Natural Language Generation

Grammar Formalisms and their Processing
Dr. Gunter Neumann
DFKI Saarbricken,
neumann@dfki.de
August, 2002

Abstract This essay' provides an overview of the grammar formalisms currently in use and
how they are processed in language production systems. The material in question includes
constraint-based formalisms, systemic grammars and tree adjoining grammars. With the aid
of selected studies we demonstrate how these formalisms are used in generation. In the
final part, the problem of grammar reversibility is discussed, that is, the use of one and the

same grammar for parsing and generation.

Introduction

One of the central aims of natural language generation is the development of computer
systems which, on receipt of a given input (which corresponds to the system's
communicative intentions), give a relevant and lucid reply in natural language. It has
proven very helpful to model the linguistic production process as a complex series of
decisions taking place on a number of levels. The necessary decisions can be roughly
divided according to whether they are relevant to the determination or the realization of the
content. When determining the content it is important to select and organize material which
is relevant to the present conversational target (e.g. answering a question). Content
realization focuses on transforming this information into a spoken or written utterance (i.e.
the concrete answer). The main information sources needed for this consist of a lexicon and
a grammar. Therefore the decision processes include selecting lexical elements and
constructing the grammatical structure of the planned utterance. This latter point is the

subject of the present study.

In order to be in a position to judge the various formalisms it is useful to take a look at how
form and function of linguistic objects relate to each other. For one, utterances can be
classified on grounds of their syntactic structure (for example, as a question or as an
answer), regardless of the actual intention of the utterance. The task of answering such

questions is allocated to the domain of pragmatics. Here linguistic elements are judged

according to their function in various communication situations. As an example, asking
someone to do something can be formulated as a request or as an order, depending upon
the situation, and on the receiving end it can be understood as a question or a demand. If
language is to be understood thoroughly, these two aspects cannot, of course, be studied
separately. In the context of generation, this means that the relationship between function

and form also has to be formulated.

In natural language generation systems NLG a series of different grammar formalisms is
used for the production of the syntactic structure. Up until the beginning of the eighties
grammar formalisms for generation systems were mainly developed and implemented by
researchers working in artificial intelligence. During that period the integration of the
grammar into the complete system (and hence also the relationship between function and
form) was stressed more than a comprehensive and linguistically sound description of the

form of language.

As the importance of constraint-based grammar formalisms grew, the interest in generation
in the field of computational linguistics increased considerably, and this led to a strong
systemization of syntax oriented generation problems. In contrast to the more AI oriented
approaches, which concentrate on questions specific to application and discourse, the main
point of discussion in CL is the relationship between semantic representation and the
possibilities of syntactic extension on the basis of linguistically founded methods. Pragmatic
questions are, however, not currently being considered. Thus viewed, computer linguistic

work in the field of generation is primarily concerned with the task of content realization.

Starting Point for Content Realization The input specification for the generation part
responsible for content realization (in short: grammar generator) comprises semantic and
pragmatic information. Ideally only a small amount of syntactic information should be
specified (e.g. the period), for precisely this is meant to be constructed. Furthermore, a
certain amount of flexibility should be allowed for concerning how exact the input has to be,
since all semantic and pragmatic features do not always have to be available. The grammar
generator should, in principle, be able to deliver adequate results in spite of lacking

information.

Essentially, a grammar generator has to solve the two following partial tasks:

1. Selection of the lexical elements.

! This paper isatrandation of G. Neumann. Grammatikformalismen in der Generierung und ihre Verarbeitung.,
which appeared in the German Journal on Artificial Intelligence “Kinstliche Intelligenz”, Special Issue on Natural
Language Generation, W. Hoeppner (Ed.), Germany, 1993.

2

2. Construction of the syntactic structure of these elements.

Both tasks can be modeled as decision processes which underlie certain restrictions. An
essential part of these restrictions is formulated in the lexicon and in the employed
grammar. Below is a selection of the decisions that have to be made in order to solve the
above mentioned partial tasks, although many of the decisions can only be adequately

solved if the partial tasks interact.

» Selection of the content defining words (house, building, skyscraper)

» Selection of definite features (the ball versus a ball)

« Selection of pro-forms (there, he, we)

» Selection of connectors (but, however, then)

« Realization of negation (I haven't got any money; I'm not going home)

» Realization of modifiers (e.g. as an adjective in the green apple, or as a relative
clause in the apple which is green)

» Realization of focus (e.g. via passivization or topicalization)

« Agreement of subject and verb (Peter drives; the children walk)

« Correct word order (e.g. not apple the green)

+ Selection of morphological inflection (des griinen Apfels (the green apple’s))

« Elision of clauses (Peter besitzt rote, Maria griine Klbétze (Peter owns red blocks,
Mary green ones))

« Construction of infinitives (I beg you to come)

It is very important to consider how specific the input must be to be accepted by the
grammar and the lexicon, and how to react in cases of insufficient information. In many
systems it is assumed that the input is necessarily and sufficiently related to the decision
factors, that is, it is presumed that all the information necessary for the best realization is

present.

Some systems allow for the input to be under-specified in this respect. The missing
information can either be determined by default values, or via interaction with other
modules (e.g. dialogue components, text planners). A description of an interaction-based

system can be found in [Hovy, 1987].

Below we will introduce some of the most well known formalisms: constraint-based
formalisms (in particular FUG), systemic grammars and tree adjoining grammars. We will
use examples from selected works to demonstrate how these are used in generation. Finally

we will deal with the problem of reversibility.

Constraint-Based Grammars

Grammar oriented research is currently focused on constraint-based formalisms. The central
idea of these formalisms is the description of linguistic categories via complex feature
structures, and the realization of the information flow during linguistic processing via
unification of such feature structures. Among the most well-known advocates of this class of
formalism are Functional Unification Grammar [Kay, 1984], PATR II [Shieber et a/., 1983],
and Definite Clause Grammars [Pereira and Warren, 1980], as well as Lexical Functional
Grammar [Bresnan, 1982], and Head-Driven Phrase Structure Grammar (HPSG. [Pollard
and Sag, 1987]).

In the next section we will describe the formalism of Functional Unification Grammar, which
is representative of the modeling and processing of linguistic knowledge in constraint-based
formalisms. In the final section we will examine special processing aspects of some other

formalisms.

Functional Unification Grammar

Functional Unification Grammar FUG [Kay, 1975; Kay, 1984] has been employed for the
processing of grammatical structure in numerous very prominent generation systems (e.g.
In [Appelt, 1985], [McKeown, 1985] and [McKeown et al., 1990]).

Representation In FUG all linguistic entities (that is words, phrases and sentences) are
represented by functional descriptions (FDs). An FD is a matrix consisting of attribute/value
pairs, called features. The input (which is calculated by the part responsible for content
determination) as well as the grammar and the lexicon are represented as FDs. The only
operation allowed in FUG is the unification of FDs. Informally, the unification of two FDs
leads to the construction of a new FD which contains the information on the input structures

and is compatible with these.

Fig. 1 shows an FD for a (strongly simplified) example grammar of German in which

sentences are defined as subject-verb-object or subject-verb sequences.

Cat = S 0

%Jat = (< Subj><Verb>..) B

WBubj = [Cat = NP] O
[Cat =V O B

O & O

Werb = %em = <t Sem > & [

S HAVum = <t Subj Num >{ B

O Obj = NONE] 0 B

0 t = NP 0

0 o= 4 0

0 Bbat = (NP) 0

0

0 O

0 %’r ed = ANY

%’em = [Hgent = <t Subj Sem >

0 B Goal = NONE]

F B Goal = <t Obj Num >]

Fig. 1: A simple example grammar in FUG.

Features are noted in the form a = v; @ marks an attribute and v its value. Attributes are
any words without internal structure, whereas values can be described by various types.
Essentially, nuclear and complex values are differentiated. In the above diagram Cat has
nuclear values and the attributes Subj and Pat have complex values (in the case of Subj

the value itself is an FD).

As the example demonstrates, an FD can also contain disjunctions of groups of features.
The disjunction in the example (marked by braces) expresses that the object is optional and
hence sentences can consist of two or three constituents. The special/ value NONE means
that this alternative is only chosen when no object is specified in the input structure. The
attribute Sem codes the semantics of the sentence. It is identical to that of the verb
(expressed via the path AN Sem in the verb's FD). The value ANY has the status of a
variable with the additional condition that it has to be substituted by a current value by the
end of the unification. The value of the attribute Num describes a path. Paths are used to
refer to the values of other attributes. This expresses that two attributes (which can pertain
to various constituents) can have a common value or, in other words, that their values have
to be identical. ? Consequently, the example establishes that the number of the verb has to
be identical with the number of the subject. In this way phenomena like, for example,

congruence or projection (i.e. the relationship between a phrase and its head element; e.g.

2 The symbol Aexpresses that the root node of the path is situated in the next FD up. When two attributes share

the same value it is also referred to as structure sharing.

the semantics of the sentence is identical to that of the verb) can be formulated very
elegantly. In previous formalisms only procedural solutions existed for this (compare for

example, [Meteer et al., 1987]).

Information on the succession of the constituents is formulated by the attribute Pat. The
value of this attribute is a list of paths to the immediate constituents of the FD. This list
formulates position restrictions for the order of partial expressions of the constituents of the
sentence. Formally, the list describes a regular expression about an alphabet consisting of
the attributes of the constituents in which the feature Pat occurs. In the exemplary
grammar the attribute Pat of the category S indicates that the surface string of a sentence
begins with the subject followed by the verb and possibly further constituents. The
possibility of options is expressed by ... In the exemplary grammar this position can be filled
by the object, which means that the object has to stand at the end of a sentence. In order
to identify the constituents of an FD exactly, FUG also makes use of the attribute Cset, the

value of which is made up of a number of paths to the immediate constituents.?

Unification Unification is the only operation which is employed for processing; this is also
true for sentence generation. In FUG sentences are produced by unifying the grammar with
the input which, like the grammar, must also be formulated as an FD. The input for the
unifacator is a semantic representation of what is meant to be expressed. The following
diagram shows a possible (again highly simplified) input structure for the exemplary

grammar described above.

The output is then a fully specified FD of the sentence "Peter liebt Maria" (Peter loves Mary),
in which the linear sequence is described by the attribute Pat of the sentence constituent. If
our exemplary grammar in Fig. 1 also included passive constructions, then it too could
generate the sentence "Maria wird von Peter geliebt" (Mary is loved by Peter), if in Fig. 2,

the attribute voice were occupied by the current value passive.

0 Pred = [Sem = lieben][ﬂ
%)'em = %4 gent = [S em = peter] il
O Hroal = [S em = maria]

Hfocie = active %

Fig. 2: Input structure for the sentence "Peter liebt Maria":

3 Hence FUG can be allocated to the ID/LP formalisms (compare [Gazdar et al., 1985]) in which an explicit division
of the constituent structure and linear sequence is expressed.

6

Unification can informally be interpreted as 'combination of information'. When two FDs are
unified, the resulting FD should contain all the information of the input structures. There are
two basic cases here, depending upon whether the value of an attribute is nuclear or
complex. Nuclear values only unify when they are identical. The unification of complex
values can be understood as recursive merging. The unification of values of the attribute
Pat gives the average of the values. During unification checks are carried out to make sure
that the structures to be unified are compatible. This is not the case, for example, when the
values of an attribute which appears on the same level in both FDs do not unify (for
example, when nuclear values are not equal or when the values have different types).*
Essential aspects of the unification operation are (1) Order invariance i.e. that the order of
the features is of no importance in the input structures (2) Commutivity (or bi-
directionality) (3) Monotony and (4) Declaritivity - hence a grammar can be summed up as
a mass of feature restrictions which can be added together to form an input, or checked, in

which only which restrictions are pertinent is expressed, not the order of their processing.

FUG and Generation The advantage of FUG, particularly for generation, is related to the
way that syntactic knowledge is coded. For the analysis of linguistic structures a hierarchical
tree structure method has proven itself to be suitable. In contrast, FUG allows the
formulation of a flatter structure of order restrictions. So a stronger stress of the functional
roles of the constituents can be represented, which is of great importance for generation. In
generation the key point of interest is the paradigmatic relationship between linguistic
objects, that is, the choice between alternatives and their influence on the choice of the
following elements. On the comprehension side, on the other hand, the syntagmatic
relation, that is, the restrictions regarding the combination of objects, is the key point of

interest.

Unification is frequently (at least in the way it is formulated in FUG for generation) realized
as a non-deterministic top-down/depth-first control flow. However, this means that
processing is far from efficient. To combat this problem, the formalism FUF [Elhadad, 1989],
which is used in the generation system COMET [McKeown et al., 1990], made it possible to
specify control information in the grammar. Thus, e.g. preferences can be specified for the
selection of alternatives or whether the features of an FD should be processed via a depth

or a width oriented strategy can be set.

Special Processing Aspects Strict top-down processing is not suitable for strongly lexicon
oriented linguistic theories like, for example, HPSG [Pollard and Sag, 1987]. In such
theories the majority of grammatical information is stored in the lexical entries. In contrast,

the rules are described by schemata in a very abstract manner. For example, the rules

4 A formal description of unification in constraint-based grammar formalisms can be found e.g. in [Shieber, 1986].

7

contain an abstraction from the verbs' special sub-categorization information, as the specific
information is entered by the respective verbs. In principle, a rule schemata of the form M
=>» HC* would be sufficient to produce verb-complement structures, for example (M is the
mother node, H the head and C* any, possibly empty set of complements. Let us also
presume that this schema does not express anything about the correct word order). If we
apply this schema to the verb lieben (to love) (which categorizes two nominal phrases), the
following rule instance could be achieved: S = V NP NP, in which S is interpreted as the

projection of V.

A top-down driven process would therefore have to begin with an unspecified sub-
categorization. [Shieber et al., 1991] demonstrate that termination problems are caused by
this and propose a bottom-up method as a solution. In this method the lexical entries
corresponding to the (semantic) input are set first. Primarily lexical access is carried out for
the semantic head (which is usually the predicate), so that their method can make
restrictive use of the structural information of the input. Then the semantic arguments of
this element are fixed via its grammatical structure and the whole process is continued

recursively on the found arguments.

Systemic Grammars

The main point of focus in the development of systemic grammars [Halliday, 1985;
Winograd, 1983] is the use of language in concrete communication systems, i.e. the
question of the social function of language. The central idea in systemic grammars is the
classification of linguistic utterances according to the function which they will have in
conversational situations, i.e. if the utterance is to be realized as an instruction or a
statement. A central target of systemic grammar scholars is to shape this kind of
classification as delicately and specifically as possible. In the process, the complexity of the
structure of natural languages is examined essentially according to the following three
dimensions (see also [Winograd, 1983]): (a) classification (e.g. sentence types, word
classes), (b) grouping (e.g. sequences of words as constituents), and (c) function (that is,

the functional relationship between elements).

It is precisely the stress on paradigmatic and functional relationships between linguistic
objects which makes systemic grammars particularly attractive to generation, as these
describe which linguistic means can be allocated to which communicative situations. Not the

form, but the function of linguistic objects, is in the foreground of the questions.

In a systemic grammar linguistic knowledge is represented by a network of related systems.

On the lowest level the more specific decisions have to be made (e.g. choice of words) and

8

on the higher levels the less specific ones (e.g. sentence type). A single system is
represented by a number of features and their possible values; conjunctive and disjunctive
links are possible. Fig. 3 shows an excerpt from the system for English pronouns

(conjunctive-linked decisions are represented by { and disjunctive ones by [).

For example, the pronoun I is selected on the basis of the information Personal Singular
First Subjective, she by Personal Singular Third Feminine Subjective and those by

Demonstrative Far Plural.

The generation of sentences in systemic grammars results in a series of functional decisions
which are carried out parallel along the various functional areas. With its systemic grammar
NIGEL, the system PENMAN is the most well known one to be built up on this theory
[Matthieson, 1985]. Here a very extensive English grammar has been developed. In NIGEL
a sentence is produced by a top/down driven traversal of the systemic networks. The values
of the individual features are determined by the environment. If, for example, the value of
the feature Modus is to be set (it is either imperative or indicative), then the semantic
representation is asked whether or not it is an order. For this purpose, selection predicates
are defined with each system; these carry out tests in the background program so as to be
able to determine the current values of a feature. The choice of the follow-up systems
depends upon the results of such questions and the current state of the system. This type of
feature setting is called 'inquiry semantics' and allows the grammar to communicate with
the background program's knowledge sources. In the system PENMAN world knowledge and
semantic representation are represented in a KL-ONE-based formalism. Inquiry semantics
serves as a mediator between grammar and knowledge representation. However, a
disadvantage of this system is that communication is realized in a strongly procedural

fashion and is hence dependant on a concrete application.

5 Animate
Question < Subjective
Objective
. Case Reflexive
o Possessive
First . .
o Possessive-Determiner
Personal = Person ‘ Second Feiii
LT Third _ Gender | pacc
Person | Singular —
| Plural Neut
D trative -
emonsirative Near
Far

Fig. 3: The English pronoun system (according to [Winnograd 83]).

Tree Adjoining Grammars

Tree Adjoining Grammars (TAGs) were first introduced by [Joshi et al., 1975] and have
been examined intensively both formally and linguistically since then. A series of TAG
variants was developed in which lexicalized TAGs [Abeille, 1988] and synchronized TAGs

[Shieber and Schabes, 1990] are especially relevant to generation.

In the original definition a TAG consists of a finite nhumber of elementary trees which are
subdivided into a number of initial and auxiliary trees. The number of elementary trees
constitutes the structural basis of a TAG. Initial trees represent minimal sentence
structures. The root of an initial tree describes the sentence symbol S and the leaf nodes
are described by terminal elements. All branch nodes describe non-terminal elements. The
left-hand diagram in fig. 4 graphically represents the structure of initial trees. In the case of
auxiliary trees, the root can describe any non-terminal symbol. With the exception of one
element x, all leaf nodes describe terminal nodes. x describes a non-terminal element of the

same category as the root (see the right hand diagram in fig. 4).

10

(1) o

terminals

Fig. 4: The structure of initial (1) and auxiliary (2) trees (according to [Joshi 87]).

In contrast to context free grammars (CFG), where rules can be represented as trees with a

depth of one, elementary trees represent a larger locality area than CFGs.

The central operation for constructing complex tree structures is adjunction. Via adjunction
a new tree y can be determined from an auxiliary tree B and tree a. Let abe a tree
containing the node x and (3 an auxiliary tree the root of which is described by x. Fig. 5 is a
graphic representation of how the new tree y can be derived from a via adjunction of the

auxiliary tree B and the node x (w; and v; being partial strings).

An advantage of adjunction is that it can be used to factorize the recursion of local
dependencies (as is the case with CFGs). It could be shown that TAGS are more expressive
than CFGs, as they can be used to describe languages which are not strongly context
sensitive [Weir, 1988].

A disadvantage of the original formalism was the extremely redundant formulation of partial
trees. For this reason [Abeille, 1988] introduced substitution as an additional operation
allowing partial trees in elementary trees to be replaced by corresponding non-terminals.

Hence non terminals marked by the substitution symbol ¥ are also accepted as leaf nodes.

11

Fig. 5: Adjunction in TAG.

The only difference between the extracted partial trees and the initial trees is that their root
node can describe any non-terminal. It could be shown that the addition of substitution
does not influence the formal features of TAGs, but that it leads to a more elegant
description of linguistic objects with less redundancies. Fig. 6 shows an example for a more
compact initial tree and an extracted partial tree. Substitution is an obligatory operation,

i.e. a derivative tree is only complete when all substitutions have been carried out.

Fig 6: Initial trees in lexicalized TAGs.

12

Relevance of TAGs to Generation TAGs were primarily developed to formulate syntactic
structures. They were already used in generation systems relatively early, namely in the
system MUMBLE-86 [McDonald and Pustejovsky, 1985]. [Joshi, 1987] pays particular
attention to the relevance of TAGs to generation. The combination of the following
characteristics of TAGs is of significance for generation (1) larger locality area than in
context free grammars, (2) the possibility to split dominance and linear sequences, (3) use

of unification, (4) suitable for incremental processing.

We will now briefly introduce two more recent works that model some of these aspects for

generation.

TAGs and Systemic Grammars The central idea of the approach described in [McCoy et
al., 1992] lies in the combination of systemic grammars and TAGs, in which the systemic
grammar serves as a means to describe the functional relationship between linguistic
objects and the TAG to describe the form of the objects. Additionally, the syntactic
structures are represented in the TAG formalism. Elementary syntactic trees are classified in
accordance with functional categories. The complete structure is described as a TAG
network. A systemic grammar is employed to determine the number of functional features
from an input structure, so that the relevant number of elementary trees can be determined
with this information by traversing the TAG network. The trees which have been selected in
this manner are then joined on grounds of their functional relationships. The above
mentioned steps really are integrated in the process. The starting point for an integrated
process is the head/modifier structure of the elementary trees. To represent these
relationships a lexicalized TAG is used in which predicates are lexicalized and their allocated
arguments represented by non-terminal elements (compare Fig. 6). In total, this results in a
recursive generation process of the systemic grammar and the TAG network which is

oriented on the head/modifier structure of the input.

Let, for example, the feature structure in Fig. 7 be the starting point for the generation
process (following [McCoy et al., 1992]). This information is the starting point for the
traversal of the systemic grammar. The target is (a) to determine the head/modifier
structure, (b) to extract the set of functional features which are needed for the traversal of
the TAG network. The first step involves the calculation of the head element (think in our
example) and under consideration of its structure the process is then continued recursively
over the arguments (you and hit). For each tree determined in this way the functional
information employed is recorded. The overall result is a structure of elementary trees
oriented on the functional information; in the final step these are all joined together to form

an overall structure in accordance with adjunction and substitution.

13

An essential advantage of the described approach is that the architecture allows functional
aspects of generation to blend elegantly with syntactic ones. Both aspects are represented
separately by specific formalisms, but their combination during the process is mutually

restrictive.

0§ —act wh— question [
k=it 1 .
[ense past O
Eproc think B
Chetor you O
S [proc hit

tl %ense past

%Uhen Chctee john

O 5, l@ype person

] ctor 177,

C B Mid quest

Fig. 7: Input for Who did you think hit John?

Incremental Generation with TAGs In [Harbusch et al., 1991] the TAG formalism is
employed for incremental generation. In general, incremental generation is regarded as a
prerequisite for the production of natural language. Based on numerous tests, incremental
generation is psychologically motivated, and a psychologically motivated incremental
generation system was first introduced by [DeSmedt and Kempen, 1987], although here
only the content realization was modeled exactly. [Reithinger, 1991] describes an
incremental system in which incremental processing on the level of content determination is
also realized. Reithinger does not, however, claim that his model is in any way

psychologically adequate.

In [Kempen, 1987] and [Neumann and Finkler, 1990] the following points are listed as
requirements for incremental content realization: (1) use of lexicon centered grammars, (2)
explicit separation of dominance and linear sequence, (3) the possibility of reformulation,
(4) local decision criteria, and (5) operations for insertion as well as top-down and bottom-

up expansion of syntactic structures.

In the incremental generation system introduced by [Harbush et al,. 1991], a lexicalized
LD/LP-UTAG is used, in which LD/LP stands for 'Local Dominance/Linear Precedence', and U
for unification. In this formalism elementary trees are interpreted as mobile ones, in which
the number of possible permutations is restricted by linear precedence rules (e.g. the rule

det < adj only allows pre-terminal sequences like det adj n or n det adj, but not a sequence

14

like adj det n). The unification in TAGs allows elementary trees to be annotated with feature
restrictions. Thus, semantic restrictions as well as details about congruence can be

associated with syntactically oriented trees.

The use of a lexicalized TAG is motivated by the fact that, at least in an incremental model,
the syntactic processing was supposed to be best lexically driven [Levelt, 1989]. It is
assumed that the content determining part sets a semantically oriented functor/argument
structure of the utterance to be generated as the input structure for the realization part.
Now appropriate lexical entries must be found for this structure by word selection. Each
individual entry is then the starting point for a search for its 'own' allocated elementary
trees. In the system by [Harbusch et al., 1991], lemmata and functional relationships
between them are expected as input for the realization using TAGs. Let us take the lexical
trees from Fig. 6 as an example for lexicalized trees; then Junge (boy) and /ief (ran) would
be possible lemmata, and agens(lief) = Junge a functional relationship. The individual trees
can be combined via the functional relationship, in which realization of further lemmata can
be inserted via adjuncts. Structures which have been combined in this way are linearized

and inflected in a further step.

What is exceptional about an incremental generation system is that partial structures are
available for verbalization before the complete structure has been calculated. To allow
spontaneous generation, an attempt is made to produce a locally complete syntactic
structure for this partial information (or segments), so that this can be inflected in the
following morphological component and uttered immediately. However, whether the
structures can really be uttered immediately depends upon when the lemmata arrive. Let us
presume that Junge arrives before lief in the above example. The problem with this
sequence is that Junge cannot be uttered spontaneously as the case information is
necessary for its inflexion, and that is determined by the verb. In principle, there are three
possibilities to approach the problem: (a) the use of default values [DeSmedt and Kempen,
1987], (b) to demand explicit information [Finkler and Neumann, 1989], or (c) to wait until
the verb is known [Harbusch et al., 1991]. The advantage of (a) is that spontaneous
generation is realized. A serious disadvantage is, however, that it is possible that a series of
corrections will be necessary during the remaining generation process, since the defaults
employed have to be revised by new information. In (b) this is avoided, but the
disadvantage here is that only a delayed spontaneous utterance is possible. The advantage
that (b) has over (c) is that in (b) there is no unnecessary waiting time as the missing

information is demanded immediately.

15

Which of the described approaches is to be chosen depends upon the modeling of the
segment sizes, so for example, if each individual adjective in a complex nominal phrase has

to be uttered before the noun is known or if the entire nominal phrase has to be uttered.

Short Summary Before we introduce the aspect of reversibility in the next part, a short
summary. Constraint-based formalisms (CG) and TAGs are partially suited to the
representation of syntactic knowledge, while in CGs the relation between syntax and
semantics is stressed additionally. In [McCoy et al., 1992] an approach is introduced
demonstrating how systemic grammars can be related to TAGs. An example of how
systemic grammars can be combined with CGs can be found in [Bateman et al., 1992]. It is
impossible to say which of the formalisms mentioned here is the most suited to generation.
Maybe a combination of these approaches, as described above, comes the closest to the

practical conditions. The aspect of reversibility may also provide further assessment criteria.

Reversibility

The idea of a reversible grammar, that is, the use of one and the same grammar for the
analysis and production of sentences has frequently been outlined as a goal worth achieving
(see [Neumann, 1994; Neumann 1998] for an overview). However, reversible grammars
have only been properly investigated in the last few years, almost exclusively in the domain
of Computational Linguistics. The starting point for the development of reversible grammars
is constraint-based formalisms. As these require a declarative formulation of grammatical
knowledge, they should, in principle, be able to be used bi-directionally. But it became
apparent relatively quickly that grammars or formalisms which have been used exclusively
in one direction up until now, cannot be employed in the other direction without problems.
We will use the Lexical Functional Grammar (LFG, [Bresnan, 1982]) to demonstrate this. In
LFG natural language sentences are described by a context free grammar (c-structure), the
categories of which are annotated by a number of equations. These define a diagram on a
functional level (f-structure) which explains the functor arguments. In the original derivation
concept it was assumed that the c-structure of a sentence has to be set before the f-
structure can be calculated by evaluating the functional equations. However, this process is
not adequate for generation as the generation was meant to begin with an f-structure, but a
direct relationship between the f-structure and the c-structure is not formulated. Therefore
the c-structure would have to be constructed before its f-structure can be compared with
the input. For these reasons LFG seemed to be better suited to parsing than to generation
[Block, 1987]. But in [Wedekind, 1988; Wedekind, 1991], Wedekind showed that a re-
wording of the derivation term is possible, so that parsing and generation can both be
carried out effectively without influencing any essential elements of the theory. The central

idea here is the simultaneous description of the c-structure and the f-structure. In this way,

16

whether the f-structure of the annotated equations cohere with the relevant description in
the input can be checked in each step of the derivation. This procedure requires a top/down

processing strategy.

Types of reversible systems Current work in the field of reversible grammars can be

roughly divided into three types.

Type A Compilation of specific parsing and generation grammars from one grammar

Type B Use of one grammar, but different processes

Type C Use of one grammar and one uniform process

In systems of Type A, the linguistic knowledge for parsing and generation is formulated in
one common grammar, which is compiled in a special parsing and generation grammar for
the run time of the system. The advantage of this method is that the source grammar of
each respective use can be tuned individually. A great disadvantage lies in the fact that
during the runtime the grammatical knowledge is redundant in the complete system.
Approaches which follow this method are, e.g. [Block, 1991] and [Dymetman et a/., 1990].

This disadvantage is avoided in systems of Type B, as parsing and generation operate on
the same grammar. A further advantage is that the grammar can be tested and altered

more easily. A disadvantage of this method is that the present processes are too inefficient.

Systems of Type C pursue the most radical approach to reversibility: not only is a common
grammar employed, but also the same fundamental process. One of the first uniform
architectures described in [Shieber, 1988] follows the paradigm 'Linguistic Processing as
Deduction', Shieber uses a variant of the Early algorithm as the communal fundamental
process. In [Emele an Zajac, 1990] a uniform architecture is introduced which is founded on
the paradigm 'Linguistic Processing as Type Inference'. The only processing strategy it uses
is complete type expansion via unification. The greatest disadvantage of both approaches is
that they are seriously inefficient. Therefore they are not presently suitable for realistic use
in NLG.

However, recently a series of suggestions has been made as to improving the efficiency of
the two latter types of reversible systems, including efficient indexing techniques for the
lexicon, or the use of delayed type expansion. [Uszkoreit, 1991] suggests the annotation of
control information in the form of preferences and feature structures. This control

information can be used to drive the sequence of conjuncts or disjuncts or to fade out

17

information. In principle, it would be possible to establish various preference systems for

parsing and generation so as to be able to formulate specific control aspects.

Integration of Parsing and Generation In most reversible approaches grammatical
processing is carried out independently of the discourse context of an utterance. In [Appelt,
1989] and [Neumann, 1991b] it is shown that a strict use of reversible grammars has a
considerable influence on the design of an NLG, in particular the problem of chosing
paraphrases is eradicated. In general it cannot be controlled if and to what extent the
generated surface string is ambiguous. For example, the sentence 'Lésche den Ordner mit
den Systemfiles' (delete the folder with the system files) is ambiguous, as it is unclear
whether the folder is to be deleted with the help of the system files, or if the folder
containing the system files is to be erased. Therefore NLG is faced with the risk of
misunderstandings due to double meanings. In [Neumann and van Noord, 1992], a method
for the solution of the problem is introduced which is based on a strict integration of parsing
and generation with the use of a reversible grammar.

This tight mesh makes it possible to use the parser to support generation and vice versa.
For example, parsing can be used during generation to pin-point relevant sources of
ambiguity which can then be solved in one step. In Neumann (1994, 1998) we present a
new model of natural language processing in which natural language parsing and generation
are strongly interleaved tasks. Interleaving of parsing and generation is important if we
assume that natural language understanding and production are not only performed in
isolation but also work together to obtain subsentential interactions in text revision or dialog
systems.

The core of the model is a new uniform agenda-driven chart algorithm, called UTA. Although
uniformly defined, UTA is able to configure itself dynamically for either parsing or
generation, because it is fully driven by the structure of the actual input - a string for
parsing and a semantic expression for generation. Efficient interleaving of parsing and
generation is obtained through item sharing between parsing and generation. This novel
processing strategy facilitates the automatic exchange of items (i.e., partial results)

computed in one direction to the other direction as well.

The advantage of UTA in combination with the item sharing method is that we are able to
extend the use of memorization techniques to the case of an interleaved approach. In order
to demonstrate UTA’s utility for developing high-level performance methods, we present a

new algorithm for incremental self~-monitoring during natural language production.

Final Comments

18

In this essay an overview of the current grammar formalisms has been given. Selected
examples were used to illustrate how systemic grammars (SGs), constraint-based

formalisms (CGs) and tree adjunct grammars (TAGs) can be used in generation.

This essay can, of course, only supply an insight into the aspect of content realization, in
particular such exciting themes as choice of words or the use of grammar formalisms in
machine translation could not be touched upon due to space restrictions. Nonetheless, I
hope to have demonstrated that 'Natural Language Generation Grammar Formalisms and
their Processing' is still a hot theme, especially when the aspect of reversibility comes into

the scene.

Literatur

[Abeille, 1988] A. Abeille. Parsing french with tree adjoining grammar: some linguistic
accounts. In Proceedings of the 12th International Conference on Computational Linguistics
(COLING), Budapest, 1988.

[Appelt, 1985] D. E. Appelt. Planning English Sentences. Cambridge University Press,
Cambridge, 1985.

[Appelt, 1989] D. E. Appelt. Bidirectional grammars and the design of natural language
generation systems. In Y. Wilks, editor, Theoretical Issues in Natural Language Processing
3, pages 206-212. Hillsdale, N.J.: Erlbaum, 1989.

[Bateman et al., 1992] J. A .Bateman, M. Emele, und S. Momma. The nondirectional
representation of systemic functional grammar and semantics as typed feature structure. In
Proceedings of the 14th International Conference on Computational Linguistics (COLING),
Nantes, 1992.

[Block, 1987] R. Block. Can a "parsing grammar' be used for natural language generation?
the negative example of LFG. In Proceedings of the first European Natural Language
Generation Workshop, Abbey de Royaumont, 1987.

[Block, 1991] H. U. Block. Compiling trace & unification grammar for parsing and
generation. In Proceedings of the ACL Workshop Reversible Grammars in Natural Language
Processing, Berkeley, 1991.

[Bresnan, 1982] J. Bresnan, editor. The Mental Representation of Grammatical Relations.
MIT Press, 1982.

[DeSmedt und Kempen, 1987] K. DeSmedt und G. Kempen. Incremental sentence
production, self--correction and coordination. In G. Kempen, editor, Natural Language
Generation, pages 365--376. Martinus Nijhoff, Dordrecht, 1987.

[Dymetman et al., 1990] M. Dymetman, P. Isabelle, und F. Perrault. A symmetrical
approach to parsing and generation. In Proceedings of the 13th International Conference on
Computational Linguistics (COLING), pages 90-96, Helsinki, 1990.

19

[Elhadad, 1989] M. Elhadad. Extended functional unification programmers. Technical Report
Technical Report No. cuc-420-89, Department of Computer Science, Columbia University,
1989.

[Emele und Zajac, 1990] M. C. Emele und R. Zajac. Typed unification grammars. In
Proceedings of the 13th International Conference on Computational Linguistics (COLING),
pages 293--298, Helsinki, 1990.

[Finkler und Neumann, 1989] W. Finkler und G. Neumann. Popel-how: A distributed parallel
model for incremental natural language production with feedback. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pages 1518-1523, Detroit,
1989.

[Gazdar et al., 1985] G. Gazdar, E. Klein, G. Pullum, und I. Sag. Generalized Phrase
Structure Grammar. Blackwell, 1985.

[Grosz et al., 1986] B. Grosz, K. Sparck Jones, und B. L. Webber, editors. Readings in
Natural Language Processing. Morgan Kaufmann, 1986.

[Halliday, 1985] M. A. K. Halliday. An Introduction to Functional Grammar. London: Edward
Arnold, 1985.

[Harbusch et al., 1991] K. Harbusch, W. Finkler, und A. Schauder. Incremental syntax
generation with tree adjoining grammars. Technical report, DFKI Saarbr”ucken, 1991.
RR-91-25.

[Hovy, 1987] E. H. Hovy. Generating Natural Language under Pragmatic Constraints. PhD
thesis, Yale University, 1987.

[Joshi et al., 1975] A.K. Joshi, L.S. Levy, und M. Takahashi. Tree adjunct grammars. Journal
Computer Systems Science, 10(1), 1975.

[Joshi, 1987] A. K. Joshi. The relevance of tree adjoining grammar to generation. In G.
Kempen, editor, Natural Language Generation, pages 233--252. Martinus Nijhoff,
Dordrecht, 1987.

[Kay, 1975] M. Kay. Syntactic processing and functional sentence perpective. In R. Schank
und B.L. Nash-Webber, editors, Theoretical Issues in Natural Language Processing, 1975.
[Kay, 1984] M. Kay. Functional unification grammar: A formalism for machine translation.
In Proceedings of the 10th International Conference on Computational Linguistics and the
22nd Annual Meeting of the Association for Computational Linguistics (COLING), pages 75--
78, Standford, 1984.

[Kempen, 1987] G. Kempen. A framework for incremental syntactic tree formation. In Tenth
IJCAI, pages 655--660, Mailand, 1987.

[Levelt, 1989] W. J. M. Levelt. Speaking: From Intention to Articulation. MIT Press,
Cambridge, Massachusetts, 1989.

[Matthiesen, 1985] C. Matthiesen. The systemic framework in text generation: Nigel. In J.
Benson und W. Greaves, editors, Systemic Perspectives on Discourse, volume 1. Ablex,
Norwood NJ, 1985.

20

[McCoy et al., 1992] K. F. McCoy, K. Vijay-Shnaker, und G. Yang. A functional approach to
generation with tag. In 30th Annual Meeting of the Association for Computational
Linguistics, Newark, Delaware, 1992.

[McDonald und Pustejovsky, 1985] D. D. McDonald und J. D. Pustejovsky. Description-
directed natural language generation. In Ninth IJCAI, pages 799-805, Los Angeles, 1985.
[McKeown et al., 1990] K. R. McKeown, M. Elhadad, Y. Fukomoto, J. Lim, C. Lombardi, J.
Robin, und F. Smadja. Natural language generation in comet. In Robert Dale, Chris Mellish,
und Michael Zock, editors, Current Research in Natural Language Generation, pages 103-
139. Academic Press, London, 1990.

[McKeown, 1985] K. R. McKeown. Text Generation: Using Discourse Strategies und Focus
Constraints to Generate Natural Language Text. Cambridge University Press, Cambridge,
1985.

[Meteer et al., 1987] M. W. Meteer, D. D. McDonald, S. D. Anderson, D. Forster, L. S. Gay,
A. K. Huettner, und P. Silbun. Mumble-86: Design and implementation. Technical Report
COINS Technical Report 87-87a, University of Massachusetts at Amherst, 1987.

[Neumann und Finkler, 1990] G. Neumann und W. Finkler. A head-driven approach to
incremental and parallel generation of syntactic structures. In Proceedings of the 13th
International Conference on Computational Linguistics (COLING), pages 288-293, Helsinki,
1990.

[Neumann und van Noord, 1992] Ginter Neumann und Gertjan van Noord. Self-monitoring
with reversible grammars. In Proceedings of the 14th International Conference on
Computational Linguistics (COLING), Nantes, 1992.

[Neumann, 1991a] G. Neumann. A bidirectional model for natural language processing. In
Fifth Conference of the European Chapter of the Association for Computational Linguistics,
pages 245-250, Berlin, 1991.

[Neumann, 1991b] G. Neumann. Reversibility and modularity in natural language
generation. In Proceedings of the ACL Workshop on Reversible Grammar in Natural
Language Processing, pages 31-39, Berkeley, 1991.

[Neumann, 1994] G. Neumann: A Uniform Computational Model for Natural Language
Parsing and Generation. PhD thesis, University of the Saarland, Saarbriicken, 1994.
[Neumann, 1998] G. Neumann: Interleaving Natural Language Parsing and Generation
Through Uniform Processing. Artificial Intelligence 99, (1998) pp. 121-163.

[Pereira und Warren, 1980] F. C.N. Pereira und D. Warren. Definite clause grammars for
language analysis - a survey of the formalism and a comparison with augmented transition
networks. Artificial Intelligence, 13, 1980. reprinted in [Grosz et al., 1986] .

[Pollard und Sag, 1987] C. Pollard und I. A. Sag. Information Based Syntax and Semantics,
Volume 1. Center for the Study of Language and Information Stanford, 1987.

21

[Reithinger, 1991] N. Reithinger. Popel: A parallel and incremental natural language
generation system. In C. L. Paris et al., editor, Natural Language Generation in Artificial
Intelligence and Computational Linguistics, pages 179-199. Kluwer, 1991.

[Shieber und Schabes, 1990] S. M. Shieber und Y. Schabes. Synchronous tree-adjoining
grammars. In Proceedings of the 13th International Conference on Computational
Linguistics (COLING), Helsinki, 1990.

[Shieber et al., 1983] S. M. Shieber, H. Uszkoreit, F. C.N. Pereira, J. Robinson, und M.
Tyson. The formalism and implementation of PATR-II. In B. J. Grosz und M. E. Stickel,
editors, Research on Interactive Acquisition and Use of Knowledge. SRI report, 1983.
[Shieber et al., 1991] S. M. Shieber, F. C. N. Pereira, G. van Noord, und R. C. Moore.
Semantic-head-driven generation. Computational Linguistics, 16:30-42, 1991.

[Shieber, 1986] S. M. Shieber. Introduction to Unification-Based Approaches to Grammar.
Center for the Study of Language and Information Stanford, 1986.

[Shieber, 1988] S. M. Shieber. A uniform architecture for parsing and generation. In
Proceedings of the 12th International Conference on Computational Linguistics (COLING),
Budapest, 1988.

[Uszkoreit, 1991] H. Uszkoreit. Strategies for adding control information to declarative
grammars. In 29th Annual Meeting of the Association for Computational Linguistics,
Berkeley, 1991.

[Wedekind, 1988] J. Wedekind. Generation as structure driven derivation. In Proceedings of
the 12th International Conference on Computational Linguistics (COLING), Budapest, 1988.
[Wedekind, 1991] J. Wedekind. Unifikationsgrammatiken und ihre logik. Technical report,
Arbeitspapiere des Sonderforschungsbereichs 340, 1991. Bericht Nr. 8.

[Weir, 1988] D. Weir. Characterizing mildly context-sensitive grammar formalisms. PhD
thesis, University of Pennsylvania, 1988.

[Winograd, 1983] T. Winograd. Language as a Cognitive Process. Reading, Mass.:
Addision-Wesley, 1983.

22

