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Textual Entailment 

§ Textual Entailment (TE) 
§ A Text (T) entails a Hypothesis (H), if a typical human reading T 

would infer that H is most likely true [Dagan et al. 2005] 

§ Logical entailment: 
§ A formula A entails a formula B if in all models where A holds, B 

holds as well. [e.g., Chierchia & McConnell-Ginet 2002] 

§ TE is agnostic with regard to representation of T and H 
§ TE is defined by human judgments and not model theory 
§ TE captures „common sense reasoning“: Inclusion of 

almost certain entailments 
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The promise of Textual Entailment 

§ Semantic processing is a very fragmented research area 
§ Many phenomena 
§ Many approaches 
§ Many applications 

 
§ Can TE be a unifying paradigm for semantic processing? 
§ Claim: Many NLP tasks can be „powered“ by entailment 
§ Question Answering: document text must entail answer candidate 

[e.g., Harabagiu and Hickl 2006] 
§ Automatic Tutoring: student answer must entail reference answer 

[e.g., Nielsen et al. 2009] 
§  Information Presentation: show entailment hierarchy 

[e.g., Berant et al. 2012] 

3 



Ten Years of RTE Research 

§ Textual Entailment was proposed in 2004 
§ Since then: Yearly Recognition of Textual Entailment (RTE) shared 

tasks 

§ Ten years of research 
§ Much progress regarding algorithms, resources, … 

§ Three main groups of algorithms: 
§ Alignment-based: Align words in Text and Hypothesis 
§ Transformation-based: Rewrite Text into Hypothesis 
§ Formal language-based: Represent Text and Hypothesis in formal 

language and apply reasoning methods 
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RTE systems 

§ Many research prototype system: 
§ Two open source systems for Textual Entailment: 
§ EDITS, an alignment-based system (FBK) 

q  http://edits.fbk.eu 
§ BIUTEE, a transformation-based system (BIU) 

q  http://u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html 
 

§ Does this mean that TE technology is easy to use and 
understand? 

§ No, we are not there yet 
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We are not there yet… 

§ Systems are prototypes of specific algorithms 
§ Hard-wired preprocessing tools 
§ Hard-wired assumptions about language 
§ No modularization of algorithmic parts 
§ No interchange format for inference rules 
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•  If you want to start from scratch:

•  it’s hard to reuse code
•  it’s hard to reuse inference rule resources

Almost no code or knowledge reuse

•  If you want to experiment with alternative 
algorithms:

•  you have to adapt almost everything OR
•  you have to start from scratch

High threshold for newcomers

•  If you want to exchange a preprocessing tool

•  you have to audit all code for explicit or implicit 
dependencies on the output

Gradual development quite difficult

•  If you want to bootstrap TE for a new language
•  you have to either audit all code or
•  you have to start from scratch
•  you have to build knowledge resources

High effort

•  If you want to evaluate the influence of some 
parameter (e.g. a resource) across algorithms


Very difficult to establish comparable conditions

•  If you want to apply TE to an NLP application


•  there is no clear API 


High hurdle

In sum:

Evaluation, development, application are difficult

Are we back at square one?



The EXCITEMENT Project 

 
§ Research project funded by European Commission (FP 7) 
§ Academic Partners: BIU, DFKI, FBK, HEI 

§ Goal: Infrastructure for sustainable research in TE 
§ EXCITEMENT Open Platform (EOP): A TE suite that is 
§ Multilingual 
§ Component-based 
§ Open source 
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The EXCITEMENT Open Platform 

§ Specification: Modular architecture for TE systems 
§ Reusability of algorithms, resources through interfaces 
§ Towards “plug and play” construction of systems 

§ Platform: Implementation of modular specification 
§ Multilingual: TE systems for English, German, Italian 

• Both complete in first releases 
• This presentation: Highlights 
• More details in the tutorial this afternoon 
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The EOP specification 
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The EOP Architecture 
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Specification 

§ Linguistic Analysis Pipeline 
§ Apache UIMA: linguistic analysis = enrichment of document with 

strongly typed annotation 
§ DKPro type system: language-independent representation of 

(almost) all linguistic layers [Gurevych et al. 2007] 

§ Entailment Core (Java-based) 
§  Interfaces for relevant modules 

§ Some glue 
§ E.g., common configuration 
§ Also: “soft” constraints (“best practice” policies) 
§  Initialization behavior, error handling, … 
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Entailment Core 

§ Top-level interface: Entailment Decision Algorithm 
§ Text-Hypothesis pair (UIMA) in, Decision out 
§ Existing systems can be wrapped trivially as EDAs 

§ Three major component types 
§ Annotation components 
§ Feature components 
§ Knowledge components 
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Components 

§ Annotation components 
§ Add linguistic analysis to  

the P/H pair, e.g. alignment 

§ Feature components 
§ Compute match/mismatch features, distance/similarity features, 

scoring features, … 

§ Knowledge components 
§ Provide access to inference rule bases 

q  Lexical inference rule: Lemma1 → Lemma2 
Dog → animal, snore → sleep 

q  Lexical-syntactic inference rule: Tree fragment1 → Tree fragment2 
X buy Y from Z → X pays Z for Y 
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Premise: India buys 1,000 tanks.
Hypothesis: India acquires arms.
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BIUTEE 
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TIE – Textual Inference Engine developed at LT-lab, DFKI 
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The EOP implementation 
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Scope 

§ First release of EOP is available for download! 
§ GPL licensed 

 
§ EDAs 
§ Three EDAs, EDITS, TIE, and BIUTEE 

§ LAPs 
§ For three languages 

§ Datasets (Based on RTE-3 data) 
§ English, German, Italian, 1600 T-H pairs for each 

§ Various components and many knowledge resources 
§ Documentation and Tutorials 
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http://hltfbk.github.io/Excitement-Open-Platform/ 
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20 

EOP Wiki for Collaborative Documentation  
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EOP Distributions by an Automatic Procedure 

When the source code in the master branch reaches a stable point, all of 
the changes are merged back into a release, and are tagged with a 
release number.  
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Jenkins, the continuous integration tool 

Jenkins monitors both the master and the release branch in the EOP 
GitHub repository, and whenever it detects a commit to a branch, it 
builds and tests the code in the branch. 
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EOP Release Management 



EOP Initial Testing Phase with Different Users 

§ Beta testers 
§ Test the EOP by performing some benchmark 
§ E.g., Vo Ngoc Phuoc An (FBK) on RTE-2 data sets 

§ Users 
§ Use EOP as part of a project, mainly as a black box 
§ E.g., Inside Excitement (Transduction layer), BMBF-funded project 

MEDIXIN (DFKI), HEI fall school (CL students), starting Master/PhD 
student projects (DFKI, FBK) 

 

§ Developers 
§ Contribute extensions to the EOP 
§ E.g., PhD project by Daniel Bär (UKP-Lab, TU Darmstadt) 



Current Status and Immediate Plans 

§ Users: EOP works, but is still difficult to install and use 
§ Lack of documentation: Ongoing tutorial development 
§  Inherent complexity of setup: Packaging EOP into VM 

§ EOP is used inside and outside EXCITEMENT 
§ As part of Excitement: Entailment graph, IR query expansion, 

application of EDITS in HEI to social media data 
§ As part of external partners: Entailment-based QA 

§ 2nd cycle of EOP specification until Spring 2014 
§ Addressing shortcomings of the first specification 
§ Extending the specification to include logic-based TE systems  

(Beltagy et al. 2013) 
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Future Plans 

§ Take full advantage of the EOP‘s „toolbox“ architecture 
§ Use as evaluation platform for systems or knowledge on RTE data 
§ E.g., influence of phrase similarity from distributional models of 

similarity on Textual Entailment 
 
 

§ Turn EOP into a fully open source project 
§ Project EXCITEMENT runs until 12/2014 
§ Gradually release control to open source community 
§ Model: MOSES 
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Learn More 

§ EXCITEMENT web site: http://www.excitement-project.org 
§ Specification document 

§ S. Pado, T-G. Noh, A. Stern, R. Wang, R. Zanoli: Design 
and Realization of a Modular Architecture for Textual 
Entailment. Accepted for publication in Natural Language 
Engineering. Preprints available from the authors‘ pages. 

§ T.-G. Noh, S. Pado. Using UIMA to structure an Open 
Platform for Textual Entailment. 2013. Proceedings of the 
UIMA@GSCL workshop. 
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