What is a word, What is a sentence?
Problems of Tokenization

Gregory Grefenstette, Pasi Tapanainen
Rank Xerox Research Centre
Grenoble Laboratory
38240 Meylan, France

grefen@xerox. fr, tapanai@rerox. fr

Abstract

Any linguistic treatment of freely occurring text must provide an answer to what is
considered as a token. In artificial languages, the definition of what is considered as a token
can be precisely and unambiguously defined. Natural languages, on the other hand, display
such a rich variety that there are many ways to decide upon what will be considered as a
unit for a computational approach to text. Here we will discuss tokenization as a problem
for computational lexicography. Our discussion will cover the aspects of what is usually
considered preprocessing of text in order to prepare it for some automated treatment. We
present the roles of tokenization, methods of tokenizing, grammars for recognizing acronyms,
abbreviations, and regular expressions such as numbers and dates. We present the problems
encountered and discuss the effects of seemingly innocent choices.

1 Introduction

The linguistic exploitation of naturally occurring text can be seen as a progression of transfor-
mations of the original text. The original text is a sequence of characters. Before any syntactic
analysis of the corpus is performed, two transformations usually take place. Sentences must be
isolated since most grammars describe sentences. And, in order for sentences to be isolated,
words must be isolated from the original stream of characters. The isolation of word-like units
from a text is called tokenization. The results of this tokenization are two types of tokens:
one type corresponding to units whose character structure is recognizable, such as punctuation,
numbers, dates, etc.; the other type being units which will undergo a morphological analysis.

In linguistic textbooks tokenization is quickly dispatched as a relatively uninteresting pre-
processing step performed before linguistic analysis is undertaken. In reality, tokenization is a
non-trivial problem. Confronted with large corpora of raw text, the computational lexicographer
must come to grips with the transformations presented schematically in Figure 1 and make the
difficult choices, choices whose repercussions are sometimes only felt long after.

In this paper we will discuss the choices that must be made, how they can be made, when
they should be made and their possible effects on subsequent linguistic treatment.

Raw Corpus Text

!

Preprocessor

'

Tokenizer
Y

Morphological
Analyzer

!

Further Linguistic Analysis

Figure 1: Text Transformations Before Linguistic Analysis.

2 Preprocessing

We will consider throughout that we are dealing with a text in electronic form as a sequence of
characters, rather than a scanned image of text. Electronic text is readily available these days,
in increasing numbers, usually produced as a by-product of typesetting. Such text often contains
extra whitespace and a number of mark-ups that indicate font-changes, text subdivisions, special
characters, and a hundred other things. Although such indications carry meaning — they are
there to help the reader understand the text — they are usually filtered out from the text in a
preprocessing stage before any linguistic processing, or even before tokenization begins.

Since little normalization exists in typesetting codes, we will not discuss the matter further,
except to provide a method of eliminating SGML-type code from a running text!. Unix-based
workstations furnish a general-purpose character stream scanner called lex or flex. This scanner
permits the definition of actions to be taken when certain regular expressions are matched in
the input text. Figure 2 provides a simple lez program ? which deletes SGML markings from an

! A public domain SGML parser called SGMLSis available from the anonymous ftp site ifi.uio.no. (129.240.64.2)
in the directory /pub/SGML/SGMLS. This parser allows much finer handling of SGML codes.

2The notation for the regular grammars shown here are the following:

. matches any character except newline.

A matches the beginning of a line.

$ matches the end of a line.

\n matches the newline character.

[abc...] character class, matches any of the characters abc. ..

[Aabc...] negated character class, matches any character except abc...and newline.

r1|r2 alternation: matches either r1 or r2.

rlr2 concatenation: matches rl, and then r2.

r+ matches one or more r’s.

r* matches zero or more 1’s.

r? matches zero or one r’s.

(r) grouping: matches r.

/* Call this file StripSGML.lx, and then run:

flex -8 -CF StripSGML.lx; gcc -o StripSGML lex.yy.c -1fl -s

To pass this simple filter over a text file called toto, run:
StripSGML < toto */
Wk

"< [T \n<>]+>

. ECHO;

[\n] ECHO;

Wk

Figure 2: Flex program for filtering out SGML markings.

/* Call this file dehyphen.lx, and then run:
flex -8 -CF dehyphen.lx; gcc -o dehyphen lex.yy.c -1fl -s

To pass this simple filter over a text file called toto, run:
dehyphen < toto */
Wk
[a-z]-[\tI*\n[\t]* { printf("}c",yytext[0]); 2
Wk

Figure 3: Flex program for dehyphenating a text.

input file.

Not only do some things have to be filtered out of marked-up text, some things have to
rejoined. The most common case that appears in raw text is hyphenation at right margins.
Since this hyphenation is usually only circumstantial, related to the width of the page and not
to the meaning of the text, one might easily consider eliminating it from text files that employ
it. The short lez program of Figure 3 eliminates a trailing hyphen from a text and rejoins the
hyphenated word to its second half on the next line. The regular expression that the filter
recognizes is a lower-case letter, followed by a hyphen, then any number of tabs or spaces,
followed by a newline character and more spaces. Only the alphabetic character is retained and
printed out by the filter. All other characters in the file pass through unchanged.

Of course, introducing hyphenation into a text during typesetting can produce lines ending
in a hyphen not because the word was split there, but because a naturally occurring hyphen
happened by chance to appear where the word would be split. Suppose that the word small-town
was split at the end of line by the typesetting, then this filter would return the string smalltown
as one token. In order to test just how often this might happen in reality, we took the Brown
corpus (Irancis and Kucera, 1982), a corpus whose tokenization was hand corrected, and ran
it through a typesetting program (nroff) which introduced end-line hyphenations. The Brown
corpus contains about 1 million words. Typesetting the untokenized Brown corpus produces
101860 lines of formatted text, of which 12473 (12%) ended in a letter plus hyphen. Joining
these lines using the filter given in Figure 3, produced 11858 correct dehyphenations and 615

errors (4.9%), i.e. words which did not appear in the original text. Examples of erroneously
joined words are ring-aroundthe-rosie, rockcarved, rocketbombs, rockribbed, roleexperimentation,
rookie-of-theyear, satincovered, sciencefiction. This experiment gives a taste of the type of
choices that must be made during tokenization. Here, if one had access to a dictionary and
morphological package at this stage, one could test each of the 12473 cases by analyzing the
constituent parts and making more informed decisions, but such a mechanism is already rather
sophisticated, and its construction is rarely considered for such a preliminary stage of linguistic
treatment. One may consider the 615 errors (out of 1 million words) as so many unknown words
to be treated at some later stage, or just accept them as noise in the system.

3 Roles of Tokenization

Once the input text of the corpus is preprocessed, we have a string of characters corresponding to
what the linguistic processors will consider as the text. At one stage in this linguistic processing
the elements of the text will be considered as belonging to a certain syntactic class. For example,
the string dog will be considered as a SINGULAR-NOUN. In order for classes to be assigned to
strings, the original text, which can be considered as one long string, has to be divided into
units which will be recognized as members of a class. One traditional role of tokenization is the
recognition of these units.

The other traditional role of tokenization is the recognition of sentence boundaries, since
most linguistic analyzers consider the sentence as their unit of treatment. We will consider
this traditional view here, demonstrate how it can be implemented, and show its limitations in
handling certain ambiguous cases of word and sentence boundaries.

4 What is a word, What is a sentence?

Isolating word and sentence boundaries involves resolving the use of ambiguous punctuation.
The second role of tokenization is, then, the one which must be attacked first. Some structurally
recognizable tokens contain ambiguous punctuation, such as numbers, alphanumeric references
(e.g. T-1-AB.1.2), dates (e.g. 02/02/94), acronyms (e.g. AT&T), punctuation, and abbrevia-
tions (e.g. m.p.h.). Some of these classes can be recognized via regular expression grammars
which predict the structure of the tokens as will be illustrated below. Once these units are
recognized the only uses of separators are non-ambiguous, and they can thus be used surely to
delimit words and sentences.

Sentences end with punctuation. The exclamation point and the question mark are almost
always unambiguous examples of such punctuation. The semicolon is sometimes a separator
of list elements, and sometimes a sentence separator. But the most prevalent of ambiguous
separators is the period which is extremely ambiguous. It is not at all trivial to decide when it
is a full-stop, a part of an abbreviation, or both. In the Brown corpus, there are 52511 sentences
ended by a full stop (period or question mark) and 3569 (about 1 in 15) contain at least one
non-terminal period. If one were to consider every period as a full stop, then 93,20% of the
original 52511 sentences would be correctly recognized. In some cases, one might consider this
most simple of heuristics as sufficient. In the following sections, we will see how this sentence
recognition count can be improved by adding increasing levels of linguistic sophistication.

4.1 Ambiguous Separators in Numbers

Numbers are the least ambiguous of the structural types. Still, the structure of numbers are
language specific constructions, for example the English number “123,456.78” will be written as
“123 456,78” in French newspaper text.

A regular expression which recognizes the English version of numbers is

([0-91+[,1)*[0-9]1([.1[0-9]1+)7
while a regular expression accepting the French version is
([0-91+[1)*[0-91([,]1[0-9]+)

These expressions would overgenerate strings, outside the class of numbers, but used as recog-
nizers they are sufficient. One rarely sees strings such as “12,45.678” in ordinary text, and even
if one did one would probably want it considered as a number.

The table below gives some regular expressions for English numbers, dollar values and date-
like constructions that can be incorporated into a tokenizer. Recognizing these strings eliminates
some of the ambiguity of the comma and the period, since these characters are comprised in the
token and are thus no longer considered as separators.

[0-91+(\/[0-9]+)+ Fractions, Dates
([+\-1)7[0-9]1+(\.)?[0-9] %% Percent
([0-9]+,?2)+(\.[0-9]+]| [0-9]+)* Decimal Numbers (e.g. 1,234.56)

Once we recognize numbers using the above expressions, not considering their included pe-
riods as full stops, only 3340 sentences are now incorrectly recognized, adding 229 sentences to
the count of correct Brown sentences, still using the simple heuristic “remaining period equals
full stop.” This improves sentence recognition from 93.20% to 93.64%.

4.2 Abbreviations

Besides numbers, the other, most important, class of tokens incorporating the period as an
element is the class of abbreviations. Lists of abbreviations can be long and, like lists of proper
names, incomplete, since creation of abbreviations is a productive process. Let’s consider now
that we have no such lists, and see how far we can get using regular expressions to recognize
abbreviations, so that their periods will not be considered as full stops. Let’s consider first that
any period not followed by a blank is not a full stop. Using the number recognizers given above,
and this added heuristic adds 73 more correctly recognized sentences, so that now 49244 of the
original 52511 sentences are now correctly recognized, raising the percentage to 93.78%.

4.2.1 Experiment: No lexicon

We want to do better than this, of course. We can find a better approach by analyzing the
structure of abbreviations. Let us consider three classes of abbreviations: A single capital
followed by a period, such as A., B., C.; A sequence of letter—period—letter—period’s, such as
U.S., i.e., m.p.h; and a capital letter followed by a sequence of consonants followed by a period,
such as Mr., St., Assn.

If we insert blanks around parentheses, commas, colons, and questions marks, then 4037 such
sequences are found in the Brown corpus. If we automatically consider each of these sequences as
non-sentence-ending abbreviations and not as an unabbreviated word followed by a final stop, we
will be right 3835 out of 4037 times. The details are given in the table below. For example, the
third class of regular-expression defined abbreviations (a word beginning in uppercase without
any following vowels, such as “Mr.”) matches actual abbreviations 1938 times, commits 44 errors
recognizing strings as abbreviations that should not be (for example, “Ash.”), and recognizes a
real abbreviation 26 times that is also a sentence terminator. In this case, the sentence ending
period is absorbed in the abbreviation-ending period (Nunberg, 1990).

regular expression Correct Errors Full Stop
[A-Za-z]\. 1327 52 14
[A-Za-z]\. ([A-Za-z0-9]\.)+ 570 0 66
[A-Z] [bcdfghj-np-tvxz]+\. 1938 44 26
Totals 3835 96 106

This means that, without consulting a lexicon, but only by using the structure of the words we
will correctly recognize 3935 of the non-numeric token-ending periods as part of an abbreviation
(out of 4951 (330 unique) true Brown abbreviations). We will introduce 96 errors by recognizing
true full stops as false abbreviations, and and another 106 by correctly recognizing abbreviations
but not realizing that they should also be full stops. The number of original Brown sentences that
will be correctly recognized using the number recognizers above and this abbreviation recognition
scheme is now 51282, or 97.66%. 825 sentences still contain some type of abbreviation not
recognized by the above expressions, and 404 sentences will have been incorrectly joined since
the final stop is not recognized as such in 202 cases.

The abbreviations in Brown that do not match the above regular expressions are the follow-
ing, listed in order of decreasing frequency:

Month-Names Sen. Gen. Rev. Gov. U.S.-State-Abbreviations fig. Rep. Ave. Corp.
figs. Figs. 24-hr. Ibs. Capt. yrs. dia. Stat. Ref. Prof. Atty. 6-hr. sec. eqn. chap.
Messrs. Dist. Dept. ex-Mrs. Vol. Tech. Supt. Rte. Reps. Prop. Mmes. 8-oz.
viz. var. seq. prop. pro-U.N.F.P. nos. mos. min. mil. mEq. ex-Gov. eqns. dept.
Yok. USN. Ter. Shak. Sha. Sens. SS. Ry. Rul. Presbyterian-St. P.-T.A. Msec.
McN. Maj. Lond. Jas. Grev. Gre. Cir. Cal. Brig. Aubr. 42-degrees-F. 400-1b.
400-ke. 36-in. 3-hp. 3-by-6-ft. 29-Oct. 27-in. 25-ft. 24-in. 160-ml. 15,500-1b. 12-oz.
100-million-1b. 10-yr. 1.0-mg. 0.5-mv./m. 0.1-mv./m. 0.080-in. 0.025-in.

4.2.2 Experiment: No lexicon, Corpus filter

In order to reduce this list of non-recognized abbreviations without referencing a lexicon, you can
use the corpus itself as a filter for identifying abbreviations. Let us define as a likely abbreviation
any string of letters terminated by a period and followed by either a comma or semi-colon, a
question mark, a lower-case letter, or a number, or followed by a word beginning with a capital
letter and ending in a period.

Using this definition of likely abbreviations matches 239 of the 330 unique abbreviations in
the Brown corpus, but introduces a large number of false positives such as

based become behavior better board box break bull’s-eye ...

which are words that happen to end sentences that are followed by another sentence beginning
with a number.

We can apply the corpus itself as a filter by eliminating from the list of likely abbreviations
those strings that appear without terminal periods in the corpus. This drastically reduces
the collection of likely abbreviations to 231, but still misrecognizes strings such as “furlongs,”
“light-hearted,” and “rev’rend” as abbreviations.

Likely Abbreviation Total Correct Incorrect
(unique) (unique) (unique)

[A-Za-z] [* 1*\.([,?;] [a-z0-9]) 947 239 718

not appearing without period 231 197 34

We can apply the corpus itself as a filter by eliminating from the list of likely abbreviations
those strings that appear without terminal periods in the corpus. This drastically reduces
the collection of likely abbreviations to 231, but still misrecognizes strings such as “furlongs,”
“light-hearted,” and “rev’rend” as abbreviations.

Likely Abbreviation Total Correct Incorrect
(unique) (unique) (unique)

[A-Za-z] [* 1*\.([,?;] [a-z0-9]) 947 239 718

not appearing without period 231 197 34

When we use the corpus as a filter for accepting the 231 candidates as likely abbreviations
and accepting all structures with internal periods (i. e., not ending in a period) or ending in
a period and of the form “[A-Z]”" or “[A—Za—z]([A—Za—zO—Q])j—l—” as non-terminal abbreviations,
then 337 sentences are incorrectly divided. Another 266 sentence ends are incorrectly identified
as sentence internal abbreviations, mistakenly joining 532 sentences, meaning that 51642 of the
52511 original Brown sentences are now correctly recognized. This gives us a 98.35% recognition
rate, after using the corpus as a filter but without any lexical access.

The abbreviations which are still uncaptured by this technique are the following

No. Sept. Rev. Jan. fig. Mass. Corp. no. Pa. La. 24-hr. cf. Tex. Mt. Miss. in.
Wash. Hon. 6-hr. eqn. chap. a. Ore. Mar. sp. oz. hp. ex-Mrs. Tech. Supt. Mmes.
Minn. Eq. Ed. Colo. 8-0z. u. seq. prop. nos. mos. min. mil. fed. ex-Gov. eqns.
ed. al. Yok. Vs. Tenn. Sha. Sens. SS. Presbyterian-St. Pfc. OK. McN. Maj. Kas.
Eng. Del. Cmdr. Cal. App. 42-degrees-F. 400-1b. 400-kc. 36-in. 3-hp. 3-by-6-ft.
29-Oct. 27-in. 25-ft. 24-in. 160-ml. 15,500-1b. 12-0z. 100-million-1b. 10-yr. 1.0-mg.
0.5-mv./m. 0.1-mv./m. 0.080-in. 0.025-in.

4.2.3 Experiment: lexicon without abbreviations

The observations above suppose that the abbreviation recognition process has no access to a
lexicon. Let us examine what can be gained by using a lexicon to look up the litigious cases.
Suppose now that, instead of trying to solve all the ambiguities during this tokenization phase,
tokenization is reduced to number recognition and splitting words on spaces and unambiguous

separators. Then every word ending a sentence as well as real abbreviations ending with the
period will be sent to the morphological analyzer with a trailing period. It will then be the role
of the morphological analyzer to decide if the trailing period should be isolated as a separate,
sentence-ending, character. Under this supposition, the Brown corpus produces 52430 letter-
initial tokens ending in a period that must be sorted. Suppose that we have a complete lexicon,
containing at least all the words in the Brown corpus, except abbreviations and proper names.
Can we discover abbreviations using this method?
Consider this ordered filter on all strings terminated by a period:

1. if it is followed by a lower-case letter, comma or semi-colon, it becomes a known abbrevi-
ation;

2. if it is a lower case string, not a known abbreviation, and exists as a word in the lexicon
without a final period, it is not an abbreviation, otherwise it is an abbreviation;

3. if it begins with an upper case letter, is not a known abbreviation, and appears elsewhere
in the corpus without a trailing period, or only appears once or twice in the corpus, it is
not an abbreviation (probably a proper name);

4. otherwise, it is an abbreviation.

The list of known abbreviations defined under (1) contains 183 unique upper and lower-
case abbreviations (occurring a total of 1003 times in Brown). A sample of such such known
abbreviations, given in order of decreasing frequency, follows:

U.S. Jr. Mr. U.N.i.e. Co. p.m. e.g. S. a.m. etc. Inc. St. D.C. B.C. A.L.A.M. vs.
Calif. Ib. cm. ...

The list derived from (2) captures most of the cases in the corpus. There are 42865 lowercase
initial strings appearing with a final period. 458 of these instances correspond to known abbre-
viations, and 42344 others correspond to words without final periods appearing in the lexicon.
In some instances these words are really abbreviations. This happens when some string appears
as both as an entire word and in an abbreviation, such as “fig” also appearing as “fig.”
“figure.” If we consider all these 42344 cases as sentence-ending non abbreviated words, then
we misrecognize 29 sentences which contain

for

chap. fed. fig. no. nos. u.

since these words are not considered as sentence-internal abbreviations (which the really in these
sentences) but as full stops.
63 other instances (19 words) are recognized by step (2) as abbreviations:

ca. cf. ed. eqn. eqns. ex-Gov. ex-Mrs. figs. hp. mil. min. mos. oz. pp. r.p.m. seq.
Sp. V. yTs.

By the time we reach step (3), we have decided in 46474 of the 52430 period-terminated
string cases. Step (3) has to decided the case of the remaining 6056 uppercase initial possible
abbreviations. Step (3) finds that 4628 of the remaining 6056 cases correspond to uppercase
initial words somewhere else in the corpus without a final period; and of the remaining 1428,
583 appear only once or twice, so they are not considered abbreviations, either. This heuristic
incorrectly identifies all occurrences of the following strings as sentence-ending non abbreviations
since they appear elsewhere without a period:

App. Cal. Del. E. Ed. G. Jan. L. Mar. No. P. Rev. 55. Sept. Tech. V. W.
or only one or two times in the corpus:

Aubr. Brig. Cf. Cmdr. D.J. D.W. E.O. E.T. Eng. Eq. F.5.C. H.L.. H.M. H.P.R.
H.W. LLL. J.D.H. J.H. Jas. K.G. K.J.P. Kas. Maj. McN. Mfg. Mmes. N.A. N.D.
N.L. P.L.. P.S5. P.m. Pfc. Presbyterian-St. Pt. R.H. R.L. Reps. Rte. Rul. Ry. S.S.
Sens. Sha. Spec. Supt. T.W. U.5.C. U.s. Vol. Vs. W.G. W.H. W.M. W.R. Wm.
Yok.

Step (4) identifies all the remaining candidates as abbreviations:

Atty. Aug. Capt. Ch. Christendom. Col. Dec. Feb. Fig. Figs. H.M.S. Hon. Lt.
Martinez. Mrs. Mt. Nov. Oct. Op. Pp. Prof. Ref. Rep. Schaack. Sec. Sen. Stat.

Combining the abbreviations recognized by all four steps, only 205 sentences are erroneously
split because they contain as yet unrecognized abbreviations, but 351 sentences end in strings
thought to be sentence internal abbreviations. So we will incorrectly join 702 sentences. In
other words, the above method of using a lexicon without abbreviations and the corpus as a
filter to tokenize recognizes 51604 sentences out of 52511 original Brown sentences, or 98.27%.
This slight degradation comes from the fact that “in.” is recognized as a known abbreviation by
Step (1), and so the 79 sentences ending in “in.” are incorrectly joined to the sentence following
them.

4.2.4 Experiment: lexicon with some abbreviations

Consider now a lexicon that has not only all the lower-case words in the corpus, but also contains
frequent abbreviations, here meaning titles (“Mr.”, “Mrs.”, “Dr.”, “Sen.”), month name abbrevi-
ations (“Jan.”, “Feb.”, “Mar.”), U. S. state abbreviations (“Ala.”, “Calif.”, “Penna.”) and some
common abbreviations (“etc.”, “fig.”, “no.”, “Co.”, “Ltd.”, “Corp.”) but not abbreviations like
(“in.”).

Now we can implement the following procedure, given a sequence of letters terminated by a
period: 1)if it is followed by a lower-case letter, comma or semi-colon, then it is an abbreviation;
2) if it exists as an abbreviation in the lexicon, consider it as such; 3) otherwise, consider the
word as a sentence terminator. Using the following list as a list of abbreviations in the lexicon
provides us with only 74 sentences contain unrecognized non-terminal abbreviations candidates
in the Brown Corpus. And we still have the original 207 sentences which end in an abbreviation
that cannot be recognized correctly by any of the above techniques, giving a success rate of
52023 correctly recognized sentence boundaries out of 52511, or 99.07%.

The abbreviations recognized here are:

Strings containing internal periods, Single-Letters, State-Names, Titles, and the fol-
lowing: Assn. Av. Ave. Bldg. Blvd. Cf. Co. Corp. Ct. Dept. Dist. Eq. Fig. Figs.
Inc. Jas. Jr. Ltd. Mfg. Msec. Mt. Mts. No. Op. Rd. Rte. Sr. St. Stat. Tech.
USN. Vol. Vs. Yo. a. al. ca. cc. cf. ecm. cu. dia. ed. eqn. eqns. etc. fig. figs. ft.
gm. hp. hr. ke. 1. lb. Ibs. mEq. mc. mg. mil. min. ml. mm. mos. nw. oz. p. pl.
pp- prop. sec. sq. v. var. viz. vs. yd. yrs.

4.2.5 Related work on sentence boundary recognition

Palmer and Hearst (1994) have recently produced a technical report® describing an approach
to sentence boundary that uses a neural net applied to morphologically tagged text to decide
the case of terminal periods. They achieved a 98.5% success rate following only one minute of
neural net training. Since they do not use capitalization clues, this technique might be applied
to languages such as German, or to all-upper case text. In this technical report, they mention
other work applied to solving this problem using regression analysis based on the individual
probabilities of words appearing before punctuation(Riley, 1989), and rules based on the lexical
endings of words surrounding punctuation (Mller et al., 1980).

4.3 Morphologically Analyzed Words

A major question that must be answered by the designer of the tokenizer is whether there exists
a one-to-one correspondence between a token and a set of classes, or can a token correspond
to a sequence of classes. For example, in the Brown corpus the word governor’s is considered
as one token and is tagged as a possessive noun. In the Susanne corpus? the same string is
divided into two tokens governor and ’s each possessing its own tag. In this case, the choice
between one or two tokens seems of little importance since one would suspect that subsequent
linguistic treatment would rebuild a possessive structure corresponding to that produced by one
token anyway. Of greater significance is the division of ’s in the case of strings such as it’s, he’s,
that’s, there’s, who’s, she’s and with the other English contractions. If the strings are retained
as one token, then the linguistic analyzer must handle the case where a single token corresponds
to a sequence of tags.

The same questions must be answered for other languages. In French it must be decided
whether [addition, m’appelle, donne-le, va-t-il, c’est--dire, presqu’le, tape--l’oeil, d’abord, ...
are to be retained as one token, or divided into many. Omne problem with this choice is that
there are arguments to make it either way: in order to make generalizations about grammar, it
would be good to break out [’ as a separate article but this introduces some ambiguity during
tagging since it could also be a preverbal pronoun. A word like rendez-vous has possible readings
as one or two tokens if the hyphen can separate words. In one case it is the noun rendez-vous and
in the other it can be the imperative form of the reflexive verb rendre or the interrogative form
of this verb with an inverted subject. Once the choice is made the linguistic component can take
it into account, but different systems will make different choices which in turn makes comparing
results or sharing tokenized text between researchers difficult. For example, available statistical
tagging programs which choose parts of speech for words using their immediate context (Brill,
1992) cannot treat the case where a surface form might correspond to one or two tokens.

5 Conclusion

As we have seen, the problem of preparing raw text for a linguistic treatment raises many
problems. In order to maintain as much flexibility as possible, the tokenization process should
be considered as a series of modular filters through which text can be selectively passed. We

3This technical report can be retrieved by anonymous ftp at tr-ftp.CS.Berkeley. EDU. It is in the subdirectory
/pub/cs/tech-report/cds-94-797, in postscript format.
* Available via anonymous ftp at 129.67.1.165 in the directory ota/susanne.

10

have seen here that the original text file undergoes preprocessing that eliminates some markings
and rejoins hyphenated words. The tokenization proper begins. One of the main purposes of
tokenization is to recognize sentence and word boundaries so that lexical look-up can proceed.
Certain character ambiguities can be resolved be analyzing the structure of the the input strings,
in order to produce a first pass at tokenization.

Once this pass is produced, one can consider other treatments of the tokenized text before
lexical lookup is performed. For example, one might consider at this point rejoining parts of a
proper name separated by blanks. This can be justified as a role of the tokenizer if the space
is considered as an ambiguous separator which can be disambiguated by contextual clues. In
English these contextual clues are uppercase letters appearing after the first word in the sentence.

Though rarely discussed, and quickly dismissed, tokenization in an automated text processing
system poses a number of thorny questions, few of which have any perfect answers.

References

Brill, E. (1992). A simple Rule-Based part of speech tagger. In Proceedings of the Third
conference on Applied Natural Language Processing, Trento, Italy. ACL.

Francis, W. N. and Kucera, H. (1982). Frequency Analysis of Fnglish. Houghton Mifflin Com-
pany, Boston.

Mller, H., Amerl, V., and Natalis, G. (1980). Worterkennungsverfahren als Grundlage einer
Universalmethode zur automatischen Segmentierung von Texten in Stze. Ein Verfahren zur
maschinellen Satzgrenzendestimmung im Englischen. Sprache und Datenverarbeitung, 1.

Nunberg, G. (1990). The Linguistics of Punctuation. C.S.L.I. Lecture Notes, Number 19. Center
for the Study of Language and Information, Stanford, CA.

Palmer, D. D. and Hearst, M. A. (1994). Adaptive sentence boundary disambigation. Technical
Report UCB/CSD 94/797, University of California, Berkeley, Computer Science Division.

Riley, M. D. (1989). Some applications of tree-based modelling to speech and language indexing.
In Proceedings of the DARPA Speech and Natural Language Workshop, pages 339-352.
Morgan Kaufmann.

11

