
Alejandro Figueroa & Günter Neumann

Language Technology Laboratory German Research Center for Artificial Intelligence DFKI, Saarbrücken

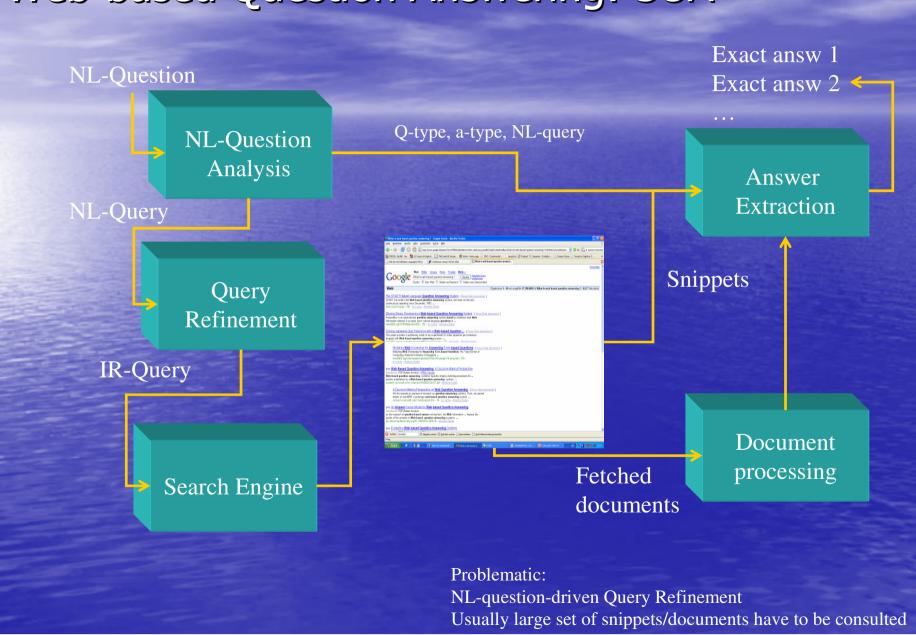
Motivation: From Search Engines to Answer Engines

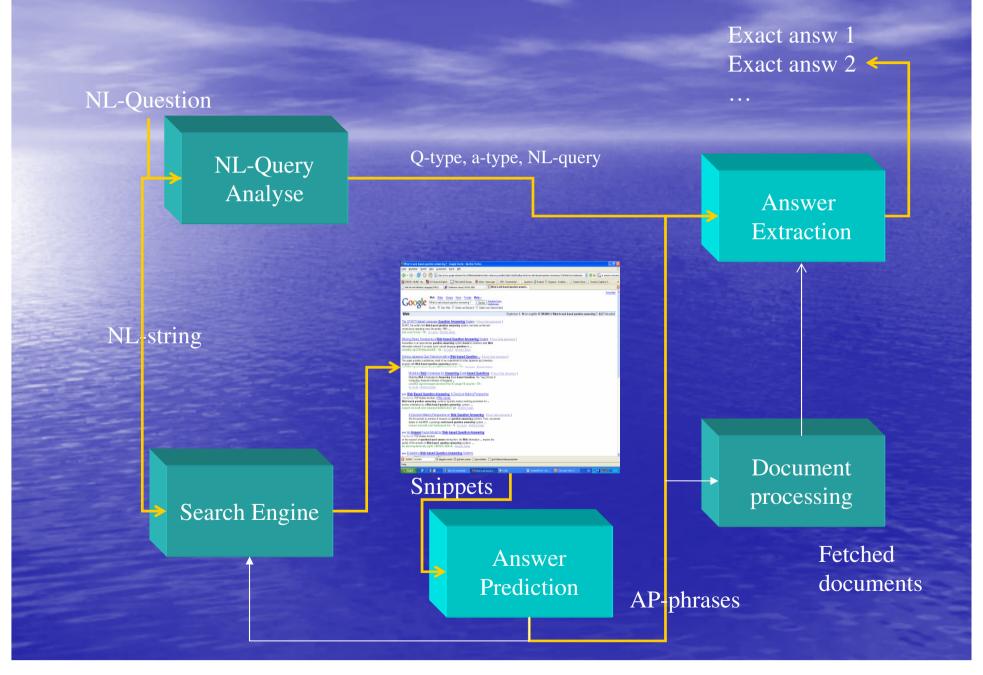
User Query: KeyWrds, Wh-Clause, Q-Text

Experienc ed-based Interactiv e QA

cycles

Answer Engine


Search Engines


Shift more "interpretation effort" to machines

User still carries the major efforts in understanding

Web-based Question Answering: SOA

Web-based Question Answering: Our Approach

Answer prediction ...

- ... identifies and extracts those substrings (called the AP-phrases) from a set of snippets/text fragments
 - Which are either paraphrases of substrings of the NL question, or
 - Which contain exact answer strings
 - E.g., "Who is the primer minister of Great Britain?"
 - Possible AP-phrases: "United Kingdom", "Tony Blair"

Notice:

- Often, the first N-snippets do not contain the answer and even point to answerless documents (we cannot rely on the first 3-5 snippets/documents; ~ low MRR of snippets)
- We need to consider several snippets/documents in order to make use of redundancy (only checking the first is not enough even if it contains the answer)
- Snippets are usually not very much linguistically well-formed
- They are computed online with very fast, but cheap methods

Web Bilder Gro Where is the tal conference series taking place in 2006?

where is the tal conference series taking play Suche Enstellungen
Suche:

Das Web Seiten auf Deutsch Seiten aus Deutschland

Web Ergebnisse 1 - 10 von

Meinten Sie: where is the tall conference series taking place in 2006?

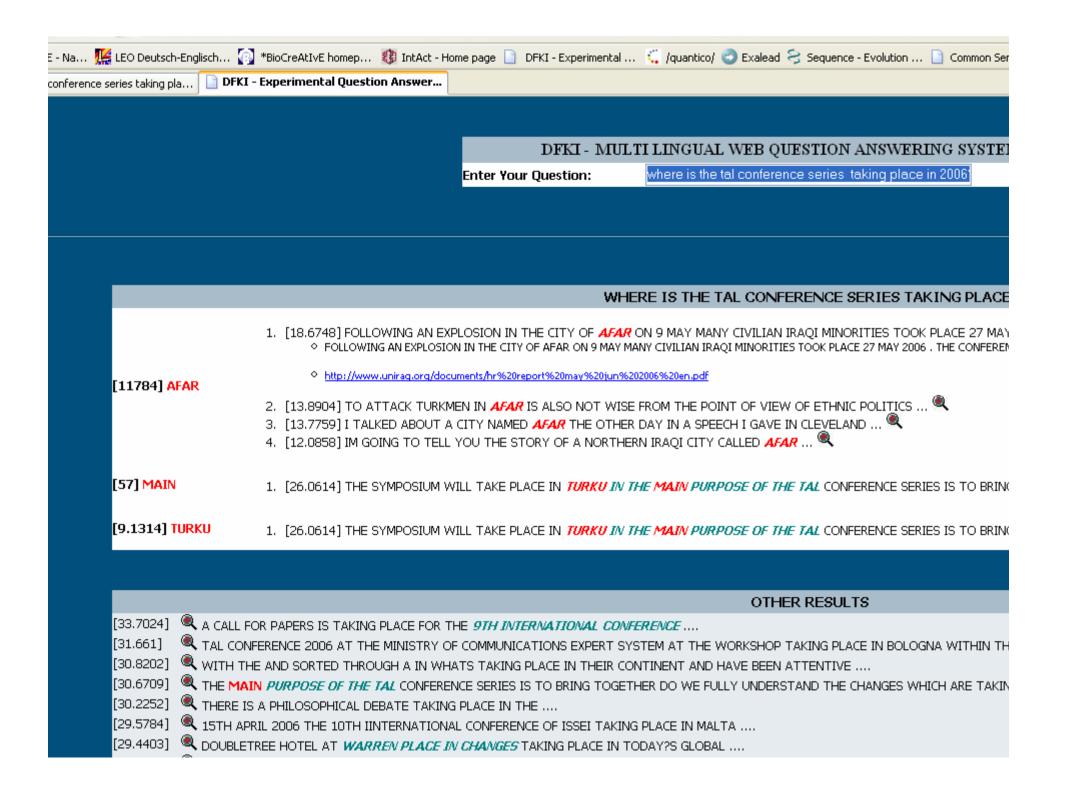
President Discusses Democracy in Iraq with Freedom House - [Diese Seite übersetzen]

This month I've given a **series** of speeches on recent events in Iraq and how ... As Peter mentioned, there is a philosophical debate **taking place** in the ... www.whitehouse.gov/news/releases/**2006**/03/**2006**0329-6.html - 102k - Im Cache - Ähnliche Seiten

President Discusses War on Terror, Progress in Iraq in West Virginia - [Diese Seite übersetzen]

And there was some awful violence, some reprisals **taking place**. ... I spoke in Cleveland, gave a press **conference** yesterday -- spoke in Cleveland Monday, ... www.whitehouse.gov/news/releases/**2006**/03/**2006**0322-3.html - 88k - Im Cache - Ähnliche Seiten [Weitere Ergebnisse von www.whitehouse.gov]

Konferenser - Conferences - [Diese Seite übersetzen]


The main purpose of the **TAL conference series** is to bring together ... Do we fully understand the changes which are **taking place** and appreciate the threats ... www.tolk.su.se/0607-12.html - 204k - Im Cache - Ähnliche Seiten

Expert System - News - [Diese Seite übersetzen]

"TAL Conference 2006" at the Ministry of Communications ... Expert System at the workshop taking place in Bologna within the eCitizen European project ... www.expertsystem.it/vetrinanews.asp?lang=1&id=1536 - 22k - Im Cache - Ähnliche Seiten

Informed Comment - [Diese Seite übersetzen]

"I was impressed by him," said Bush during a press **conference**. ... to attack Turkmen in **Tal** Afar is also not wise from the point of view of ethnic politics. ...

Technological Roadmap for this work

Data-driven
No initial query expansion/
refinement without
initial documents

Language independent answer prediction

- No NLP components
- No language model

Unsupervised data-management

- No parameter smoothing
- No restrictions on length of AP-phrases
- No fixed window size

How far can we go with this?

Answer Prediction as text zooming: core steps

N-snippets + **NL-question Document Construction:** Token set W Sentence set S Ranking of sentences Extraction of AP-phrases Ranking of AP-phrases Extraction of exact Shallow Answer extraction: answers answers • Only relevant so far for performing

evaluation of answer prediction

Document Construction/Representation

- Sentences from snippets& NL question
 - Only very simple/local tokenizer & sentence markers
- Collect global statistics

$$X_{sik} = \begin{cases} 1 & \text{if the word } w_i \text{ is in } S_s \text{ at position } k. \\ 0 & \text{Otherwise.} \end{cases}$$

 Word pair-distance frequency (respecting order)

$$freq(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j}, \boldsymbol{\varepsilon}) = \sum_{s=1}^{\sigma} \sum_{k=\varepsilon+1}^{len(S_{s})} X_{si(k-\varepsilon)} X_{sjk}$$

A document D is represented by the following elements:

$$D = \{ \langle \omega_{i}, \omega_{j}, \varepsilon, freq (\omega_{i}, \omega_{j}, \varepsilon) \rangle, \\ \forall i, j, \varepsilon, \\ freq (\omega_{i}, \omega_{j}, \varepsilon) \rangle 0, \\ 0 \leq \varepsilon \leq Y \}$$

Length of the longest Sentence in D

All possible units |W|x|W|xY, |W| relative small (N-snippets)

Ranking of Sentences

A matrix for each sentence:

$$M_{ij}(S_s) = \begin{cases} freq(\omega_i, \omega_j, \varepsilon) & \text{if } i < j \\ freq(\omega_j, \omega_i, \varepsilon) & \text{if } j > i \\ 0 & \text{otherwise} \end{cases}$$

 Filtering: ignore low frequent elements (ζ=2 globally).

$$\forall i, j \ M_{ij} \leq \zeta \Rightarrow M_{ij} = 0$$

To avoid bias of long sequences of low correlated words

rank(Ss) is given by the maximal eigenvalue of M:

$$rank(Ss) = \lambda_{max}(M(S_s))$$

This eigenvalue gives the amount of "syntactic bonding force" captured by the eigenvector related to λ_{max} .

Ranking Sentences - Remarks

- Retrieval of snippets is biased by terms in the query
- Snippets not only consists of query terms, they also consists of enriched contextual information
- Our ranking schema identifies strong syntactic patterns in snippets using them to rank the sentences in the snippets
- A high ranked sentence not necessary contains query terms, but might contain the answer
- What is the difference between this approach and a ranking based on *n-grams* (e.g., AskMRS)
 - We do not have any dependency on lengths
 - We do not need to estimate back-off probabilities
 - We do not have the problem that long sentences will tend to have a lower rank than small sentences

Determination of AP-phrases

- Idea: Sequences of pairs of words which occur with a high frequency in M (i.e., in a sentence) are chains of related words, that is, our AP-phrases.
- Words that do not have a strong relation with any other word in S_s are replaced with a "*" -> defines cutting points for sentences
- Example:
 - "The president of France went on Holidays yesterday"
 - "The president of France * * on Holidays *"
 - "The president of France", "on Holidays"

Ranking of AP-phrases

 For each AP-phrase we combine its bi-gram statistics (global context via snippets) with the rank of its embedding sentence (local context)

$$rank(v) = rank(S_s) * \sum_{b=2}^{\beta} P(B_b \mid B_{b-1})$$

$$P(B_b \mid B_{b-1}) = \frac{\log(freq(B_b - 1, B_{b-1}))}{\log(freq(B_{b-1}))}$$

Log reduces the trend to favor high frequent words.

Note:

an AP-phrase can be mapped to different rank values (if it is extracted from different sentences) -> keep only the highest ranked one.

How to Measure the Quality of an AP-phrase?

- Remember:
 - An AP-phrase is either a paraphrase to a substring of the query or an exact answer string.
 - Basically no NLP components
 - Daten-driven, language independent
- We assume that: The distribution of answers in the ranking gives a notion of the potential quality of the answer prediction strategy
 - Use the ranked AP-phrases for extracting exact answers
 - Use simple answer extractors simulating a standard QA

Shallow Answer Extraction

First Step, determine EAT just be looking up Wh-forms

EAT	Keywords
Date	Wann, When, Cuándo, Qué ano, Welchem Jahr, Que ano
Location	Wo, Where, Dónde, Onde
Person	Wer, Who, Quién, Quem

- Second step, extract terms as exact answer candidates, basically
 - * for query terms and ccw
 - * for numeric characters (who)/ non-numeric (when)
 - Who/when: Answers are terms separated by *
 - Where: terms that match a location name in Wordnet (via Babelfish)

Experiments

- CLEF 2004 corpus
 - QA pairs from 1994/95 newspaper texts
 - When/Who/Where questions for 4 languages
- N=30 Snippets and Google-API
- Two types of answers:
 - Exact Answer:
 - Exact matching with the answer provided by CLEF.
 - Inexact Answer:
 - Are not exact answers, but they are very close answers:
 - **WHERE**: not only city name, country name is also correct.
 - WHO: variants like "G. Bush", "George W. Bush".
 - WHEN: "6 1945","1945".
- Inexact answers are important, because we aim for assessing the quality of predicted answers.

Experiments

Results for each question type over all languages.

CA	Total	MRR	NAG(%)	WAG(%)	NAF(%)	1(%)	2(%)	3(%)
WHEN	218	0.60	25.11	10.96	21.46	35.16	5.02	1.8
WHERE	232	0.57	10.77	24.14	20.68	30.60	9.91	3.87
WHO	439	0.38	11.39	27.56	32.57	18.90	6.83	2.73

Distribution of answer candidates (all languages).

CA	NAF(%)	1(%)	2(%)	3(%)
WHEN	33.82	55.42	7.91	2.84
WHERE	31.86	47.00	15.23	5.95
WHO	53.37	30.97	11.19	4.47

Experiments

The results for the individual languages.								
CA(EN)	Total	MRR	NAG(%)	WAG(%)	NAF(%)	1(%)	2(%)	3(%)
when where who	$69 \\ 64 \\ 148$	0.69 0.74 0.50	15.69 7.81 7.43	$15.69 \\ 12.5 \\ 12.83$	17.65 15.62 32.43		3.92 10.93 10.14	_
CA(DE)	Total	MRR	NAG(%)	WAG(%)	NAF(%)	1(%)	2(%)	3(%)
Wann Wo	58 58	$0.45 \\ 0.46$	36.20 9.37	12.07 18.75	27.59 23.43	22.03 20.31		$0 \\ 6.25$
CA(ES)	Total	MRR	NAG(%)	WAG(%)	NAF(%)	1(%)	2(%)	3(%)
Cuándo Dónde Quién	59 63 86	0.55 0.59 0.27	16.64 10.93 9.65	11.86 31.25 40.68	23.73 15.62 28.96	32.20 26.56 11.72		11.86 3.21 2.75
CA(PT)	Total	MRR	$\mathrm{NAG}(\%)$	WAG(%)	NAF(%)	1(%)	2(%)	3(%)
Quando Onde Quem	56 47 146	0.04 0.18 0.14	30.76 10.93 17.12	12.30 25 29.45	42.45 20.31 36.30	3.08 10.93 10.95		0 4.68 2.05

Experiments - Discussion

- The distribution of answers gives the notion of the quality of the ranking strategy
- Our results do not behave in the same way for all kinds of questions and languages:
 - Question types
 - The shallow nature of the answer extractors
 - The redundancy on the Web
 - Different numbers of mentioning a term
- Lita&Carbonell:2004 report a MRR=0.447 for 296 English temporal questions for exact answer matching
- We conclude that our approach is at least competitive
- Experimental QA web system is online
 - About 5-8 seconds/QA cycle

Future Work

- Query refinement and bootstrapping
 - Exploring user feedback
- Daten-driven approach for answer extraction
 - "Exploring Genetic Algorithms", Master Thesis by Figueroa submitted
- Explore method of answer prediction for other applications, e.g., clustering of sequences and recognition of paraphrases

