
A Type-Driven Method for Compacting MMorph Resources

Hans-Ulrich Krieger and Feiyu Xu
Language Technology Lab

German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany�

krieger|feiyu � @dfki.de

Abstract
This paper describes an offline compaction method
that removes both redundancies and spurious ambi-
guities from MMorph lexical databases. The de-
scribed technique increases the efficiency of systems
using MMorph, since it shrinks the size of the lexi-
cons and comes up with fewer readings for a morpho-
logical form. Our approach not only is interesting to
MMorph, but also to other lexicons, which build on
an attribute-value representation of lexical informa-
tion. The compaction method is part of the SProUT
shallow processing system.

1 Motivation

In multilingual text processing systems, performance
is heavily affected by the size and reusability of ob-
jects that encode linguistic knowledge. Thus, building
compact lexical databases supporting efficient opera-
tions is an important research and engineering task.

Our compaction method has been developed as part
of the SProUT system (Shallow Processing with Uni-
fication and Typed feature structures), a platform for
the construction of multilingual shallow text process-
ing systems (Becker et al. 02). The system con-
sists of linguistic processing resources for seven lan-
guages (Chinese, English, French, German, Japanese,
Italian, Spanish), and provides a grammar develop-
ment and testing environment. In SProUT, typed fea-
ture structures (TFSs) are used as the uniform data
interchange format between components and there-
fore, morphological information in SProUT is repre-
sented via TFSs. Transduction rules in SProUT do not
rely on simple atomic symbols, but instead on TFSs,
where the left-hand side of a rule is a regular expres-
sion over TFSs, representing the recognition pattern,
and the right-hand side is a sequence of TFSs, speci-
fying the output structure. Consequently, equality of
atomic symbols is replaced by unifiability of TFSs and
the output is constructed using TFS unification w.r.t. a
type hierarchy (see section 3.1 for an informal expla-
nation).

Morphological resources are built on top of the full
form lexical databases of MMorph. However, many
lexical entries possess spurious ambiguities within

MMorph. When integrating MMorph lexicons as they
are, a runtime system might have a serious space prob-
lem, and in particular, performs redundant unifica-
tions. This paper describes an approach, which com-
pacts MMorph resources by replacing several read-
ings through a compact reading, by deleting redun-
dant readings, and by substituting specialized read-
ings through more general ones, using type general-
ization and subsumption checking. These techniques
go hand in hand with a moderate enlargement of the
original type hierarchy.

2 MMorph

MMorph has been developed at ISSCO/Geneva (Petit-
pierre & Russell 95). It provides an environment for
the development and compilation of lexical databases,
and allows to access the results of morphological
analysis. The full form lexicons used in our ap-
plication are available for five languages, viz., En-
glish (approx. 200,000 entries), German (830,000),
French (225,000), Italian (330,000), and Spanish
(570,000). Initial lexical entries are collected from
various sources (ISSCO, Sardic, and the Web). In ad-
dition, many regular entries are automatically derived
from already existing ones by means of extended two-
level rules (Koskenniemi 84).

Entries in an MMorph full form database relate
word forms to their base forms and their morphosyn-
tactic descriptions (MSDs), which are sets of flat
feature-value pairs. In MMorph, most lexical entries
have more than one inflectional reading; e.g., in the
original German lexicon, the average number of read-
ings is 3.2. We have observed that there are many
redundant readings among these ambiguities. Figure
1 demonstrates an extreme case, the German word
“evaluierten” (to evaluate, evaluated), which has 11
readings. The MSD of the first reading assigns, e.g.,
the attribute person the value 1|3, meaning 1 or 3,
where | serves as a syntactic delimiter, indicating a
disjunctive description. When carefully studying the
MSDs and comparing them to each other, we discover
that several entries are redundant, e.g., reading 3, 4, 6,

7, 9, and 10 are specific cases of reading 11 and can
therefore be deleted.

3 Compacting MMorph

Before presenting the details of the compaction algo-
rithm, additional technical information is required.

3.1 Background

Central to TFSs is an operation which combines the
information from two feature structures w.r.t. a type
hierarchy: unification. The resulting unique single
structure contains the information provided by the in-
put structures, but nothing more. If the input struc-
tures contain conflicting information, unification is
said to be failed.

Informally, a feature structure can be seen as a
collection of feature-value pairs, where a feature ex-
presses a functional (linguistic) property and the value
of a feature might again be a feature structure (or an
atom), thus we allow for recursive embeddings. An
important characteristic of feature structures is that
they provide coreference constraints, meaning that
two features share exactly one common value. This
concept allows for the transport of information and
is exhaustively used in unification-based grammars,
where features on the left-hand side (LHS) of a gram-
mar rule share values with other features on the right-
hand side (RHS).

Feature structures can also be given a type, which
ultimately leads to TFSs. First of all, a type can be
seen as a compact abbreviation for a TFS, support-
ing clarity and easy modifiability of descriptions (type
definition). Furthermore, types can be arranged in a
type hierarchy, allowing multiple inheritance of infor-
mation from all supertypes; for more information on
this theme, see (Carpenter 92).

Since MMorph entries in the SProUT shallow pro-
cessor are translated into TFSs, it is essential to guar-
antee that TFS unification is an efficient operation:
firstly, unifiability is used by the SProUT interpreter
during the matching phase of the LHS of a rule and
secondly, unification is employed during structure
building on the RHS (see (Becker et al. 02) for more
information). Efficiency is addressed on the feature
term level by a lazy-copying unifier which is a variant
of (Emele 91) and during type unification by a sophis-
ticated greatest lower bound (GLB) caching mecha-
nism, based on a bit-vector encoding of types (Kiefer
et al. 99).

The complexity of computing a new GLB is linear
in the number of types (in the best case even logarith-

mic), according to a method introduced by (Aı̈t-Kaci
et al. 85). The idea here is to establish an injection� between the original type hierarchy � and another
partial order � (of bit-vectors) which allows a faster
computation of GLBs. In case that � is a lower semi-
lattice (or a bounded complete partial order, BCPO),
which is guaranteed to be the case for our initial type
hierarchy, the inverse mapping ����� is also an injec-
tion. The computation of a GLB for two type �	��
 then
reduces to the computation of

� ���
� � � ����� � �
����
whereas � denotes the bit-wise AND operation on
the two bit-vectors � � ��� and � �
�� . Given a bit-code� , ����� � � � is given by

� ��� � � ������������� � � � ���"! �
#%$

meaning that �&��� � � � is the set of maximal elements
from � , whose codes are less than � . In case � is a
BCPO, this set consists of a single unique element, as
explained above.

The cached items (pairs of types mapping onto their
GLBs) can be retrieved even in constant time on the
average, due to a technique that is used in compiler
technology when mapping a multi-dimensional array
onto the (one-dimensional) main memory. Assume
that a type � is represented by an integer '�(� �)� and that
the set of types is given by � . The GLB of two types
� and
 can then be realized by a (hash) table lookup,
whereas the unique key (an integer) is computed as

'�(� ����*+� �,�.-/'0(�
��
and the corresponding value is exactly GLB � �1��
�� .

We note here that type hierarchies which are not
bounded complete (i.e., there exist pairs of types
which do not have a unique maximal lower bound,
i.e., a GLB) can be transformed into order-preserving
BCPOs by using a completion method devised in (Aı̈t-
Kaci et al. 89). As stated above, type hierarchies in
SProUT are always BCPOs, due to an offline applica-
tion of the flop preprocessor of PET (Callmeier 00),
which performs (besides other things) the completion
of arbitrary type hierarchies.

The TFS unifier above is part of the JTFS package,
a freely available implementation of TFSs (Krieger
02). JTFS reads in a binary representation of a typed
unification grammar (the output of the flop preproces-
sor), including type hierarchy and lexicon, and builds
up the objects in main memory. JTFS supports a dy-
namic extension of the type hierarchy at run time to

1. Verb[mode=indicative vform=fin tense=imperfect number=plural person=1|3 particle verb=none ...]

2. Verb[mode=subjunctiveII vform=fin tense=imperfect number=plural person=1|3 particle verb=none ...]

3. Adjective[gender=masc number=singular case=gen|acc degree=pos spelling=unchanged stts open=adja]

4. Adjective[gender=neutrum number=singular case=gen degree=pos spelling=unchanged stts open=adja]

5. Adjective[gender=masc|fem|neutrum number=plural case=dat degree=pos spelling=unchanged stts open=adja]

6. Adjective[gender=masc number=singular case=gen|dat|acc degree=pos spelling=unchanged stts open=adja]

7. Adjective[gender=fem|neutrum number=singular case=gen|dat degree=pos spelling=unchanged stts open=adja]

8. Adjective[gender=masc|fem|neutrum number=plural case=nom|gen|dat|acc degree=pos spelling=unchanged ...]

9. Adjective[gender=masc number=singular case=gen|dat|acc degree=pos spelling=unchanged stts open=adja]

10. Adjective[gender=fem|neutrum number=singular case=gen|dat degree=pos spelling=unchanged stts open=adja]

11. Adjective[gender=masc|fem|neutrum number=singular case=nom|gen|dat|acc degree=pos spelling=unchanged ...]

Figure 1: The 11 readings for evaluierten. We only display the morphosyntactical features. The format of the
entries is determined by MMorph. The entries result from a full form MMorph dump.

allow for unknown words. Other operations, such as
subsumption and equivalence checking, fast unifiabil-
ity testing, deep copying, path selection, feature itera-
tion, and different printers are available.

3.2 Restrictions

Due to the fact that the lazy-copying TFS unifier in
SProUT only provides conjunctive descriptions, we
translated the original MMorph lexicons into disjunc-
tive normal form (DNF) to have a first running sys-
tem. For instance, the disjunctive reading 11 in figure
1 resulted in ��-���-�� -���-�� ����� (conjunctive) read-
ings. In general, moving to DNF is not a bad idea and
must not lead to a degradation of efficiency as (Kiefer
et al. 99) have shown for several large HPSG gram-
mars (they even gained a speedup of a factor of two
as a result of using a lazy-copying unifier, instead of a
non-lazy disjunctive unifier).

However, one can have the best of the two worlds,
at least in our setting here: a lazy-copying unifier plus
disjunctive descriptions which, however, are encoded
as additional types in the original type hierarchy. In
general, expressing a disjunctive feature constraint,
e.g., �
	 ����
 �
	
��
through an equivalent feature constraint employing a
new disjunctive type, e.g.,�
	 � ���
��
is not always possible, due to a theoretical and a very
practical fact.

3.2.1 Coreferences

The difference between type and token identity might
get lost in case a coreference is located inside a TFS,

which is imploded into a new type; e.g., if the value
under feature

	
in � 	 �
�

1 ����
1 �

would be substituted by type
 , representing TFS��� ���
we could no longer distinguish the above description
from � 	���� ���� � �
since both are now of the form� 	
� ���

Clearly, we can maintain the coreference 1 by
reduplicating feature

�
, say, on top of the TFS, call-

ing it
��� �

 ! 	 � �
1 � ��

1� �
1 "$#%

so that the substitution would yield
�
 ! 	
�

1 ����
1 " #%

This, however, will result in a global reformula-
tion of all other TFSs which are suspect to potentially
unify with the above structure and by making sure that� �

is a new feature, not used anywhere before.

3.2.2 Combinatorics

In case that the number of appropriate values for a
given feature is large (e.g., the KEY feature in HPSG
grammars) or even potentially infinite (e.g., the mor-
phological string form), it would not be a good idea to
represent all possible combinations of values through
a type hierarchy. Assuming, we have � different val-
ues for a given feature, the number of possible combi-
nations (= number of new types) is � ��� � � � (the �
original types are already there, plus the bottom type�

, always expressing inconsistent knowledge).
However, the above two points are not applicable

here. Firstly, MMorph entries do not specify corefer-
ence constraints (only implicit through atomic values
which can be seen as always coreferent). Secondly,
we employ the above power set construction only for
single features which comes up with a relatively small
number of types, but do not mould several features
and their values into a single type (at least not at the
moment).

3.3 Compaction Method

Given a full form database, containing entries such as
the example in figure 1, we store information for the
same word form (example: evaluierten) in an index
structure of the following form (POS abbreviates part-
of-speech):

word form � POS ��� stem ��� � set of MSDs	
	�	 	
	
	
stem �
� � set of MSDs

...
...

...
POS � � stem � � � set of MSDs	
	�	 	
	
	

stem ��� � set of MSDs

An MSD (i.e., a set of flat feature-value pairs) is en-
coded as a table of the following form:

feature ��� set of appropriate values	
	�	 	
	�	
feature ��� set of appropriate values

Given a set of MSDs � for a word form, the com-
pacting method applies the following operations to ar-
bitrary � � ����� ��� , until � remains constant (i.e.,
until a fixpoint is reached):

1. equality test
if � � ����� , then remove � � from � .

2. subsumption test
if the set of values for the features in � � is a
subset of values of features in ��� , then remove
� � from � (��� is more general than � �).

3. set union
if � � differs from ��� at only one feature

	
, then

merge the two values, remove � � from � , and
replace the value of

	
in ��� by � , where � � �

� �"! 	$# ��� ! 	 denotes the union of the two sets
(generalize � � and � �).

3.4 Generating a Type Hierarchy

During the analysis of a full form lexicon, we collect

1. POS information together with their features and

2. features together with their appropriate values.

From 1. and 2., we generate type definitions (i.e., a
type hierarchy, plus appropriateness specifications).

For example, the PERSON feature in German or En-
glish has the three values 1, 2, and 3. The type hierar-
chy will then be (we omit

�
):

1 2 3

1 31 2 2 3

1 2 3

%

The type definitions are generated as �'&)(state-
ments (Krieger & Schäfer 94) and are processed by
the flop preprocessor of PET (see section 3.1), so that
they can be incorporated into the SProUT system:

1_2_3 :< *top*.
1_2 :< 1_2_3.
1_3 :< 1_2_3.
2_3 :< 1_2_3.
1 := 1_2 & 1_3.
2 := 1_2 & 2_3.
3 := 1_3 & 2_3.

The new types names are generated by a power set
construction of the appropriate values for the features
of interest. The specific form of the type names orig-
inates from a lexicographical ordering of the symbols
(so that we have, e.g., 1 2, but not 2 1). Given the
natural order * between elements of the power set,
we can easily generate the above order of type def-
inition statements. E.g., since ���)� � # * ���)� � � � # is
the case, we know that the definition for 1 2 3 must
come before 1 2. And since intersection corresponds
to the GLB, we know, for instance, that 1 must inherit
from 1 2 and 1 3: ���)� � #$+ ���)� � # � ��� # .

Given the MSDs (see figure 1), we generate further
type definitions to represent inflectional information.
There will be a type definition for each POS, consist-
ing of features we are interested in (i.e., only a subset

of the MMorph features) and which are restricted by
their most general type (e.g., 1 2 3 in the example),
e.g.,

infl_verb :=
infl & [PERSON 1_2_3,

PARTICLE_VERB sep_part_...,
TENSE imperfect_present,
STTS_OPEN adja_adjd,
NUMBER plural_singular,
SPELLING new_old_unchanged,
MODE imperative_indicative_...,
VFORM fin_inf_infzu_prp_psp].

We note here that by adding new types, the GLB
computation will still has a constant time complexity
on the average, due to the table lookup technique de-
scribed in section 3.1.

4 Results

After applying the compaction method to the German
lexicon in DNF, the average number of readings has
been reduced from 5.8 (in DNF) to 1.6 (with addi-
tional types), whereas the original German MMorph
lexicon had 3.2 readings on the average (recall that the
original MMorph entries employed atomic disjunc-
tions). The most drastic improvements are obtained
for adjectives: 4.0 (original lexicon) vs. 1.7 readings
(compacted lexicon). The size of the new lexicon is
less than one third of the old in DNF: 0.86 GByte vs.
0.25 GByte. Only 195 type definitions are produced
by the above method for the German lexicon. Overall,
the average speedup measured for the German named
entity grammars in SProUT was about a factor of 3.

The approach described here has even a repercus-
sion on the original MMorph data base, since the com-
pacted lexicons can be retranslated, thus helping to
remove spurious ambiguities from MMorph. At the
moment, we do not merge several features into a new
(super-)feature (e.g., PERSON-NUMBER or PERSON-
NUMBER-TENSE). It is worth considering this option,
since it will further lower the ambiguity rate which
will have a direct impact on runtime performance.

A related approach, although performed entirely
manually, has been conducted by Dan Flickinger.
(Flickinger 02) reports on experiments with a large
HPSG grammar, which originally contained feature
structure disjunctions (see section 3.2). By going to
conjunctive descriptions (as we did), by introducing
additional types, and by changing the grammar (in
his approach: by hand), Flickinger achieved signif-
icant performance gains: parsing was approx. four
times faster and required three times less space. He
also combined several features and their values into
new super-features and super-values. We are currently

investigating the impact of such a packing of mor-
phosyntactical information in SProUT. The described
automated compaction method can be easily extended
to handle such super-features/-values.

References
(Aı̈t-Kaci et al. 85) Hassan Aı̈t-Kaci, Robert Boyer, and

Roger Nasr. An encoding technique for the efficient im-
plementation of type inheritance. Technical Report AI-
109-85, MCC, Austin, TX, 1985.

(Aı̈t-Kaci et al. 89) Hassan Aı̈t-Kaci, Robert Boyer, Patrick
Lincoln, and Roger Nasr. Efficient implementation of
lattice operations. ACM Transactions on Programming
Languages and Systems, 11(1):115–146, January 1989.

(Becker et al. 02) Markus Becker, Witold Drożdżyński,
Hans-Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer,
and Feiyu Xu. SProUT—Shallow processing with uni-
fication and typed feature structures. In Proceedings of
the International Conference on Natural Language Pro-
cessing, ICON-2002, 2002.

(Callmeier 00) Ulrich Callmeier. PET—A platform for ex-
perimentation with efficient HPSG processing. Natural
Language Engineering, 6(1):99–107, 2000.

(Carpenter 92) Bob Carpenter. The Logic of Typed Fea-
ture Structures. Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge, 1992.

(Emele 91) Martin Emele. Unification with lazy non-
redundant copying. In Proceedings of the 29th Annual
Meeting of the Association for Computational Linguis-
tics, pages 323–330, 1991.

(Flickinger 02) Dan Flickinger. On building a more ef-
ficient grammar by exploiting types. In S. Oepen, D.
Flickinger, J. Tsuji, and H. Uszkoreit, editors, Collabo-
rative Language Engineering. A Case Study in Efficient
Grammar-based Processing, pages 1–17. CSLI Publica-
tions, 2002.

(Kiefer et al. 99) Bernd Kiefer, Hans-Ulrich Krieger, John
Carroll, and Rob Malouf. A bag of useful techniques for
efficient and robust parsing. In Proceedings of the 37th
Annual Meeting of the Association for Computational
Linguistics, ACL-99, pages 473–480, 1999.

(Koskenniemi 84) Kimmo Koskenniemi. A general com-
putational model for word-form recognition and produc-
tion. In Proceedings of the 10th International Confer-
ence on Computational Linguistics, COLING-84, pages
178–181, 1984.

(Krieger & Schäfer 94) Hans-Ulrich Krieger and Ul-
rich Schäfer. ����� —A type description language for
constraint-based grammars. In Proceedings of the 15th
International Conference on Computational Linguistics,
COLING-94, pages 893–899, 1994.

(Krieger 02) Hans-Ulrich Krieger. JTFS—a Java imple-
mentation of typed feature structures. Technical Report,
DFKI, 2002.

(Petitpierre & Russell 95) Dominique Petitpierre and Gra-
ham Russell. MMORPH—The Multext Morphology
Program, 1995. Multext Deliverable 2.3.1. ISSCO, Uni-
versity of Geneva.

