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Abstract. With the adoption of electronic health record (EHR) sys-
tems, hospitals and clinical institutes have access to large amounts of
heterogeneous patient data. Such data consists of structured (insurance
details, billing data, lab results etc.) and unstructured (doctor notes,
admission and discharge details, medication steps etc.) documents, of
which, latter is of great significance to apply natural language processing
(NLP) techniques. In parallel, recent advancements in transfer learning
for NLP has pushed the state-of-the-art to new limits on many language
understanding tasks. Therefore, in this paper, we present team DFKI-
MLT’s participation at CLEF eHealth 2019 Task 1 of automatically
assigning ICD-10 codes to non-technical summaries (NTSs) of animal
experiments where we use various architectures in multi-label classifica-
tion setting and demonstrate the effectiveness of transfer learning with
pre-trained language representation model BERT (Bidirectional Encoder
Representations from Transformers) and its recent variant BioBERT. We
first translate task documents from German to English using automatic
translation system and then use BioBERT which achieves an F1-micro
of 73.02% on submitted run as evaluated by the challenge.

Keywords: Semantic Indexing, Transfer Learning, Multi-label Classifi-
cation, ICD-10 Codes

1 Introduction

EHR systems offer rich source of data that can be utilized to improve health
care systems by applying information extraction, representation learning and
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predictive modeling [32] techniques. Among many other applications, one such
task is the automatic assignment of International Statistical Classification of
Diseases (ICD) codes [27] to clinical notes, otherwise called semantic indexing of
clinical documents [9]. The problem is to learn a mapping from natural language
free-texts to medical concepts such that, given a new document, the system can
assign one or more codes to it. Approximating the mapping in this setting can
be seen as multi-label classification and is one way to solve the problem, besides
hierarchical classification [33], learning to rank and unsupervised methods.

In this study, we describe our work on CLEF eHealth 2019 [19] Task 1 [26],
which is about multilingual information extraction from German non-technical
summaries (NTSs) of animal experiments collected from AnimalTestInfo database
to classify according to ICD-10 codes, German modification version 2016 1. The
AnimalTestInfo database was developed in Germany to make the non-technical
summaries (NTSs) of animal research studies available in a searchable and easily
accessible web-based format. Each NTS was manually assigned an ICD-10 code
with the goal of advancing the integrity and reporting of responsible animal
research [5]. This task requires an automated approach to classify the NTSs,
whereby the data exhibits challenging attributes of multilingualism, domain
specificity and codes skewness with hierarchical structure.

We explore various models, starting with traditional bag-of-words support
vector machines (SVM) to standard deep learning architectures of convolutional
neural networks (CNN) and recurrent neural networks (RNN) with three types
of attention mechanisms; namely, hierarchical attention Gated Recurrent Unit
(GRU) [8], self-attention Long-Short Term Memory (LSTM) [14], and codes
attentive LSTM. Finally, we show the effectiveness of fine-tuning state-of-the-art
pre-trained BERT models [10,22], which requires minimal task specific changes
and works well for small datasets. However, the significant performance boost
comes from translating the German NTSs to English and then applying the same
models, yielding an absolute gain of 6.22% f-score on dev set, from best German
model to English model. This can be attributed to the fact that each language has
its own linguistic and cultural characteristics that may contain different signals
to effectively classify a specific class [1]. Given translated texts, we also find
that domain specific embeddings have more effect when considering static word
embeddings [25], giving an avg. gain of 2.77% over contextual embeddings [34],
where the gain is 0.86%.

2 Related Work

Automatic assignment of ICD codes [9] to health related documents has been
well studied, both in previous CLEF shared tasks and in general. Traditional
approaches range from rule based and dictionary look ups [6] to machine learn-
ing models [12]. However, more recently the focus has been on applying deep
learning.

1 https://www.dimdi.de/static/de/klassifikationen/icd/icd-10-gm/

kode-suche/htmlgm2016/
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Many techniques have been proposed using CNNs, RNNs and hybrid sys-
tems. [11] uses shallow CNN and improves its predictions for rare labels by
dictionary-based lexical matching. [4] addresses the challenges of long documents
and high cardinality of label space in MIMIC-III [17] by modifying Hierarchi-
cal Attention Network [39] with labels attention. More recent focus has been
on using sequence-to-sequence (seq2seq) [35] based encoder-decoder based ar-
chitectures. [31] first builds a multilingual death cause extraction model using
LSTMs encoder-decoder, with concatenated French, Hungarian and Italian fast-
Text emebddings as inputs and causes extracted from ICD-10 dictionaries as out-
puts. The output representations are then passed to an attention based biLSTM
classifier which predicts the codes. [15] uses character level CNN [41] encoders
for French and Italian, which are genealogically related languages and similar
on a character level, with a biRNN decoder. [16] enriches word embeddings with
language-specific Wikipedia and creates an ensemble model from a CNN classi-
fier and GRU encoder-decoder. Few other techniques have also been proposed
to use sequence-to-sequence framework and obtained good results [2, 24].

While successful, these approaches make an auto-regressive assumption on
output codes, which may hold true only when there is one distinct path from par-
ent to child code for a given document. However, in the ICD codes assignment,
a document can have multiple disjoint paths in a directed acyclic graph (DAG),
formed by concepts hierarchy [33]. Also, for a smaller dataset, the decoder may
suffer from low variance vocabulary and data sparsity issues. In [7], a novel
Hierarchical Multi-label Classification Network (HMCN) with feed-forward and
recurrent variations is proposed that jointly optimizes local and global loss func-
tions for discovering local hierarchical class-relationships in addition to global
information from the entire class hierarchy while penalizing hierarchical vio-
lations (a child node getting a higher score than parent). However, they only
consider tree based hierarchies where a node strictly has one parent.

Contextualized word embeddings, such as ELMo [29] and BERT [10], de-
rived from pre-trained bidirectional language models (biLMs) and trained on
large texts have shown to substantially improve performance on many NLP
tasks; question answering, entailment and sentiment classification, constituency
parsing, named entity recognition, and text classification. Such transfer learning
involves fine-tuning of these pre-trained models on a down-stream supervised
task to get good results with minimal effort. In this sense, they are simple, effi-
cient and performant. Motivated by this, and recent work of [22], we use BERT
models for this task and achieve better results than CNN and RNN based meth-
ods. We also show great improvements with translated English texts.

3 Data

The dataset contains 8,385 training documents (including dev set) and 407 test
documents, all in German. Each document has six text fields: document title,
uses (goals) of the experiment, possible harms caused to animals and comments
about replacement, reduction and refinement (in the scope of 3R principles).



ICD-10 Code
No. of documents

(train + dev)
II 1515

C00-C97 1479
IX 930
VI 799

C00-C75 732

Table 1: Top-5 most frequent codes

The documents are assigned one or more codes from ICD-10-GM (German
Modification version 2016) which exhibits a hierarchy forming a DAG [33], where
the highest-level nodes are called chapters and their direct child nodes are called
groups. The depth of most chapters is one but in some cases it goes to second-
level (e.g. M00-M25, T20-T32) and, in one case, up to third-level (C00-C97).
Documents are assigned mixed codes such that a parent and child node can co-
exists and a child node can have multiple parents. Moreover, 91 documents are
missing one or more of six text fields and only 6,472 have labels (5,820 in train
set and 652 in dev set), while 52 of them have only chapter level codes. Table
1 shows top-5 most frequent codes. These classes account for more than 90% of
the dataset leading to a high imbalance. Due to a shallow hierarchy, we consider
the problem as multi-label classification instead of hierarchical classification.

4 Methods

Since the documents are domain specific and in German, we argue that it might
be difficult for open-domain and multilingual pre-trained models to do effec-
tive transfer learning. Furthermore, [1] suggests that each language has its own
linguistic and cultural characteristics that may contain different signals to effec-
tively classify a specific class. Based on this, and the fact that translations are
always available as domain-free parallel corpora, we use them in our system and
show improvements across all models. Since English has readily more accessible
biomedical literature available as free texts, we use English translations for our
documents. To perform a thorough case study, we tested several models and
pre-trained embeddings. Below we describe each of them.

Baseline For baseline we use a TF-IDF weighted bag-of-words based linear SVM
model.

CNN Convolutional Neural Network (CNN) learns local features of input repre-
sentation through varying number and sizes of filters performing convolution op-
eration. They have been very successful in many text classification tasks [18,41].
While many advanced CNN architectures exist, we use a shallow model of [20].

Attention Models Attention is a mechanism that was initially proposed in
sequence-to-sequence based Neural Machine Translation (NMT) [3] to allow de-
coder to attend to encoder states while making predictions. More generally,
attention generates a probability distribution over features, allowing models to



Fig. 1: An example document tagged with codes E10-E14 (diabetes mellitus) and E65-E68
(obesity and other overeating) containing related words to codes descriptions.

put more weight on relevant features. In our study, we used three attention based
models.

HAN Hierarchical Attention Network (HAN) deals with the problem of long
documents classification by modeling attention at each hierarchical level of doc-
ument i.e. words and sentences [39]. This allows the model to first attend word
encoder outputs, in a sentence, followed by attending the sentence encoder out-
puts to classify a document. Like [39], we also use bidirectional Gated Recurrent
Units (GRUs) as word and sentence encoder.

SLSTM Self-Attention Long-Short Term Memory (SLSTM) network is a simple
single layer network based on bidirectional LSTMs encoder. An input sequence
is first passed through the encoder and encoded representations are self-attended
to produce outputs.

CLSTM All ICD codes have a textual description, e.g. code A80-A89 is about
viral infections of the central nervous system that can help a model while clas-
sifying. Fig. 1 shows a document containing words related to those found in the
descriptions of their labeled codes. Such words may or may not be present but
the intuition is to use this additional meta-data to enrich the encoder repre-
sentation by attention. To the best of our knowledge, this is the first time that
the codes’ descriptions are directly used to align with input text via attention.
The closest work is from [4], where author uses codes attention but they directly
consider code as a unit of representation creating an embedding lookup. We also
create an embedding layer for codes but using their texts where a code repre-
sentation is obtained via average of word embeddings of each token. We call this
network as Codes Attentive LSTM (CSLSTM) and describe it more formally.

Let X = {x1, x2, ..., xn} ∈ Rn×d be an n-length input document sequence,
where xi is a d-dimensional embedding vector for input word wi belonging to
documents vocabulary VD. Let T = {t1, t2, ..., tm} ∈ Rm×l be m-codes by l-
length titles representation matrix, where each ti = {ti1 , ti2 , ..., til} ∈ Rl×d and
tij is d-dimensional embedding vector for code i’s title word j, belonging to
titles vocabulary VT . The embedding matrices are different for documents and
codes titles, this is because the title words can be missing in documents vocab.



Similarly, we used different LSTM encoders for document and code words (shared
encoder under performed on dev set; not reported). The network then transforms
input as Xout = CLSTM(X,T ), with following operations:

Xenc = [x1enc , x2enc , ..., xnenc ]

xienc = LSTMW (xi)

Tenc = [t1enc , t2enc , ..., tmenc ]

tienc =
1

l

l∑
j=1

LSTMC(tij )

Xout = [Xenc;Tenc] ∈ R(n+m)×h

A = softmax(XoutX
T
out) ∈ R(n+m)×(n+m)

Xout = Xout +ATXout

Xout =
1

n

n∑
j=1

Xoutj

where, Xenc is a sequence of word encoder LSTMW outputs and Tenc is a se-
quence of averaged title words encoding by code encoder LSTMC . We concate-
nate document words sequence with titles sequence and perform self-attention
A, followed by residual connection and average over resulting sequence to get
final representation.

BERT Pre-training large models on unsupervised corpus with language mod-
eling objective and then fine-tuning the same model for a downstream super-
vised task eliminates the need of heavily engineered task-specific architectures
[10, 29, 30]. Bidirectional Encoder Representations from Transformers (BERT)
is a recently proposed such model, following ELMo and OpenAI GPT. BERT is a
multi-layer bidirectional Transformer (feed-forward multi-headed self-attention)
[37] encoder that is trained with two objectives, masked language modeling (pre-
dicting a missing word in a sentence from the context) and next sentence pre-
diction (predicting whether two sentences are consecutive sentences). BERT has
improved the state-of-the-art in many language understanding tasks and recent
works show that it sequentially model NLP pipeline, POS tagging, parsing, NER,
sematic roles and coreference [36]. Similar works [13,40] have been performed to
understand and interpret BERT’s learning capacity. We therefore use BERT in
our task and show that it achieves best results compared to other models and is
nearly agnostic to domain specific pre-training (BioBERT; [22]).

5 Experiments

5.1 Pre-processing

We consider each document as one text field i.e. all six fields are joined together
to form one input text. As mentioned in section 3, only 6,472 documents are



labeled, out of which 654 are in dev set form total of 840. Since there is no gold
standard for these documents we cannot evaluate them, so we ignored them
during training. We also abstained from adding an extra ”no” class (i.e. proxy
for predicting nothing) for such documents because we assume that all NTSs
should be indexed (e.g. like MEDLINE auto-indexing of new PubMed articles)
and therefore inherently has one or more true ICD-10 codes assigned to them.
However, the official evaluation script penalizes model predictions for such doc-
uments by considering them all false positives. We will cover this in detail in
results section.

To translate German documents to English we used automatic translation
from Google Translate API v22. For both, German and English, we use language
specific sentence and word tokenizer offered by NLTK [23] and spaCy3, respec-
tively. Tokens with document frequencies outside 5 and 60% of training corpus
were removed and only top-10000 tokens were kept to limit the vocabulary. This
applies to all models other than BERT, which uses WordPiece tokenizer [38] and
builds its own vocabulary. Lastly, we remove all the classes with frequency less
than 15. All the experiments were performed without any cross-validation on
dev set to find best parameters.

5.2 Pre-trained Embeddings

We use following pre-trained models for German:

• FTde: fastText DE Common Crawl (300d)4

• BERTde: BERT-Base, Multilingual Cased (768d)5

and following for English:

• FTen: fastText EN Common Crawl (300d)
• PubMeden: PubMed word2vec (400d)6

• BERTen: BERT-Base, Cased (768d)7

• BioBERTen: BioBERT (768d)8

2 https://cloud.google.com/translate/docs/translating-text
3 https://spacy.io/usage/models
4 https://fasttext.cc/docs/en/crawl-vectors.html
5 https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_

H-768_A-12.zip
6 https://archive.org/details/pubmed2018_w2v_400D.tar
7 https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_

A-12.zip
8 https://github.com/naver/biobert-pretrained/releases/tag/v1.

0-pubmed-pmc

https://cloud.google.com/translate/docs/translating-text
https://spacy.io/usage/models
https://fasttext.cc/docs/en/crawl-vectors.html
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://archive.org/details/pubmed2018_w2v_400D.tar
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://github.com/naver/biobert-pretrained/releases/tag/v1.0-pubmed-pmc
https://github.com/naver/biobert-pretrained/releases/tag/v1.0-pubmed-pmc


5.3 Models

TF-IDF + Linear SVM For baseline, we use scikit-learn implementation of
LinearSVC with one-vs-all training [28].

For all the models, except BERT, we used a batch size of 64, max sequence
length of 256, learning rate of 0.001 with Adam [21] and 50 epochs with early
stopping. We used binary cross-entropy for each class as our objective function
and F1-micro score as performance metrics. All the experiments were performed
on single 12 GB Nvidia TitanXp GPU. We implemented these models and our
code is publicly available.9

CNN We configured CNN with 64 channels and filter sizes of 3, 4 and 5.

HAN Following [39], we also used biGRU encoders but with hidden size of 300.
We set the maximum number of sentences in a documents and maximum num-
ber of words in a sentence as 40 and 10 respectively.

SLSTM A biLSTM encoder with hidden size of 300.

CLSTM Similar to SLSTM, but with additional T matrix of size total number
of titles (230, collected from ICD-10-GM) × max title sequence length of 10.

BERT We used PyTorch’s implementation of BERT10 with default parameters.
To avoid memory issues, we used maximum sequence length of 256 with batch
size 6.

Ensemble Based on dev set results, we also created an ensemble of top-2 models
as weighted combination of their raw scores, where then the prediction for each
example is given by:

ŷ = 1{σ(κ× S1 + (1− κ)× S2) > 0.5} ∈ {0, 1}|C|

S1, S2 are raw probability scores from first and second best model respectively,
while σ is sigmoid function and |C| is number of classes. We select best value of
κ on dev set such that the f1 score of ensemble is higher than individual models.
Fig. 2 shows κ variation with performance metrics.

5.4 Results

Table 2 summarizes the results on the dev set for all models with different pre-
trained embeddings. In all of our experiments, working with translated texts

9 https://github.com/suamin/multilabel-classification-bert-icd10
10 https://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/suamin/multilabel-classification-bert-icd10
https://github.com/huggingface/pytorch-pretrained-BERT


Fig. 2: The graph shows the effect of varying κ to create an ensemble of top-2 models which
achieves a score of 84%, higher than its component models, on dev set at κ=0.63. This value was

later used for test predictions.

(English) improved the score by an avg. of 4.07%. This can be attributed to the
fact that there is much more English texts than other languages, but it can also
be argued that English may have stronger linguistic signals to classify the classes
where German models make mistakes [1].

The baseline proved to be a strong one, with the highest precision of all
and outperforming HAN and CNN models, for both German and English, with
common crawl embeddings. HAN performs better when documents are relatively
long e.g. [4] reports strong results with HAN based models on MIMIC dataset
[17], where the average document size exceeds 1900 tokens. After pre-processing,
the averaged document length in our case was approximately 340. For CNN, we
believe advanced variants may perform better.

SLSTM and CLSTM, both being just one layer, performed comparably and
better than baseline. SLSTM is much simpler and relies purely on self-attention,
which also compliments higher scores by BERT models, which are stacked multi-
headed self-attention networks. For CLSTM, since many documents are missing
the title words (in fact many title words never appeared in corpus), the model
had weak alignment signals between documents and this additional meta-data.
However, it still performed really well, getting second best score with PubMed
embeddings.

BERT performed better than other models, both in German and English
with an avg. score of 6% points higher. BioBERTen performed slightly (+0.86%)
better than BERTen, this was also noticeable in Relation Extraction task in [22],
where domain specific and general BERT performed comparably. This partly
shows BERT’s ability to generalize and being robust to domain shifts (learning
from only 5k training docs), however, this contradicts the recent findings of
[40], where authors reflect on such issues, and catastrophic forgetting in BERT-
like models. On other hand, the effect of using in-domain pre-trained models
was more significant for static-embeddings; using pre-trained PubMeden vectors



Models P R F1

Baseline

TF-IDFde 90.72 58.73 71.30

TF-IDFen 90.69 65.45 76.03

CNN

FTde 86.08 57.37 68.85

FTen 85.76 61.59 71.69

PubMeden 87.95 65.10 74.82

HAN

FTde 78.86 58.79 67.37

FTen 83.52 64.50 72.79

PubMeden 85.10 69.61 76.58

SLSTM

FTde 85.55 64.86 73.76

FTen 87.53 67.65 76.32

PubMeden 87.33 70.09 77.77

CLSTM

FTde 83.60 63.97 72.48

FTen 84.39 69.14 76.01

PubMeden
† 87.87 70.21 78.05

BERT

Multide 70.96 83.41 76.68

BERTen 79.63 84.60 82.04

BioBERTen
‡ 80.35 85.61 82.90

Ensemble (†, ‡) 86.29 83.11 84.67

Table 2: Results on development set (where blue and red are best and worst score for each column
and overall best is boldfaced)

out-performed open-domain FTen by an avg. of 2.77%. Such analysis was not
performed for German due to lack of medical domain German vectors. BERT
models had highest recall but relatively poor precision. This is preferable in
real-world medical applications, where the recall is of much more importance.

We also combined our top-2 models, BioBERTen and CLSTSM-PubMeden,
to get an ensemble which performed better than both and got highest score of
84.67% on dev set. The intuition was to improve on BERT’s precision without
losing too much of recall. At κ = 0.63 we got the highest score. This increased
BioBERTen precision by 7.24% at loss of 2.5% recall. Since our focus was mainly
on single model systems therefore we used best single model for submission.

5.5 Submission and test scores

The test set contains 407 documents, which we first translate to English and then
run predictions with BioBERTen as our submitted model. We obtained a test f1-
micro of 73% with 86% recall and 64% precision as posted by official results. Our
system ranked second but the there was significant difference between test and
dev set performances, especially, low precision. After the gold set was released, we
probed it and realized that the official script provided by the challenge considers
all predictions on test examples for which there is no gold label (93 of them) as
false positives. We think that it is intrinsically impossible to compare examples



Models
Original Modified

P R F1 P R F1

Baseline

TF-IDFde 89.58 52.74 66.39 93.01 52.74 67.31

TF-IDFen 88.31 60.79 72.01 91.53 60.79 73.06

CNN

FTde 80.30 54.66 65.04 86.99 54.66 67.13

FTen 78.09 58.74 67.05 83.33 58.74 68.91

PubMeden 80.89 64.36 71.69 86.74 64.36 73.90

HAN

FTde 71.45 54.66 61.93 80.60 54.66 65.14

FTen 75.88 62.70 68.67 82.10 62.70 71.10

PubMeden 79.51 66.41 72.37 84.82 66.41 74.49

SLSTM

FTde 79.17 64.11 70.85 85.37 64.11 73.23

FTen 82.53 65.77 73.20 86.26 65.77 74.63

PubMeden 77.13 68.07 72.32 83.15 68.07 74.85

CLSTM

FTde 83.60 63.97 72.48 87.52 63.97 73.91

FTen 75.74 65.00 69.96 82.62 65.00 72.76

PubMeden
† 82.15 68.19 74.52 86.82 68.19 76.39

BERT

Multide 54.10 83.39 65.62 68.23 83.39 75.05

BERTen 62.09 83.26 71.11 75.20 83.26 79.03

BioBERTen
‡ 63.68 85.56 73.02 76.57 85.56 80.82

Ensemble (†, ‡) 74.44 81.86 77.98 83.13 81.86 82.49

Table 3: Results on test set (where blue and red are best and worst score for each column and
overall best is boldfaced). Original column refers to official evaluation setup and Modified refers

to the case where we ignore test documents without gold labels for evaluation.

with predictions where gold standard is not available. To emphasize, we give an
example, if we take test document with id=20486 where the gold labels are {C00-
C97, C76-C80, II} and our best model predicted {C00-C97, C76-C80, II} i.e. a
perfect match with maximum score. Given official evaluation, if this example did
not had gold standard available then our model predictions would all had been
considered as false positives, which severely degrades precision of a model which
may have generalized well to predict on future examples. Table 3 shows this
comparison on test set, where in ”Original” column we use the same evaluation as
provided by the task and in ”Modified” we remove all documents from evaluation
for which gold labels are not available. As can be seen, recall column is just the
same as original with only precision column changes which changes f1-score as
well. With the modification, all the models have similar performance as it was
on dev set, as we also evaluated trained and evaluated on dev set by removing
unlabeled examples. With modification, the submitted system achieves a test
score of 80.82% now compared to that of 82.90% on dev set. Finally, ensemble
model gets highest scores of 77.98% and 82.49% with original and modified
evaluation respectively.



6 Discussion

Biomedical text mining is generally a challenging field but recent progresses of
transfer learning in NLP can significantly reduce the engineering required to
come up with domain sensitive models. Unsupervised data is cheap, and can
be obtained in abundance to learn general language patterns [40], however, such
data may not be readily available when dealing with in-domain and low-resource
languages (e.g. Estonian medical documents). Such deficiencies encourage re-
search for better cross-lingual and cross-domain embedding alignment methods
that can transfered effectively.
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