
Design and Realization of the EXCITEMENT 
Open Platform for Textual Entailment 
Günter Neumann, DFKI 
Sebastian Pado, Universität Stuttgart 



Textual Entailment 

§ Textual Entailment (TE) 
§ A Text (T) entails a Hypothesis (H), if a typical human reading T 

would infer that H is most likely true [Dagan et al. 2005] 

§ Logical entailment: 
§ A formula A entails a formula B if in all models where A holds, B 

holds as well. [e.g., Chierchia & McConnell-Ginet 2002] 

§ TE is agnostic with regard to representation of T and H 
§ TE is defined by human judgments and not model theory 
§ TE captures „common sense reasoning“: Inclusion of 

almost certain entailments 

2 



The promise of Textual Entailment 

§ Semantic processing is a very fragmented research area 
§ Many phenomena 
§ Many approaches 
§ Many applications 

 
§ Can TE be a unifying paradigm for semantic processing? 
§ Claim: Many NLP tasks can be „powered“ by entailment 
§ Question Answering: document text must entail answer candidate 

[e.g., Harabagiu and Hickl 2006] 
§ Automatic Tutoring: student answer must entail reference answer 

[e.g., Nielsen et al. 2009] 
§  Information Presentation: show entailment hierarchy 

[e.g., Berant et al. 2012] 

3 



Ten Years of RTE Research 

§ Textual Entailment was proposed in 2004 
§ Since then: Yearly Recognition of Textual Entailment (RTE) shared 

tasks 

§ Ten years of research 
§ Much progress regarding algorithms, resources, … 

§ Three main groups of algorithms: 
§ Alignment-based: Align words in Text and Hypothesis 
§ Transformation-based: Rewrite Text into Hypothesis 
§ Formal language-based: Represent Text and Hypothesis in formal 

language and apply reasoning methods 

4 



RTE systems 

§ Many research prototype system: 
§ Two open source systems for Textual Entailment: 
§ EDITS, an alignment-based system (FBK) 

q  http://edits.fbk.eu 
§ BIUTEE, a transformation-based system (BIU) 

q  http://u.cs.biu.ac.il/~nlp/downloads/biutee/protected-biutee.html 
 

§ Does this mean that TE technology is easy to use and 
understand? 

§ No, we are not there yet 

5 



We are not there yet… 

§ Systems are prototypes of specific algorithms 
§ Hard-wired preprocessing tools 
§ Hard-wired assumptions about language 
§ No modularization of algorithmic parts 
§ No interchange format for inference rules 

6 

•  If you want to start from scratch:

•  it’s hard to reuse code
•  it’s hard to reuse inference rule resources

Almost no code or knowledge reuse

•  If you want to experiment with alternative 
algorithms:

•  you have to adapt almost everything OR
•  you have to start from scratch

High threshold for newcomers

•  If you want to exchange a preprocessing tool

•  you have to audit all code for explicit or implicit 
dependencies on the output

Gradual development quite difficult

•  If you want to bootstrap TE for a new language
•  you have to either audit all code or
•  you have to start from scratch
•  you have to build knowledge resources

High effort

•  If you want to evaluate the influence of some 
parameter (e.g. a resource) across algorithms


Very difficult to establish comparable conditions

•  If you want to apply TE to an NLP application


•  there is no clear API 


High hurdle

In sum:

Evaluation, development, application are difficult

Are we back at square one?



The EXCITEMENT Project 

 
§ Research project funded by European Commission (FP 7) 
§ Academic Partners: BIU, DFKI, FBK, HEI 

§ Goal: Infrastructure for sustainable research in TE 
§ EXCITEMENT Open Platform (EOP): A TE suite that is 
§ Multilingual 
§ Component-based 
§ Open source 

7 



The EXCITEMENT Open Platform 

§ Specification: Modular architecture for TE systems 
§ Reusability of algorithms, resources through interfaces 
§ Towards “plug and play” construction of systems 

§ Platform: Implementation of modular specification 
§ Multilingual: TE systems for English, German, Italian 

• Both complete in first releases 
• This presentation: Highlights 
• More details in the tutorial this afternoon 

8 



The EOP specification 
 

9 



The EOP Architecture 

Pla$orm(

Linguis/c(
Analysis(

Pipeline((LAP)(

Entailment(Core((EC)(

Entailment(Decision((
Algorithm((EDA)(

Dynamic(and(Sta/c(Components(
(Algorithms(and(Knowledge)(

Linguis/c(
Analysis(

Components(
Decision(

1(

Raw(Data(

10 



Specification 

§ Linguistic Analysis Pipeline 
§ Apache UIMA: linguistic analysis = enrichment of document with 

strongly typed annotation 
§ DKPro type system: language-independent representation of 

(almost) all linguistic layers [Gurevych et al. 2007] 

§ Entailment Core (Java-based) 
§  Interfaces for relevant modules 

§ Some glue 
§ E.g., common configuration 
§ Also: “soft” constraints (“best practice” policies) 
§  Initialization behavior, error handling, … 

11 



Entailment Core 

§ Top-level interface: Entailment Decision Algorithm 
§ Text-Hypothesis pair (UIMA) in, Decision out 
§ Existing systems can be wrapped trivially as EDAs 

§ Three major component types 
§ Annotation components 
§ Feature components 
§ Knowledge components 

12 



Components 

§ Annotation components 
§ Add linguistic analysis to  

the P/H pair, e.g. alignment 

§ Feature components 
§ Compute match/mismatch features, distance/similarity features, 

scoring features, … 

§ Knowledge components 
§ Provide access to inference rule bases 

q  Lexical inference rule: Lemma1 → Lemma2 
Dog → animal, snore → sleep 

q  Lexical-syntactic inference rule: Tree fragment1 → Tree fragment2 
X buy Y from Z → X pays Z for Y 

13 

Premise: India buys 1,000 tanks.
Hypothesis: India acquires arms.

India

buys

1,000 tanks

subj dobj

India

acquires

arms

subj dobj

0.9

1.0 0.7



EDITS 

EDA 
Classifier parse  

trees 
of  
T&H 

Syntactic 
knowledge 
components 

Lexical 
knowledge 
components 

Entailment 
decision 

COMPONENTS Syntactic 
distance 
components 

Lexical 
distance 
components 

String 
distance 
components 

LAP 
tokenizer)
tagger)
NER)
parser)

coref3resol.)

14 



BIUTEE 

LAP 

tokenizer)
tagger)
NER)
parser)

coref3resol.)

EDA 

Parse)tree))
deriva9on))
genera9on)

Tree)
space)
search)

derived 
trees 

derivation  
steps  

From T  
to H 

good candidates Classifier Initial 
parse  
tree of  
T&H 

Syntactic 
knowledge 
components 

Lexical 
knowledge 
components 

Entailment 
decision 

COMPONENTS 

15 



TIE – Textual Inference Engine developed at LT-lab, DFKI 

2nd$stage*
classifier*

Lexical*
scoring*

components*

Syntac7c*
*scoring*

components*

Seman7c*
*scoring*

component*

NE*
*scoring*

component*

Entailment 
decision 

LAP EDA 

Lexical**
knowledge*
components*

Syntac7c*
knowledge*
components*

parse  
trees, 
SRL of 
T&H 

COMPONENTS 

tokenizer*
tagger**
parser**
NER*
SRL*

1st-stage  
classifiers 

16 



The EOP implementation 
 

17 



Scope 

§ First release of EOP is available for download! 
§ GPL licensed 

 
§ EDAs 
§ Three EDAs, EDITS, TIE, and BIUTEE 

§ LAPs 
§ For three languages 

§ Datasets (Based on RTE-3 data) 
§ English, German, Italian, 1600 T-H pairs for each 

§ Various components and many knowledge resources 
§ Documentation and Tutorials 

18 



http://hltfbk.github.io/Excitement-Open-Platform/ 

19 



20 

EOP Wiki for Collaborative Documentation  



21 

EOP Distributions by an Automatic Procedure 

When the source code in the master branch reaches a stable point, all of 
the changes are merged back into a release, and are tagged with a 
release number.  



22 

Jenkins, the continuous integration tool 

Jenkins monitors both the master and the release branch in the EOP 
GitHub repository, and whenever it detects a commit to a branch, it 
builds and tests the code in the branch. 



23 

EOP Release Management 



EOP Initial Testing Phase with Different Users 

§ Beta testers 
§ Test the EOP by performing some benchmark 
§ E.g., Vo Ngoc Phuoc An (FBK) on RTE-2 data sets 

§ Users 
§ Use EOP as part of a project, mainly as a black box 
§ E.g., Inside Excitement (Transduction layer), BMBF-funded project 

MEDIXIN (DFKI), HEI fall school (CL students), starting Master/PhD 
student projects (DFKI, FBK) 

 

§ Developers 
§ Contribute extensions to the EOP 
§ E.g., PhD project by Daniel Bär (UKP-Lab, TU Darmstadt) 



Current Status and Immediate Plans 

§ Users: EOP works, but is still difficult to install and use 
§ Lack of documentation: Ongoing tutorial development 
§  Inherent complexity of setup: Packaging EOP into VM 

§ EOP is used inside and outside EXCITEMENT 
§ As part of Excitement: Entailment graph, IR query expansion, 

application of EDITS in HEI to social media data 
§ As part of external partners: Entailment-based QA 

§ 2nd cycle of EOP specification until Spring 2014 
§ Addressing shortcomings of the first specification 
§ Extending the specification to include logic-based TE systems  

(Beltagy et al. 2013) 

25 



Future Plans 

§ Take full advantage of the EOP‘s „toolbox“ architecture 
§ Use as evaluation platform for systems or knowledge on RTE data 
§ E.g., influence of phrase similarity from distributional models of 

similarity on Textual Entailment 
 
 

§ Turn EOP into a fully open source project 
§ Project EXCITEMENT runs until 12/2014 
§ Gradually release control to open source community 
§ Model: MOSES 

26 



Learn More 

§ EXCITEMENT web site: http://www.excitement-project.org 
§ Specification document 

§ S. Pado, T-G. Noh, A. Stern, R. Wang, R. Zanoli: Design 
and Realization of a Modular Architecture for Textual 
Entailment. Accepted for publication in Natural Language 
Engineering. Preprints available from the authors‘ pages. 

§ T.-G. Noh, S. Pado. Using UIMA to structure an Open 
Platform for Textual Entailment. 2013. Proceedings of the 
UIMA@GSCL workshop. 

27 


