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Abstract—In this paper, we describe how we combine ac-
tive and passive user input modes in clinical environments
for knowledge discovery and knowledge acquisition towards
decision support in clinical environments. Active input modes
include digital pens, smartphones, and automatic handwriting
recognition for a direct digitalisation of patient data. Pas-
sive input modes include sensors of the clinical environment
and/or mobile smartphones. This combination for knowledge
acquisition and decision support (while using machine learning
techniques) has not yet been explored in clinical environments
and is of specific interest because it combines previously
unconnected information sources for individualised treatments.
The innovative aspect is a holistic view on individual patients
based on ontologies, terminologies, and textual patient records
whereby individual active and passive real-time patient data
can be taken into account for improving clinical decision
support.

Keywords-computer-based medical systems, cyber-physical
systems, knowledge acquisition, clinical decision support.

I. INTRODUCTION

EIT ICT Labs is the Knowledge and Innovation Com-
munity of EIT with a focus on future Information and
Communication Society.1 In this framework, we have a
specific innovation objective within cyber-physical systems,
namely to combine active and passive user input modes in
clinical environments for knowledge acquisition and deci-
sion support.

Active input modes include digital pens, smartphones, and
automatic handwriting recognition for a direct digitalisa-
tion of patient data. Passive input modes include sensors
of the clinical environment and mobile smartphones. This
combination for knowledge acquisition and decision support
(while using machine learning techniques) has not yet been
explored in clinical environments and is of specific interest
because it combines previously unconnected information

1The European Institute of Innovation and Technology (EIT) is a body
of the European Union based in Budapest, Hungary. It was established by
the Regulation (EC) No 294/2008 of the European Parliament and of the
Council of 11 March 2008.

sources. The innovative aspect is a holistic view on individ-
ual patients whereby individual active and passive patient
data obtained from sensors can be taken into account for
clinical decision support.

We worked towards this goal by defining four milestones
[9], [10], [5], [6]: (1) knowledge acquisition by intelligent
user interfaces (active modes); (2) networked embedded
systems development and sensors development in presence,
posture, and activity monitoring of humans by non-intrusive
sensors, thereby including a functional sensor architecture
(passive modes); (3) data mining: segmentation of be-
havioural patterns, finding analogies between behaviours,
and predicting using these analogies; and (4) the knowledge
integration (including a semantic model for clinical infor-
mation) according to the data intelligence models in com-
bination with clinical patient data towards clinical decision
support.

The overall rationale is to address the knowledge acquisi-
tion bottleneck: future clinical care relies on digitised patient
information; this information can be collected manually
(active mode) by a doctor or a patient, or automatically
(passive mode) by using suitable environmental sensors,
e.g., of a portable device the patient is carrying. Suitable
data mining models should enable us to combine those
independent information sources for a combined decision
support model. For example, a patient’s recovery from a
back injury can be monitored by the movement data while
climbing steps and combined with the digitised patient
disease record at the hospital’s side.

II. BACKGROUND

In the future, clinical environments will develop into
medical cyber-physical systems of their own. Patients will
get direct treatment according to a direct data acquisition
and interpretation workflow. In the end, the doctor’s decision
support will be provided according to the data the cyber-
physical system (CPS) collects from the individual patients.
This approach will be scalable, extend patient monitoring to



data collections at home by using portable sensors providing
information about a patient’s recovery status, and influence
healthcare of the future. Potential users include doctors and
patients at hospital and patients at home or workplace. To-
wards this goal, the EIT activity Medical CPS Systems 2013-
2014 develops technical components for a first medical CPS
reference architecture, a template solution for an architecture
for a particular domain including hardware, software, and
knowledge management; the respective technical elements
and relations provide templates for concrete architectures in
a particular medical application domain and in the family of
cyber-physical systems for medical applications: functional
active and passive data acquisition methods are developed,
as well as functional sensor interpretation methods. In our
first running testbed system, sensor data aggregate clinical
databases automatically whereupon scalable patient data can
be recorded on a daily basis in a clinical database. We
hope that the reference architecture will provide new insights
into the interplay of active and passive sensor modes in the
medical domain which we will additionally exploit in the
technology transfer into the European healthcare sector. Our
experts predict a change of the medical healthcare sector
in Europe (according to the US developments) with three
main steps: (1) digitisation of patient data, (2) usage of en-
vironmental (medical) sensor technology, (3) distributed data
access and real-time clinical decision support. This activity
addresses all three steps in very specific but related tasks.
The envisioned goal is that the European healthcare market
will profit directly by the provided reference architecture,
and indirectly by a new co-operation of European institutions
in a future European healthcare sector. Rich capture of
clinical data, including symptoms and signs rather than just
a single diagnosis, are among the objectives of parallel
European efforts (e.g., http://www.transformproject.eu/).

III. TECHNICAL COMPONENTS

We developed a first medical CPS reference architecture
and testbed system, which combines patient data from
different sources that are acquired both manually and au-
tomatically, as well as data intelligence methods for clinical
decision support. The main technical contributions include
the real-time dialogue server and technical components for
aggregating digitised patient information, combining manual
data acquisition and sensory data; and the integration of data
acquisition technology into the clinical test-bed environment.
Figure 1 shows the distribution of the (real-time) information
sources in a combined architecture.

A. Real-Time Dialogue Server

In recent works [8], [9], [10] we have already studied
the usability of novel interaction design strategies in the
medical field, such as speech interaction on a mobile device
for medical image annotation or classical tools, i.e., writing
on mammography forms with a digital pen. Essentially, all

Figure 1. Architecture of the Medical CPS

Environment Sensors

Figure 2. Input/Output Real-Time Dialogue Server

approaches share the same underlying goal to make expert
knowledge acquisition fast and easy and retrieve important
case information in real-time.

Our main contribution in this activity is the integration
of distinct input channels consisting at the present stage of
the following active modalities: i) speech-based interface,
ii) see-through head-mounted display (HMD) interface, iii)
pen-based interface, iv) gesture-based interface (Kinect), v)
touch-based interfaces (IOS- and Android- based handheld
devices (such as iPad, iPhone and Samsung Galaxy Note).
We have made first experiments with the Android integra-
tion.

Figure 2 visualises the interplay of the active input compo-
nents and passive environmental sensors in the context of the
multi-device infrastructure. In the center of the infrastructure
we have a proxy that is responsible to route and forward
method invocations to any target recipient, i.e., an I/O
device. The invocation of the actual method on the target
is passed on through the network by means of the proxy.

The proxy architecture includes the new version of a
mobile sensor architecture (mobile devices, sensor packages,
mobile clients) so that real-time data can be captured and in-
terpreted on the server. Individual datasets can be generated
and data mined on the server in real-time.



Figure 3. Sensor Data Flow

B. Mobile Sensor Architecture

The sensor system for real-time tasks distributed on
multiprocessors [2] consists of three parts: (1) The activity
sensor measures acceleration data in three dimensions and
transmits them via a Bluetooth Low Energy (BLE)-link to
the activity sensor server. Connection and disconnection
happens automatically as soon as sensor and activity sensor
server are in range. In case of the loss of a connection,
reconnection procedures are initiated. (2) The activity sensor
server receives the streaming data. It converts the raw accel-
eration signals from the sensors to physical units. The signal
is then processed, transformed to the frequency domain and
activity detection performed. From the detected activities,
activity detection events are generated. These events contain
timestamps together with the detected activities and are for-
warded to the system server depicted in figure 2. The activity
sensor server runs on a Linux-PC and can be installed on
the same physical machine as the system server or on a
different computer connected by a standard network (LAN,
Internet). Optionally, raw sensor data can be signalised from
the activity sensor server to the system server to allow
further processing in the sense of real-time data mining
and distributed activity recognition. (The server provided by
DFKI aggregates the data from different sources and sends
it to other (remote) data mining related clients/servers.) The
sensor system uses the XML-RPC model to call methods of
a remote server; the data flow is shown in figure 3.

C. Human Posture and Activity Level Detection

The motivation for additional environmental sensors lies
in tracking the behaviour of patients or care home residents
and detecting abnormal living patterns. In addition, the
medical CPS perspective includes the monitoring of clinical
care of bedridden patients. We take an approach for such an
(eHealth) monitoring detector by implementing an intelligent
furniture network (here, a bedplate). Human behaviour in the
form of postures and activity levels is monitored by using
a set of very low cost low-intrusive capacitive proximity
sensors. The sensor system relies on wireless sensor network
technologies and is extended with data management and
real-time monitoring over these XML-RPC model to connect
to the dialogue server. Our experimental tests show that com-
pact algorithms based on nearest neighborhood classifiers

Figure 4. Monitoring Interface for Bedplate Sensors

and filter banks with Infinite Impulse Response (IIR) filters
or Haar wavelets can identify the state of the bedplate user
in the form of postures and activity levels. [5]

To improve the sensor features and their classification
performance, and the applicability of the capacitive human
behaviour tracking platform developed earlier [5], the fol-
lowing requirements have been met in order to integrate
the bedplate into the medical cyber-physical system plat-
form: (1) Reducing noise and cross-talk between the sensor
elements by applying a distributed sensor node architec-
ture (two sensor nodes instead of one). This leads to an
improved reliability of the presence, posture, and activity
detection due to reduced sensor signal noise and cross-
talk; (2) Allowing for a more flexible customisation and
lower manufacturing costs by a customised sensor node
design (instead of a commercial AD7147-EVAL board); (3)
Facilitating comprehensive sensor plate installation by a self-
calibration feature of the sensor nodes and improving the
monitoring user interface (figure 4) by more self-explanatory
features of history data for lay users; (4) Real-time raw date
capture to be sent to the distributed data mining suite for
more fine-grained human posture classification according to
medical guideline tasks.

D. Data Mining Suite

Data mining can be efficient for a range of medical CPS
events form simple to sophisticated ones depending on a
number of factors: (a) the information it receives (can be
very broad range), (b) the expert knowledge provided in
the form of medical ontologies (can be very little), (c) the
variety of the cases, (d) the size of the database available,
and (e) the expected predictions. Our medical CPS scenario
will—eventually—require sophisticated spatio-temporal data
mining tools. The use of sensory information (active and
passive) and events such as being at places (rooms, corridors,
toilette), moving between places, and medical events listed
by the experts define a special spatio-temporal data mining
environment.



Predictions, however, can be made on various levels. This
is a relevant aspect for CPS in general because commu-
nication bottlenecks and the resulting delays can corrupt
synchronisation within and between levels. The requirements
for a successful data mining application are as follows:
data mining needs expert information about analogies, e.g.,
the set of sensors that involve the notification of, e.g., the
decision support when the sensor runs in the alarm region.

Methods: Our data mining uses entropy estimation to es-
timate predictability. We started from entropy estimation of
places (or spatial processes according to medical guidelines).
Transition probabilities and the probabilities of event series
have been estimated and utilised through the prediction by
partial matching method, an adaptive statistical data com-
pression technique based on context modeling and prediction
[3], [7]. PPM models use a set of previous symbols in the
uncompressed symbol stream to predict the next symbol in
the stream. We extended the set of information mined by
using the infogain algorithm together with greedy selection
since it is known to be close to optimal for our conditions
[1]. This selection can be conditioned on the events to be
predicted, thus restricting the domain of predictability, but
increasing the time interval and precision of the prediction
of the events of interest via a goal-oriented selection of
additional sensors. We also compiled a dictionary of spatio-
temporal events with regard to different (ontological) goals.
Regular activities in the clinical environment, e.g., natural
patterns of sleep, make us believe that predictions are
viable. But the collection time could be in the order of
months or years according to the semantic model of clinical
information.

E. Semantic Model for Clinical Information

As of today, clinical data are usually stored in a large
number of heterogeneous data repositories. For instance, the
university hospital of Erlangen in Germany stores the patient
data (clinical, administrative, financial and device data) in
more than 20 different information systems such as HIS,
LIS, RIS, PACS, etc. In addition, we face the situation that
the patient health data is very heterogeneous. It consists
of unstructured data, such as medical images or medical
reports as well as structured data, such as lab report, claims,
etc. In order to enable a technical access to clinical data,
we need to provide means that a) allow us to store the
comprehensive data set in a semantic consistent manner as
well as means that b) allow us to capture the meta infor-
mation describing the relevant content from unstructured
clinical data to enable their subsequent automatic processing
for a seamless integration within clinical applications. To
address these requirements as well as to overcome the given
constraints regarding patient data sharing, we developed a
generic clinical data access strategy within this medical CPS
activity that allows us to seamlessly and flexibly align patient
data from various data sources, including sensor data. Our

approach relies on two building blocks: First, an integrated
clinical information model that establishes the foundation to
integrate and structure clinical data by providing concepts
covering meta-information and interpretations of clinical
patient data; Second, an natural language processing (NLP)
information extraction pipeline that provides the basis algo-
rithms needed to extract the relevant information from un-
structured clinical textual documents. In the project Theseus
MEDICO, we already addressed the challenge of extracting
meta-information for medical images from textual ontology
description [11], within this activity we mainly focus on the
extraction of information from clinical textual documents for
their combination with sensory data towards real-time clini-
cal decision support. Through the semantic representation of
clinical and administrative data, we established the basis for
the flexible aggregation and integration of clinical data with
sensor data. Moreover, we established the basis for clinical
knowledge integration and data intelligence application, such
as disease-symptom models. Through the use of semantic
technologies, the clinical patient data stored within hospitals
can be easily aggregated with available external data sources,
such as dynamic user input and dynamic sensor data. (Cur-
rently, we are in the process of aligning the semantically
described clinical data with the patient sensor data.)

The proposed architecture tries to make data accessible
at the data acquisition stage and provide new chances for
direct return of investments in terms of direct interaction
(towards interactive decision support), knowledge discovery
from textual documents, and intelligent information presen-
tation. Increased data availability should make individualised
treatments possible; the problem we, however, face is that
these data are not semantically integrated. As a result, most
of the available data, such as sensor data, are simply not used
in their full strength in clinical decisions. What we need is an
integrated and standardised representation of clinical patient
data reflecting the health status since this is the basis for var-
ious clinical applications like outcome analysis or other deci-
sion support systems. A standardised representation requires
the use of established ontologies, vocabularies or coding
systems like, e.g., the ICD10, LOINC1 or SNOMED CT2. In
addition, an information model is needed where the coded
data (data with references to standardised vocabularies) is
stored and structured.

We identified the following requirements for a model
attempting to represent clinical information and sensor data
using existing ontologies according to the first clinical data
acquisition tests of the medical CPS: Integration: data from
various sources and of different format are integrated and
linked; Standards: data should be expressed using estab-
lished coding systems and terminologies: Interpretation: the
semantics of clinical data must be defined in a consistent
way; Coverage: it should be possible to represent all clinical
data using the model in combination with other ontologies
and all clinically relevant high-level concepts.



Starting from these requirements, we propose a seman-
tic Model for Clinical Information (MCI) based on the
Ontology of General Medical Science (OGMS). MCI has
the purpose of integrating and structuring clinical data by
providing concepts that cover meta-information and inter-
pretations of clinical patient data. In this way, all basic
concepts, which are needed to describe clinical information
objects on the meta-level like diagnosis, findings, reports,
health care provider, procedures, IDs, etc. are covered by
MCI. Patient data that include real-time application data
from active user input or passive sensors are represented
using MCI in combination with large domain ontologies and
coding systems (figure 5).2

Link to Terminologies:
The representation model of heterogeneous clinical data
using terminologies might be instantiated through links from
instance data (individuals) to terminologies (mainly classes).
These links can be established by either using the rdf:type
or an annotation property. If we have a class instance in
the terminology exactly matching our need such as the
relation to ICD codes, then rdf:type is a good solution for
the link and reasoning mechanisms can be easily applied.
If a statement is more complex and there is no single
corresponding concept in the terminology, we need to post-
coordinate concepts from the terminology for further loca-
tion specifications (right, dorsal, ...) for example. For this
purpose, we defined annotation properties such as, e.g.,
mci:has qualifier. Here it would not make sense to use the
rdf:type property. The current version of MCI has links to
ICD-10, OPS10, ATC11, LOINC, the FMA, and RadLex.
By using federated SPARQL queries, it becomes possible
to combine data of MCI with knowledge contained in other
ontologies (as schematically shown in figure 5). This shows
one of the big advantages of a semantic model formalised in
RDF: we can query data from different repositories through
one query—something which is not straightforward when
using classical database techniques and SQL queries.

Storage of Application Data:
For clarity and improved query performance, we separate the
triples using different datasets for MCI, the instance data,
and the referenced ontologies. Additionally, the separation
allows us to have different reasoning levels for the different
datasets. MCI is held with OWL-reasoning while the patient
data and the referenced ontologies without any reasoning.
Further, we use named graphs in order to group patient
data triples for the context of clinical encounters. The sep-
aration of triples belonging to different clinical encounters

2SNOMED CT—Systematized Nomenclature of Medicine Clinical
Terms; ICD—International Classification of Diseases; LOINC—Logical
Observation Identifier Names and Codes: ATC—Anatomical Therapeutic
Chemical Classification System; RadLex—Radiological Lexicon; DOID—
Disease Ontology; FMA—Foundational Model of Anatomy; OPS—
Operationen- und Prozedurenschluessel (German coding system for pro-
cedures); SYMP—Symptom Ontology; LinkedCT—Linked Clinical Trials;
DrugBank—Open Drug Data; SIDER—Side Effect Resource.

Figure 5. Coding System

is necessary because some clinical departments might have
implemented different roles within the context of different
encounters (e.g., admission/discharge role). Similarly, the
mci:age at admission makes sense only within the context of
some clinical encounter. The MCI covers clinical patient data
as well as administrative data such as provider information
and meta data for clinical encounters. Sensor data about
the behaviour of the patient can now be integrated into the
model. The resulting semantic model allows us to monitor
for example the sleeping status which can be associated with
health information; or the duration a patient is bedridden can
be associated with administrative data.

F. Modelling of Clinical Guidelines

MoKi (http://moki.fbk.eu) is a tool that supports the
creation of articulated enterprise models through structured
wiki pages. Moki enables heterogeneous teams of (medi-
cal) experts with different knowledge engineering skills to
actively collaborate by inserting knowledge; transforming
knowledge; and revising knowledge at different degrees of
formality. Active collaboration is guaranteed by an automatic
translation between formal and informal specifications of the
different (medical) experts, and by facilitating an integrated
construction of the different parts of the integrated model.

Main features which we use are in the context of modeling
clinical guidelines in the context of the management of
exceptional flows in medical processes [4]: (1) support for
the construction of integrated domain and process models;
(2) easy editing of a wiki page by means of forms accessible
to the medical experts; (3) automatic import and export in
OWL and BPMN; easy import of lists of elements organised
according to predefined semantic structures (taxonomy or
partonomy); (4) term extraction functionalities; (5) graphical
browsing/editing of the domain and process models; and
(6) fully-integrated model evaluation functionalities (model
checklist and quality indicators).

In Medical CPS, we modelled the ACR guidelines:
http://www.acr.org/Quality-Safety/Standards-Guidelines/
Practice-Guidelines-by-Modality/Breast-Imaging.



Figure 6. The MRI intervention process as composed of two subprocesses
executed in sequence. Each of the subprocesses is specified in an individual
wiki page.

From the Medical CPS perspective, textual input pages
with additional clinical guideline annotations (condi-
tions/actions) with formal semantics (semi-formal frag-
ments, see figure 6) and wiki templates pages for clinicians
of the mammography routine turned out to be most valuable.

IV. CONCLUSION

We described how we combined active and passive user
input modes in clinical environments for knowledge discov-
ery and knowledge acquisition towards real-time decision
support in clinical environments. The main contributions
are, first, technical components for aggregating digitised
patient information, combining manual data acquisition and
sensory data together with a dialogue server, and second, the
integration of data acquisition technologies into a clinical
testbed environment based on semantic models for clinical
information. Data acquisition and integration may lead to
knowledge acquisition, but do not constitute knowledge
acquisition. The expected outcomes within EIT include
enabling technologies for clinical decision support; and a
medical CPS reference architecture that can contribute to the
definition of a European Healthcare Infrastructure in Horizon
2020, see http://ec.europa.eu/programmes/horizon2020.

In the next project phase (2015), we will focus on CPS
related programming questions, i.e., physiological close-
loop control with human in the loop extension: The use
of automatic control in clinical scenarios raises the stakes
for the application of control theory in medical applica-
tions. Medical device systems for patients with complicated
conditions may involve application of several treatments
simultaneously, which affect several body systems in com-
plicated and often insufficiently understood ways. These
treatments also can interfere with each other. Effects of each
treatment can differ widely from patient to patient. Critical
variables are often not directly observable, adding to the
uncertainty. Control-theoretic methods designed to operate
under high parametric uncertainty and in real-time, such
as supervisory adaptive control where the dialogue server
proactively request users for real-time expert input, may be
helpful in this context.
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