improvement achieved by GASCAand PreGA shows that the heavy depen-
dence upon the training set can be mitigated by: (a) aligning patterns in a more flexible
fashion, and (b) balancing the contribution of linguistic processing to the answering
process. A final remark is due to the processing time required by our strategies, our
system is fully implemented in Java, time can be therefore substantially decreased by
changing the programming language.

References

Aycinena, M., Aycinena, M., and Mulford, D. (2003). An evolutionary approach to
natural language grammar induction. Stanford CS 224N Natural Language Processing.

Belkin, M. and Goldsmith, J. (2002). Using eigenvectors of the bigram graph to in-
fer grammatical features and categories. In Proceedings of the Morphology/Phonology
Learning Workshop of ACL-02.

Chalendar, G. D., Dalmas, T., Elkateb-Gara, F., Ferret, O., Grau, B., Hurault-Planet, M.,
Illouz, G., Monceaux, L., I., I. R., and Vilnat, A. (2003). A noisy-channel approach to
question answering. NIST Special Publication SP.

Charles, L., Gordon, C., Cormack, V., and Lynam, R. (2001). Exploiting redundancy in
question answering. Journal of the American Society of Information Science, 41(6):391–
407.

Chen, J., Ge, H., Wu, Y., and Jiang, S. (2004). Question answering combining multiple
evidences. In TREC 2004.

Coello, C. A. (2004). An introduction to evolutionary algorithms with applications in
biometrics. In Proceedings of the International Workshop on Biometric Technologies: Special
Forum on Modeling and Simulation in Biometric Technology, pages 51–67. BT’2004.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string distance
metrics for name-matching tasks. In IIWeb 2003, pages 73–78.

Day, M., Lu, C., Ong, C., Wu, S., and Hsu, W. (2006). Integrating genetic algorithms with
conditional random fields to enhance question informer prediction. In Proceedings of
the IEEE International Conference on Information Reuse and Integration (IEEE IRI 2006),
pages 414–419.

Dumais, S., Banko, M., Brill, E., Lin, J., and Ng, A. (2001). Data-intensive question
answering. In proceedings of the tenth Text REtrieval Conference (TREC 2001).

Dumais, S., Banko, M., Brill, E., Lin, J., and Ng, A. (2002). Web question answering: is
more always better? In Proceedings of SIGIR-2002.

34 Evolutionary Computation Volume www, Number www

Genetic Algorithms for data-driven Web Question Answering

Echihabi, A., Hermjakob, U., Hovy, E., Marcu, D., Melz, E., and Ravichadran, D. (2004).
How to select an answer string? Advances in Textual Question Answering.

Echihabi, A. and Marcu, D. (2003). A noisy-channel approach to question answering.
In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics,
pages 16–23.

Figueroa, A. and Atkinson, J. (2006). Micai 2006: Advances in artificial intelligence.
LNAI, 4293:985–995.

Figueroa, A. and Neumann, G. (2006). Advances in natural language processing. LNAI,
4139:423–434.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Co.

Holland, J. H. (2005). Genetic algorithms: Computer programs that “evolve” in ways
that resemble natural selection can solve complex problems even their creators do
not fully understand. http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.htm.

Keller, B. and Lutz, R. (1997). Evolving stochastic context-free grammars from examples
using a minimum description length principle. In Workshop on Automata Induction
Grammatical Inference and Language Acquisition, Nashville, Tennessee. ICML-97.

Kintsch, W. (1998). Predication. Cognitive Science, 25:173–202.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). Introduction to latent semantic
analysis. Discourse Processes, 25:259–284.

Lita, L. and Carbonell, J. (2004). Unsupervised question answering data acquisition
from local corpora. In Proceedings of the Thirteenth Conference on Information and Knowl-
edge Management (CIKM 2004).

Moldovan, D., Harabagui, S., Clark, C., Bowden, M., Lehmann, J., and Williams, J.
(2004). Experiments and analysis of lcc’s two qa systems over trec 2004. In TREC
2004.

Mollá, D., Schneider, G., Schwitter, R., and Hess, M. (2000). Answer extraction using a
dependency grammar in extrans. Traitement Automatique de Langues (T.A.L.), Special
Issue on Dependency Grammar, 41(1):127–156.

Neumann, G. and Sacaleanu, B. (2006). Clef 2005. LNAI, 4022:429–438.

Otto, E. and Riff, M. C. (2004). Towards an efficient evolutionary decoding algorithm
for statistical machine translation. LNAI, 2972:438–447.

Rinaldi, F., Dowdall, F., Kaljurand, K., Hess, M., and Mollá, D. (2003). Exploiting para-
phrases in a question answering system. In Proceedings of the second international work-
shop on Paraphrasing, volume 16.

Savary, A. and Jacquemin, C. (2000). Reducing information variation in text. ELSNET
Summer School.

Schuetze, H. (1997). Ambiguity Resolution in Language Learning: Computational and Cog-
nitive Models. Stanford: CSLI Lecture Notes 71.

Evolutionary Computation Volume www, Number www 35

A. Figueroa and G. Neumann

Tiedemann, J. (2005a). Improving passage retrieval in question answering using nlp.
In Proceedings of the 12th Portuguese Conference on Artificial Intelligence (EPIA), pages
73–78.

Tiedemann, J. (2005b). Integrating linguistic knowledge in passage retrieval for ques-
tion answering. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing (HLT/EMNLP), pages 939–946.

van Rijsbergen, C. J. (1979). Information Retreival. Butterworths.

36 Evolutionary Computation Volume www, Number www

