
CriSGen: Constraint-based Generation of
Critical Scenarios for Autonomous Vehicles

Andreas Nonnengart, Matthias Klusch, and Christian Müller

German Research Center for Artificial Intelligence, Saarbrücken, Germany
{firstname.lastname}@dfki.de

Abstract. Ensuring pedestrian-safety is paramount to the acceptance
and success of autonomous cars. The scenario-based training and testing
of such self-driving vehicles in virtual driving simulation environments
has increasingly gained attention in the past years. A key challenge is the
automated generation of critical traffic scenarios which usually are rare
in real-world traffic, while computing and testing all possible scenarios is
infeasible in practice. In this paper, we present a formal method-based
approach CriSGen for an automated and complete generation of critical
traffic scenarios for virtual training of self-driving cars. These scenarios
are determined as close variants of given but uncritical and formally ab-
stracted scenarios via reasoning on their non-linear arithmetic constraint
formulas, such that the original maneuver of the self-driving car in them
will not be pedestrian-safe anymore, enforcing it to further adapt the
behavior during training.

Keywords: Autonomous Driving · Formal Methods · Critical Scenarios.

1 Introduction

Scenario-based training and testing of autonomous vehicles in driving simula-
tors gained quite some attention recently. In fact, synthesizing critical traffic
scenarios in order to virtually train self-driving cars to perform pedestrian-safe
navigation is the only way for ethical reasons alone. Such scenarios are usu-
ally rare in real-world traffic and computing all possible scenarios for extracting
unsafe ones is infeasible in practice. This challenge is addressed by various ap-
proaches to automated traffic scenario generation based on formal methods [1,
8, 4, 13] or evolutionary and deep learning methods [19, 14]. However, none of
these generation approaches take known safe maneuvers of the self-driving car
in given scenarios into account in order to determine critical traffic scenarios.

To this end, we developed a novel formal method-based approach CriSGen
for an automated, complete generation of critical traffic scenarios for virtual
training of self-driving cars. Critical scenarios are determined as close variants
of given but uncritical maneuver and scenario abstraction via formal reasoning
on non-linear arithmetic constraint formulas with free parameters, such that
the original maneuver of the self-driving car in them will not be pedestrian-safe
anymore.

The remainder of the paper is structured as follows. A brief overview of the
approach is given in Section 2, while its formal analysis techniques are described
in more detail in Section 3. An illustrative example is provided in Section 4, and
related work is summarized in Section 5 before we conclude in Section 6.

2 CriSGen Overview

The overall approach of CriSGen is illustrated in Figure 1. An autonomous
car operates in a virtual driving simulation environment such as OpenDS [5]
and utilizes some learning technique for pedestrian-safe maneuver training. In
each simulated traffic scenario, the adaptive car control determines its maneuver
actions in terms of acceleration and steering, and is supposed to update its ac-
tion policy based on feedback from the simulation environment such as whether
it nearly misses or even hits a pedestrian. The automated generation of criti-

Fig. 1. Schematic procedure of the synthesis approach

cal traffic scenarios by CriSGen can be triggered at any time, in particular in
cases where the self-driving car appears to behave pedestrian-safe for some time
period. The CriSGen process starts with transforming both the car maneuver
action in the considered (uncritical) traffic scenario into a formal model and the
scenario itself into a formal abstraction by replacing some of its concrete values
with free parameters such that it represents a whole range of variants of the orig-
inal scenario. These formal models together with a suitable unsafe-property (cf.
Sect. 3.1) are then automatically analyzed (cf. Sect. 3.2) to obtain a non-linear
arithmetic constraint formula which reflects all those scenario variants that must
be considered critical for the given maneuver of the car. Geometrically, what we
obtain this way is a collection of regions in n-dimensional space (where n is

the number of free parameters) such that each point in any of these regions
represents a valuation of the parameters that makes the maneuver unsafe. The
original scenario is represented as a single point in this n-dimensional space and
lies outside any of the unsafe regions. CriSGen then selects points in the unsafe
regions that are possibly close, means geometrically near to the original scenario
(cf. Sect. 3.3). In other words, we translate and compose the abstracted sce-
nario together with the original maneuver into some sort of hybrid automaton.
A forward reachability analysis with respect to some suitable unsafety property
(“hitting pedestrians”) ends up in a constraint formula whose solutions are ex-
actly the representatives of critical scenarios. In the final instantiation steps, a
whole bunch of critical scenarios are obtained which are returned to the scenario
manager of the driving simulator for challenging the car.

Our implementation setting for CriSGen employs OpenDS [5] as virtual
driving simulator and HyLEAP [17] for adaptive maneuver training of the car
in OpenDS. For reachability analysis one might adapt systems like PVS [12]
or TLA+ [15]. Instead, CriSGen makes use of the general-purpose computer
algebra system REDUCE, in particular, its module redlog [6] for special functions
on first-order formulas in order to perform quantifier elimination on non-linear
arithmetic constraint formulas. For instance, given that a > 0, the quantifier-free
equivalent of ∃x ax2+bx+c ≤ 0 is b2 ≥ 4ac; redlog determines the projections of
complex constraint formulas onto the set of variables of interest, for example the
parameters introduced by traffic scenario abstractions. In the sequel, whenever
we speak of the quantifier-free equivalent of a (quantified) constraint formula we
mean redlog’s quantifier elimination output when called with this constraint
formula.

3 CriSGen: Formal Models and Analysis

3.1 Formal Models of Maneuver and Scenario

The formal analyses by CriSGen require formal models of car maneuvers and
(abstracted) traffic scenarios, as well as the composition of these models and an
unsafe-property against which the composed system is analyzed. In the following,
we assume traffic scenarios with a single pedestrian, though the approach is not
restricted to that.

Abstracted Scenario. We assume a two-dimensional grid upon which the
pedestrian and the autonomous vehicle move. Each point on this grid is called
a position, and the movements of pedestrians are described in sequences of po-
sitions together with a scalar velocity as1

(x0, y0)
v0−→ (x1, y1) −→ . . . −→ (xi, yi)

vi−→ (xi+1, yi+1) −→ . . .

In the original scenario all the x’s, y’s, and v’s are concrete numbers, while in
the next step we relax this and produce abstracted variants of this scenario with

1 OpenDS scenarios are described in specific XML files from which such behaviors can
be extracted.

the help of what we called Abstraction Modifiers. These are rules that can be
applied to a given scenario (that may be already partially abstracted):

1. Replace a waypoint component with a (fresh) parameter (with or without
propagation)

2. Replace a segment velocity with a (fresh) parameter
3. Split a segment (thus adding a waypoint and a parameter)
4. Double a waypoint

The application of an Abstraction Modifier has an instance, i. e. an instantia-
tion of the free parameters, that is behavior equivalent to the original behavior.

Regarding propagation, let us consider the simple scenario (0, 0)
1−→ (0, 1)

1−→
(10, 1), and suppose that we want to replace the y-component of the second
waypoint with parameter c. Without propagation this ends up with the result

(0, 0)
1−→ (0, c)

1−→ (10, 1) as one might have expected. With propagation, how-
ever, would consider the y-component of the third waypoint as a function of the
abstracted one. In the example this means that the two y-components should

remain equal, i. e. we end up with (0, 0)
1−→ (0, c)

1−→ (10, c).
Splitting of a segment can be formulated in terms of quantifier elimination.

For instance, to split a segment (1, 2)
1−→ (2, 5) we determine the quantifier-free

equivalent of ∃λ (0 ≤ λ ≤ 1∧a = 1+λ∧b = 2+3λ) which is 1 ≤ a ≤ 2∧b = 3a−1.

The split segment therefore is (1, 2)
1−→ (a, 3a−1)

1−→ (2, 5), where 1 ≤ a ≤ 2. Of
course, this also works in cases where parameters have already been introduced.

For example, splitting the segment (1, 2)
1−→ (3, p), where p is a parameter,

results in the split segment (1, 2)
1−→ (a, 12 (ap − 2a − p + 6))

1−→ (3, p) with
1 ≤ a ≤ 3. A scenario modification is then defined as successive application of
several such Abstraction Modifiers.

Formal Model of Abstracted Scenario. Let (px, py) denote the pedestrian’s
position (x and y component) with both values being functions over time, such
that the respective velocity components are the first derivatives of px and py
denoted by ṗx and ṗy. These components have to be specified in order to be
able to describe the reachable positions of the pedestrian within a phase of the
scenario. Since the pedestrian walks from (xi, yi) to (xi+1, yi+1) with velocity
vi (a scalar), we have that v2i = ṗ2x + ṗ2y. Besides, the pedestrian takes the
same time to cross the distance xi+1 − xi as the distance yi+1 − yi: the ratio
(xi+1 − xi)/(yi+1 − yi) is the same as the ratio ṗx/ṗy, and so ṗy (xi+1 − xi) =
ṗx (yi+1−yi) holds. This does not yet uniquely describe the velocity components.
In order to make sure that the velocities have the correct sign we also add
ṗx (xi+1− xi) ≥ 0 and ṗy (yi+1− yi) ≥ 0. Together, all these (in)equations fully
describe the pedestrian’s continuous dynamics.

Next, we have to make sure that the pedestrian completes the current seg-
ment as soon as she reaches (xi+1, yi+1), and that she passes through each
point of the line segment while walking. This gives rise to the following seg-
ment invariant: If xi+1 ≥ xi it suffices to add the invariant px ≤ xi+1 (and

analogously for the y-component). Similarly, if xi+1 ≤ xi then the invariant
px ≥ xi+1 would do. However, we can avoid such a case distinction if we declare
px (xi+1 − xi) ≤ xi+1 (xi+1 − xi) and py (yi+1 − yi) ≤ yi+1 (yi+1 − yi) as our
phase invariant. Obviously, if the distance is positive then the differences cancel
out and if it is negative they cancel out but also reverse the inequality sign. The
two lower implications capture the marginal cases where the pedestrian moves
straight in the y-direction (x-direction respectively).

Definition 1 (Specification of pedestrian dynamics and invariant for

segment i). Let segment i of an abstracted scenario be (xi, yi)
vi−→ (xi+1, yi+1).

Let ∆x = xi+1 − xi and ∆y = yi+1 − yi We define

dyn
p
i =

v2i = ṗ2x + ṗ2y ∧ vi ≥ 0 ∧
ṗx ∆x ≥ 0 ∧
ṗy ∆y ≥ 0 ∧
∆x ṗy = ∆y ṗx

inv
p
i =

p′x ∆x ≤ xi+1 ∆x ∧
p′y ∆y ≤ yi+1 ∆y ∧
xi+1 = xi → p′x = px ∧
yi+1 = yi → p′y = py

With these definitions we can easily imagine an (hybrid) automaton-like repre-
sentation of the translation of an abstracted scenario as a sequence of nodes each
representing one segment Segi with continuous dynamics dyn

p
i , invariant inv

p
i

and transition guards px = xi+1, py = yi+1. Informally, the reachability seman-
tics defines the set of reachable states, in this case the pedestrian’s positions, for
each of the segments (cf. Sect. 3.2).

Formal Model of Maneuver. The virtually simulated autonomous car out-
puts a maneuver description that starts with an initial position (α, β) together
with an initial x, y-velocity (µ0, ν0) followed by a sequence of maneuver events
each accompanied with a τ that expresses the duration of the current state of
movement. A typical maneuver would thus be:

((α, β), (µ0, ν0))
τ0−→ e1(n1)

τ1−→ e2(n2)
τ2−→ e3(n3)

τ3−→ . . .

where each ei(ni) denotes one of the maneuver events from below

de-/accelerate by n: De-/Increase velocity while keeping the direction
steer left/right by φ: φ might be in degrees or radians, velocity is kept

constant

In the course of driving these car dynamics change from (µj , νj) to (µj+1, νj+1)
depending on the current maneuver event. Thus, for modelling the maneuver,
we determine the – as we call it – velocity sequence

(µ0, ν0), (µ1, ν1), (µ2, ν2), (µ3, ν3), . . .

as follows: (µ0, ν0) is already given in the maneuver description. Having (µj , νj),
the next velocity vector (µj+1, νj+1) depends on the maneuver event ej+1(nj+1).
In case of a steering event, we simply multiply with the rotation matrix, i e.,(

µj+1

νj+1

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
µj
νj

)

Otherwise, ej+1(nj+1) is a de-/acceleration event. In this case, (µj+1, νj+1) is
uniquely characterized by the quantifier-free equivalent of

∃ old, new

old2 = µ2

j + ν2j ∧ old ≥ 0 ∧
new2 = µ2

j+1 + ν2j+1 ∧ new = old + nj+1 ∧
µj νj+1 = µj+1 νj ∧
µj µj+1 ≥ 0 ∧ νj νj+1 ≥ 0

The top four in-/equations express the change in velocity, the fifth guarantees
that the absolute value of the direction is kept constant, and the final two equa-
tions make sure that the velocities are not reversed2. With these definitions the
characterization of the car’s continuous dynamics and invariant for phase j – in
the sequel denoted by Phj – becomes

dyncj =
[
ċx = µj ∧ ċy = νj ∧ ṫ = 1

]
invcj = [t′ ≤ τj]

In terms of hybrid automata, we obtain again a sequence of nodes, each respon-
sible for a maneuver phase with continuous dynamics dyncj , invariant invcj and
transition annotations t = τj , t

′ = 0. The formal model of a maneuver in terms
of hybrid automata (with reachable state semantics defined in Sect. 3.2) can
therefore be described as in Figure 2.

Ph0

ċx = µ0

ċy = ν0
ṫ = 1

t ≤ τ0

Ph1

ċx = µ1

ċy = ν1
ṫ = 1

t ≤ τ1

Phj

ċx = µj

ċy = νj
ṫ = 1

t ≤ τj

t = τ0 t′ = 0 t = τ1 t′ = 0

Fig. 2. Hybrid automaton for maneuvers

Composition of Formal Models of Scenario and Maneuver. Given an ab-
stracted scenario (x0, y0)

v0−→ (x1, y1)
v1−→ . . . and a maneuver ((α, β), (µ0, ν0))

τ0−→
e1(n1)

v0−→ . . . with velocity sequence (µ0, ν0), (µ1, ν1), . . ., we obtain the pedes-
trian’s (hybrid) automaton and the car’s maneuver (hybrid) automaton as de-
scribed above. There are no synchronization labels involved, nor are there any
cycles. The composition of these two hybrid automata is therefore straightfor-
ward: Its nodes are the cross-products (Segi×Phj) of the scenario and the ma-
neuver nodes, the continuous dynamics and the invariants are the conjunction of
the local dynamics and invariants, and the transitions are the local transitions
from the local automata, i. e. two outgoing transitions for each node.

2 This disallows maneuvers in which a car drives slowly by, say, 1 m/s, and deceler-
ates by 2 m/s, thus reversing its motion direction. Reversing the sense of direction
should be described by decelerating to a stop and a further deceleration for driving
backwards.

Safety Property. Pedestrian avoidance serves as a unique safety property to
be satisfied by the self-driving car. To this end, the pedestrian hit area of the
car is defined in terms of the car’s position and direction. A maneuver is called
safe if there is no point in time where a pedestrian’s position lies within the
car’s hit area. Let the car’s position and velocity vector be (cx, cy) and (ċx, ċy),
respectively. One vector perpendicular to the sense of direction is (ċy,−ċx) and

the car’s speed is
√
ċ2x + ċ2y, which we abbreviate by α. For checking the safety

of the pedestrian’s position, we extend the car’s position (cx, cy) by at most ±3
(meters/sec, say)3 in the sense of direction, which is normalized to (ċx, ċy)/α),
and at most ±1 perpendicular to the sense of direction, which is normalized to
(ċy,−ċx)/α. After minor simplifications, we finally end up with: The position
(px, py) is inside the car’s hit area (during node Segi × Phj) iff (px, py, cx, cy) ∈
Hit(i×j) where

Hit(i×j) = ∃λ1, λ2, α

α2 = ċ2x + ċ2y ∧ α ≥ 0 ∧
−1 ≤ λ1 ≤ 1 ∧ −3 ≤ λ2 ≤ 3 ∧
α cx − α px = λ1 ċy + λ2 ċx ∧
α cy − α py = λ2 ċy − λ1 ċx

with ċx = µj and ċy = νj . Obviously, this safety property changes from phase to
phase of the composed automaton, since velocities and directions of participants
vary from phase to phase, and the safety property depends on these values.

3.2 Formal Analysis of Abstracted Scenarios and Maneuvers

For the formal assessment of given maneuvers with respect to abstracted scenar-
ios we define what we understand by the set of reachable states and how these
are represented. Therefore let us assume that we have an abstracted scenario

(x0, y0)
v0−→ (x1, y1)

v1−→ . . .
vi−1−→ (xi, yi)

vi−→ (xi+1, yi+1)
vi+1−→ . . .

and a maneuver

((α, β), (µ, ν))
τ0−→ e1(n1)

τ1−→ e2(n2)
τ2−→ e3(n3)

τ3−→ . . .

at hand. Since the continuous dynamics change from node to node in the compo-
sition we consider the set of reachable states as the union of the sets of reachable
states for the various composed nodes. In each such node the respective velocities
are considered constant, therefore let

Reach =

 δ ≥ 0 ∧ t′ = t+ δ ∧
p′x = px + δ ṗx ∧ p′y = py + δ ṗy ∧
c′x = cx + δ ċx ∧ c′y = cy + δ ċy

This together with the local continuous dynamics and invariant gives rise to the
following definition of the set of reachable states.

3 The units do not really matter as long as they are kept consistent throughout the
specification.

Definition 2 (Reachable States for Node Segi × Phj).
Let vars = {px, py, ṗx, ṗy, cx, cy, ċx, ċy, t, δ}. Then the set of reachable states

in node Segi × Phj, States(i×j), is uniquely determined by (the quantifier-free
equivalent of)

States(i×j) = ∃ vars
[
Init(i×j) ∧ Dyn(i×j) ∧ Reach ∧ Inv(i×j)

]
where Dyn(i×j) = dynpi ∧ dyncj and Inv(i×j) = invpi ∧ invcj . For Init(i×j) see
below.

In fact, according to the definitions of Dyn(i×j), Inv(i×j), and Reach the con-
straint States(i×j) talks about parameters and primed variables only. For con-
venience, we rename these variables to their unprimed versions4.

States(i×j) = States(i×j)[px/p
′
x][py/p

′
y][cx/c

′
x][cy/c

′
y][t/t′]

The above definition requires Init(i×j), the constraint that describes the initial
states for node Segi × Phj . Obviously, the initial states for each node depend
on the reachable states of “earlier” nodes.

Definition 3 (Initial States for Node Segi × Phj). Given an abstracted

scenario (x0, y0)
v0−→ (x1, y1)

v1−→ . . .
vi−1−→ (xi, yi)

vi−→ (xi+1, yi+1)
vi+1−→ . . . and a

maneuver ((α, β), (µ, ν))
τ0−→ e1(n1)

τ1−→ e2(n2)
τ2−→ e3(n3)

τ3−→ . . . with derived
velocity sequence (µ0, ν0), (µ1, ν1), (µ2, ν2), (µ3, ν3), . . . we define

Init(0×0) = [px = x0 ∧ py = y0 ∧ cx = α ∧ cy = β ∧ t = 0]

Init(0×(j+1)) =
[
∃t {States(0×j) ∧ t = τj} ∧ t = 0

]
Init((i+1)×0) =

[
States(i×0) ∧ px = xi+1 ∧ py = yi+1

]
Init((i+1)×(j+1)) =

States(i×(j+1)) ∧ px = xi+1 ∧ py = yi+1

∨
∃t {States((i+1)×j) ∧ t = τj} ∧ t = 0

Finally, after having determined the reachable states (for node Segi×Phj) and
having found the hit area (also for node Segi × Phj), the constraint describing
unsafe states is as follows.

Definition 4 (Unsafe States for Node Segi×Phj). Given States(i×j) and
Hit(i×j), the unsafe states for node Segi×Phj are defined as the quantifier-free
equivalent of

Unsafe(i×j) = ∃px, py, cx, cy, t
[
States(i×j) ∧ Hit(i×j)

]
Each of the Unsafe-constraints contains no variable at all, and not all of them
are simply true or false. In general, they still contain constraints over the
parameters that had been introduced by Abstraction Modifiers. Algorithm 3.1
summarizes the forward-reachability mechanism defined above. Note that the
nested for-loop guarantees that the constraint predicates are determined just-in-
time.
4 This can trivially be described as a quantifier elimination problem.

Algorithm 3.1: ForwardReachability(Abstr.Scenario,Maneuver)

Critical← false

for i← 0, 1, 2, . . .

do

for j ← 0 to i

do

Init[j][i− j]← see Definition 3

Dyn[j][i− j]← see Definition 1

Inv[j][i− j]← see Definition 1

States[j][i− j]← see Definition 2

Hit[j][i− j]← see Section3.1

Unsafe[j][i− j]← see Definition 4

Critical← Critical ∨ Unsafe[j][i− j]
return (Critical)

3.3 Generating Critical Scenarios

Suppose the scenario abstraction introduced the parameters {p1, . . . , pn}. Now
consider an n-dimensional grid with axes p1, . . . , pn. Each point in this grid rep-
resents a variant of the abstracted scenario. The closer two such points are, the
more similar are the variants they represent. Some of these variants are behavior
equivalent to the original scenario by definition (of the Abstraction Modifiers).
Let O denote the area within this grid of the variants that are behavior equiv-
alent to the original scenario. Algorithm 3.1 provides us with the constraint
Critical that describes the variants that are unsafe with respect to the original
maneuver. We determine the distance between the areas U and Critical by
solving an optimization problem along the lines of [7]: The distance between any
point (a1, . . . , an) that satisfies O and any other point (b1, . . . , bn) that satisfies
Critical is greater than or equal to the minimal distance between the two areas.
Thus the quantifier-free equivalent of

∀a1, . . . , an, b1, . . . bn O[ai/pi] ∧ Critical[bi/pi]→

√√√√ n∑
i=1

(a2i − b2i) ≥ d

is some constraint d ≤ min from which we can read min as the minimal distance
we are interested in. With the computation of witnesses for the ei in

∃c1, . . . , cn, e1, . . . en O[ci/pi]∧Critical[ei/pi]∧min ≤

√√√√ n∑
i=1

(c2i − e2i) ≤ min+ε

(where ε is a small non-negative constant5) we have finally found the most ap-
propriate candidates for instantiation.

5 ε compensates minor differences between the computed reachable states and the
driving simulator’s behavior.

4 An Illustrative Example

Scenario and Maneuver. As an illustrative example of our formal method-
based approach to the generation of critical scenarios suppose that the simulation
engine provides CriSGen with the traffic scenario and maneuver as depicted in
Figure 3. In this scenario, a pedestrian starts with velocity 1 (m/sec, say) at

Fig. 3. Original (non-critical) scenario: The autonomous car drives too slow to jeopar-
dize the pedestrian.

position (0, 0) goes straight to (0, 1), and crosses the street for point (10, 1).
The car’s maneuver simultaneously starts at (3, 70) while driving downwards
with velocity 0 in x-direction and velocity −10 in y-direction. Both scenario and
maneuver is summarized as follows:

(0, 0)
1−→ (0, 1)

1−→ (10, 1) ((3, 70), (0,−10))
∞−→

One-Dimensional Abstraction. Consider a single abstraction, namely re-
placing the y-component of the second waypoint by a parameter c (unrestricted)
with propagation, which ends up in the abstracted scenario

(0, 0)
1−→ (0, c)

1−→ (10, c)

By applying Algorithm 3.1 to this abstraction, we obtain two Unsafe-constraints:
Unsafe(0×0) = false as expected; the pedestrian’s behavior in the initial phase
is certainly not critical (yet). The other Unsafe-constraint is more interesting:

Unsafe(1×0) = 27 ≤ 11c ≤ 53 ∨ −53 ≤ 9c ≤ −27

Accordingly, the critical region consists of two parts: One where the pedestrian
walks towards the car for some distance and then crosses the street, and another

one, where the pedestrian actually walks away from the car before crossing the
street (see Figure 4). The ultimate goal of CriSGen is to synthesize critical
scenarios that are possibly near the (non-critical) original traffic scenario (the
circle at position 1 in Figure 4). For this example, values 2.5 and −3.5 are
reasonable.

c

1 27/11 53/11−53/9 −27/9

Fig. 4. Unsafe (red rectangles) and original (green circle) scenarios

As a consequence, in this simple example, CriSGen ends up with (at least)
two critical scenarios:

(0, 0)
1−→ (0, 2.5)

1−→ (10, 2.5) and (0, 0)
1−→ (0,−3.5)

1−→ (10,−3.5)

Two-Dimensional Abstraction. Suppose that the following abstractions are
performed: a split of the second segment, and a doubling of the (new) fourth way-
point together with an abstraction of the x-component of the newest waypoint.
This yields the abstracted scenario

(0, 0)
1−→ (0, 1)

1−→ (c, 1)
1−→ (a, 1)

1−→ (10, 1)

where a, c are restricted to 0 ≤ c, a ≤ 10. For this abstracted scenario (and
maneuver) the algorithm 3.1 returns

Critical = Unsafe(0×0) ∨ Unsafe(1×0) ∨ Unsafe(2×0) ∨ Unsafe(3×0)

where Unsafe(0×0) and Unsafe(1×0) are both false and

Unsafe(2×0) = 38 ≤ 10c ≤ 51 ∧ 0 ≤ a ≤ 4 ∧ 5a− 10c+ 28 ≤ 0
Unsafe(3×0) = 0 ≤ a ≤ 4 ∧ −5a+ 10c− 31 ≤ 0 ∧ 8 ≤ 10c− 10a ≤ 21

These computed constraint formulas are illustrated in Figure 5 where the lambda-
shaped red area represents the unsafe scenarios and the top left light-green tri-
angle represents the original scenario6. Note that the red area consists of two
parts: The vertical part is responsible for phase (2 × 0), i. e. situations where
the pedestrian is heading towards the other side of the street, but decides fairly
late to return. The more diagonal part illustrates the critical a, c-pairs for phase
(3 × 0). Here again, the pedestrian first tries to cross the street, decides pretty
early to turn but finally nevertheless returns again for the other side.

6 Evidently, for any 0 ≤ c ≤ a ≤ 10 the corresponding instantiation is behavior
equivalent to the original scenario. Therefore the safe (green) variants form the top-
left triangle instead of a single point.

c

a

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Fig. 5. Unsafe (red λ-shaped) and original (green triangle) scenarios

There are several interesting points in this region that can serve as candidates
for (c, a), like (5, 3.5), (4, 3), (3, 2), (2, 1), (1, 0). For instance, the pairs (5, 3.5) and
(1, 0) result in the critical scenarios

(0, 0)
1−→ (0, 1)

1−→ (5, 1)
1−→ (3.5, 1)

1−→ (10, 1)

(0, 0)
1−→ (0, 1)

1−→ (1, 1)
1−→ (0, 1)

1−→ (10, 1)

Three-Dimensional Abstraction. Finally, let us perform some further ab-
straction by replacing the pedestrian’s velocity in the final segment with a pa-
rameter b. This leads to the abstracted scenario

(0, 0)
1−→ (0, 1)

1−→ (c, 1)
1−→ (a, 1)

b−→ (10, 1)

After determining the various constraint formulas and after computing all the
necessary projections, CriSGen produces the constraint formula for Critical,
which, in this example, consists of five disjunctions:

Critical =

38 ≤ 10c ≤ 51 ∧ 0 ≤ a ≤ 4 ∧ 5a− 10c+ 28 ≤ 0 ∨
b > 0 ∧ b < 1 ∧ 5bc− 31b− 5c+ 10 ≤ 0 ∧ 5bc− 28b− 5c+ 20 ≥ 0 ∧ a = c ∨
a ≤ 4 ∧ a < c ∧ 5a− 10c+ 31 ≥ 0 ∧ b > 0 ∧ 5ab+ 5a− 10bc+ 28b ≤ 20 ∧

5ab+ 5a− 10bc+ 31b− 10 ≥ 0 ∨
a ≤ 4 ∧ a < c ∧ 5a− 10c+ 31 ≥ 0 ∧ b > 0 ∧

10 + 10bc− 31b ≤ 5ab+ 5a ≤ 20 + 10bc− 28b ∨
0 < b < 1 ∧ 5ab− 5a− 31b+ 10 ≤ 0 ∧ 5ab− 5a− 28b+ 20 ≥ 0 ∧ c ≤ a

Since there are three parameters involved, the corresponding unsafe region can
be illustrated in a 3D graphic as shown in Figure 67. There are lots of additional

7 Note that in this illustration the unsafe region and the original region do not inter-
sect, since cutting the area with the plane at b = 1 produces exactly Figure 5.

Fig. 6. Unsafe region (dark red) and original region (light green)

interesting points in these unsafe-regions. For instance, (a, b, c) = (2.5, 0.4, 1) and
(a, b, c) = (2.4, 0.5, 2), which instantiate the abstracted scenario to the critical
scenarios

(0, 0)
1−→ (0, 1)

1−→ (1, 1)
1−→ (2.5, 1)

0.4−→ (10, 1)

and
(0, 0)

1−→ (0, 1)
1−→ (2, 1)

1−→ (2.4, 1)
0.5−→ (10, 1)

respectively.

5 Related Work

To our knowledge the CriSGen approach is the first that utilizes formal reason-
ing on non-linear arithmetic constraint formulas with free parameters to synthe-
size critical scenarios for self-driving cars from previous, similar traffic scenarios
and maneuvers. Nevertheless, there exist various alternative, related approaches
for scenario generation [14, 19, 2, 13, 8, 9, 11, 20, 10].

In [8] Eggers et al. derive constraint problem classes to be solved for their
synthesis, however without showing how to solve them. Their underlying lan-
guage is based on the graphic representation of Damm et al. [4]. The graphic
components get their semantics by a translation into a first-order sorted linear
temporal logic which is interpreted in terms of the trajectories of the hybrid au-
tomata that represent the vehicles and pedestrians. Althoff & Lutz [1] propose
yet another way to automatically generate critical scenarios with the help of
formal methods. Whereas we consider a fixed maneuver in a traffic scenario to
be challenged, they try to reduce the solution space for maneuvers of the car.

For systematic testing, Frassinelli et al. [9] propose a rule-based mechanism
which confronts the autonomous car online while driving with just-in-time gen-
erated but not necessarily critical road extensions. Groh et al. [11] discuss trans-
ferring the test space into a scenario-depending representation which enables
the comparison of scenarios across test domains. Aréchiga [2] use signal tem-
poral logic and Bouton et al [3] employ reinforcement learning together with a
model checker to ensure safety guarantees. In fact, using evolutionary comput-
ing or deep learning methods for the generation of critical scenarios is becom-
ing interesting recently such as in Wachi [19, 14]. Other related work focuses
on extraction and representation of scenarios. For example, Queiroz et al. [18]
propose OpenDSL for scenario representations and Menzel et al. [16] introduce
a method to automatically generate executable scenario representations from
keyword-based descriptions. Fremont et al [10] introduce Scenic, a scenario
specification language that allows the modeler to mutate scenarios and Yaghoubi
& Fainekos [20] determine adversaries for neural network inputs with a gradient
descent approach.

6 Conclusion

In this paper, we presented a novel formal method-based approach CriSGen
for an automated and complete generation of critical traffic scenarios for virtual
training of self-driving cars. These scenarios are determined as close variants
of given but uncritical and formally abstracted scenarios via reasoning on their
non-linear arithmetic constraint formulas, such that the original maneuver of
the self-driving car in them will not be pedestrian-safe anymore, hence enforcing
it to further adapt the maneuver behavior. The approach is complete for the
considered scenario abstraction in the sense that, unlike other related methods,
it can guarantee to not overlook any of the possible scenario instances that are
critical for the original maneuver.

Acknowledgement. This research was supported by the German Federal Min-
istry for Education and Research (BMB+F) in the project REACT.

References

1. Althoff, M., Lutz, S.: Automatic Generation of Safety-Critical Test Scenarios for
Collision Avoidance of Road Vehicles. In: Proceedings IEEE Intelligent Vehicles
Symposium (IV) (2018). https://doi.org/10.1109/ivs.2018.8500374

2. Aréchiga, N.: Specifying Safety of Autonomous Vehicles in Signal Temporal Logic.
In: Proceedings IEEE Intelligent Vehicles Symposium (IV) (2019)

3. Bouton, M., Nakhaei, A., Fujimura, K., Kochenderfer, M.J.: Safe Reinforcement
Learning with Scene Decomposition for Navigating Complex Urban Environments.
In: Proceedings IEEE Intelligent Vehicles Symposium (IV) (2019)

4. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Traffic se-
quence charts - from visualization to semantics. Tech. rep., AVACS (2017)

5. DFKI: OpenDS, https://opends.dfki.de/
6. Dolzmann, A., Sturm, T.: redlog, http://www.redlog.eu
7. Dolzmann, A., Sturm, T., Weispfenning, V.: Real Quantifier Elimination in Prac-

tice. In: Algorithmic Algebra and Number Theory. pp. 221–247. Springer (1999)
8. Eggers, A., Stasch, M., Teige, T., Bienmüller, T., Brockmeyer, U.: Constraint sys-

tems from traffic scenarios for the validation of autonomous driving. In: Proceed-
ings of Symbolic Computation and Satsfiability Checking 2018 (part of FLOC)
(2018)

9. Frassinelli, D., Gambi, A., Nürnberger, S., Park, S.: DRiVERSITY – Synthetic
Torture Testing to Find Limits of Autonomous Driving Algorithms. In: Proceedings
2. ACM Computer Science in Cars Symposium (CSCS) (2018)

10. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Se-
shia, S.A.: Scenic: A language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 63–78. PLDI 2019, ACM, New York, NY, USA
(2019)

11. Groh, K., Kuehbeck, T., Fleischmann, B., Schiementz, M., Chibelushi, C.C.: To-
wards a Scenario-Based Assessment Method for Highly Automated Driving Func-
tions. In: Proceedings 8th Conference on Driver Assistance (November 2017)

12. Henzinger, T.A., Rusu, V.: Reachability Verification for Hybrid Automata. In:
Proceedings of the First International Workshop on Hybrid Systems: Computation
and Control (HSCC). pp. 190–204. No. 1386 in Lecture Notes in Computer Science,
Springer (1989)

13. Jesenski, S., Stellet, J.E., Schiegg, F., Zöllner, J.M.: Generation of Scenes in Inter-
sections for the Validation of Highly Automated Driving Functions. In: Proceedings
IEEE Intelligent Vehicles Symposium (IV) (2019)

14. Klischat, M., Althoff, M.: Generating Critical Test Scenarios for Automated Ve-
hicles with Evolutionary Algorithms. In: Proceedings IEEE Intelligent Vehicles
Symposium (IV) (2019)

15. Lamport, L.: Hybrid systems in TLA+. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) Hybrid Systems. pp. 77–102. Springer Berlin Heidelberg
(1993)

16. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From Func-
tional to Logical Scenarios: Detailing a Keyword-Based Scenario Description for
Execution in a Simulation Environment. In: Proceedings IEEE Intelligent Vehicles
Symposium (IV) (2019)

17. Pusse, F., Klusch, M.: Hybrid Online POMDP Planning and Deep Reinforcement
Learning for Safer Self-Driving Cars. In: Proceedings of the 30th IEEE Intelligent
Vehicles Symposium (IV). pp. 892 – 899. IEEE, Paris (June 2019)

18. Queiroz, R., Berger, T., Czarnecki, K.: GeoScenario: An Open DSL for Au-
tonomous Driving Scenario Representation. In: Proceedings IEEE Intelligent Ve-
hicles Symposium (IV) (2019)

19. Wachi, A.: Failure-scenario maker for rule-based agent using multi-agent adversar-
ial reinforcement learning and its application to autonomous driving. In: Proceed-
ings IJCAI (2019)

20. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control sys-
tems with machine learning components. In: Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control,
HSCC 2019, Montreal, QC, Canada, April 16-18, 2019. pp. 179–184 (2019),
https://doi.org/10.1145/3302504.3311814

