

Adaptation of an automotive dialogue system to users' expertise and evaluation of the system

Dragan Milchevski Seminar: Personalization of User Interface Supervisor: Michael Feld University of Saarland

Google Glass Project

01.06.2012

Motivation

- First in-car spoken dialogue systems (SDSs) in late 90s
- Ways of adaptations:
 - The task demand of the user attention
 - Influence of age on user behavior
 - User preferences
 - Clarification of dialogues

User experience

Inexperienced

Experienced

01.06.2012

STUDENT

[6]

[7]

Adapting techniques

- Adapting the dialogue strategy
- Adapting functional range

Adapting the content of the system prompts

- Lack of research on this issue
- Traffic must be at the forefront of drivers' awareness
- Speech dialogues in automotive are very restricted

Outline

Motivation

Classification of the users

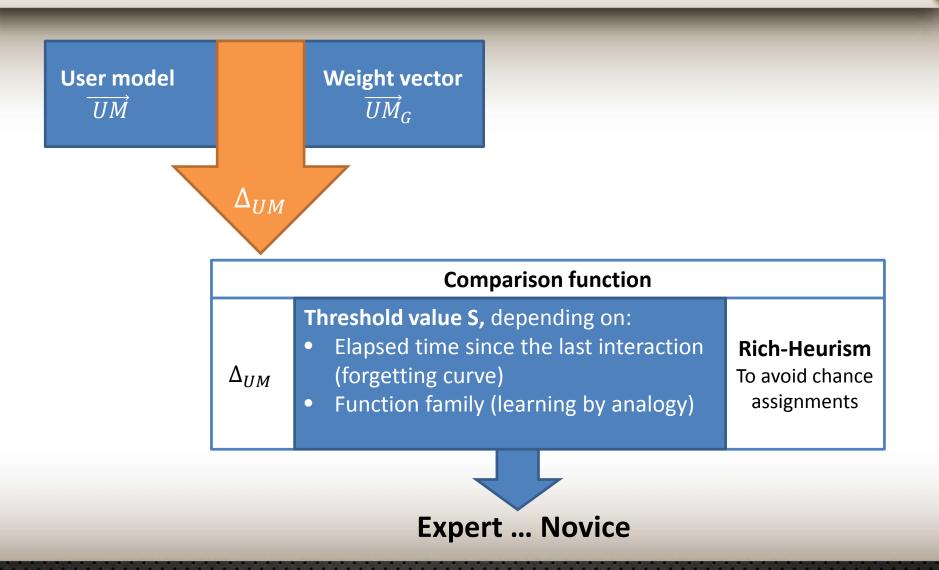
- Adaptation of user prompts
- Evaluation
- Related work
- Conclusion

Classification of the users

Novice

- Tutorial

- Detail confirmation of the actions



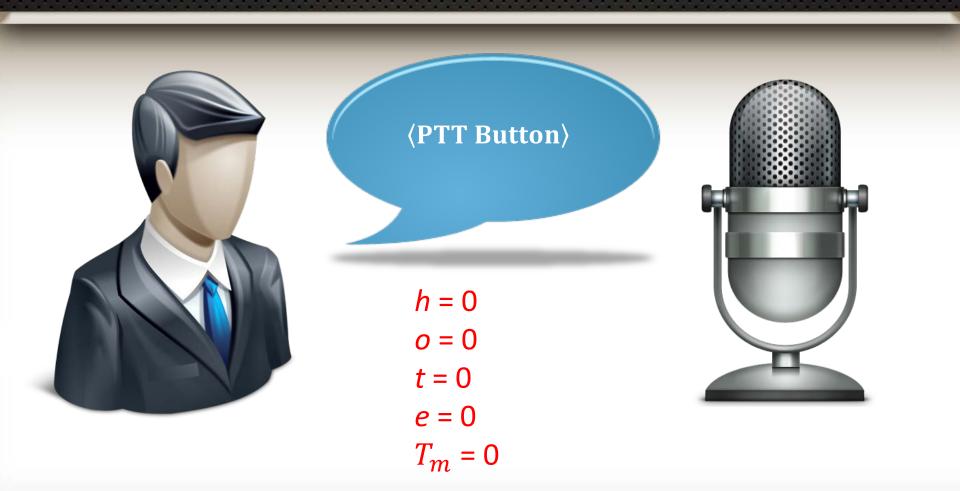
[6]

Accomplish tasks quickly – Little or no guidance – Short or no confirmation prompts –

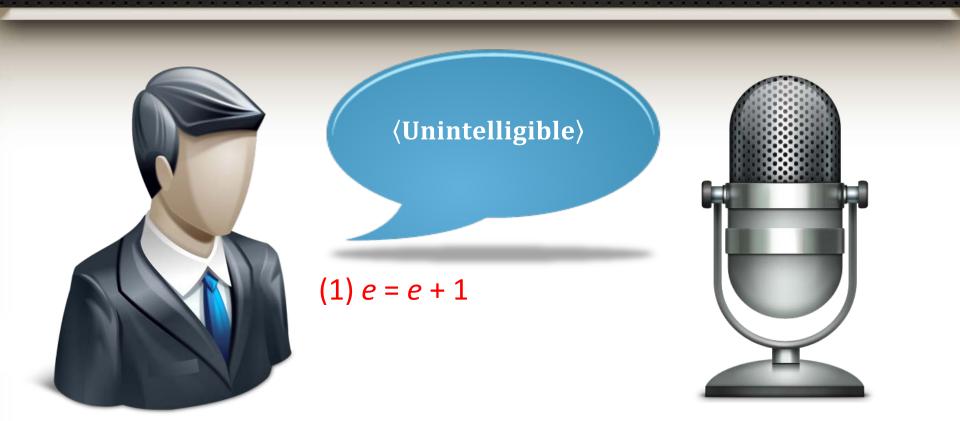
Expert

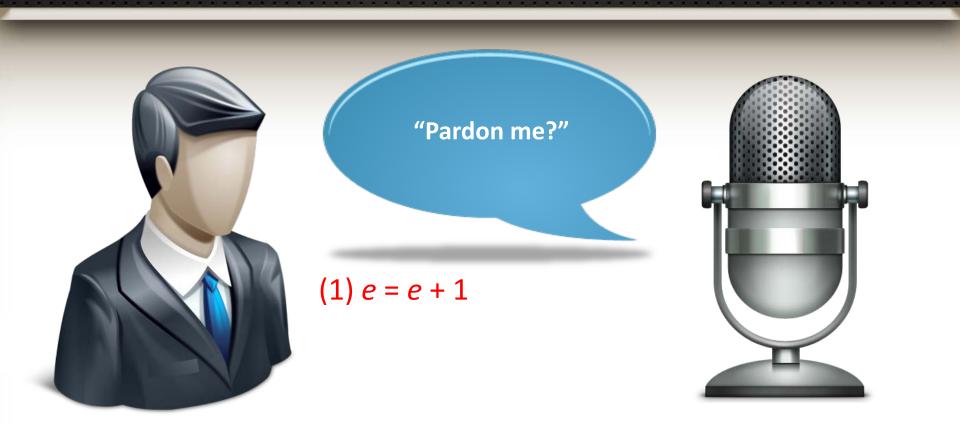
Calculating the user category

01.06.2012


User Model

• Vector \overline{UM}


- Parameters (h, o, t, e, T_m)
- Calculated for each task separately


Parameter	Meaning	
# Help request <i>h</i>	Users asked for general information about the system	
# Option requests, o	Users asked for the currently available voice commands	
# Timeouts <i>, t</i>	The ASR did not get any acoustic signal (>5 s pause)	
# ASR-failure <i>, e</i>	The system could not understand the users' input, e.g. OOV words or unintelligible speech	
Onset time, T_m	Users need more than 3 s to start answering	
Table 1 Parameters for calculation of \overrightarrow{UM}		

01.06.2012

(Unintelligible)

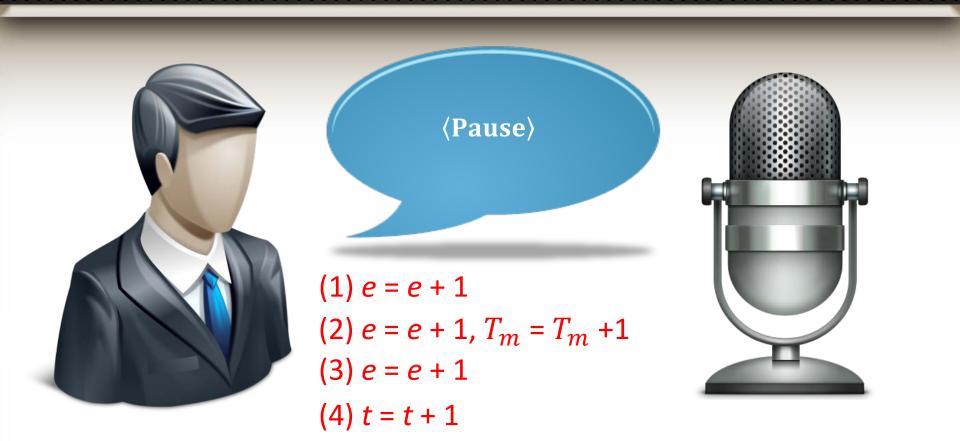
(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$

"I couldn't understand you. Choose a Radio Frequency, Station or..

(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$

(Unintelligible)

"I couldn't understand you. Speech input turned off."


(PTT Button)

"Speech input."

"I couldn't hear you. Please repeat."

(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$ (3) e = e + 1(4) t = t + 1

"Options."

(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$ (3) e = e + 1(4) t = t + 1(5) o = o + 1

"You can say: Choose Frequency, choose Station..."

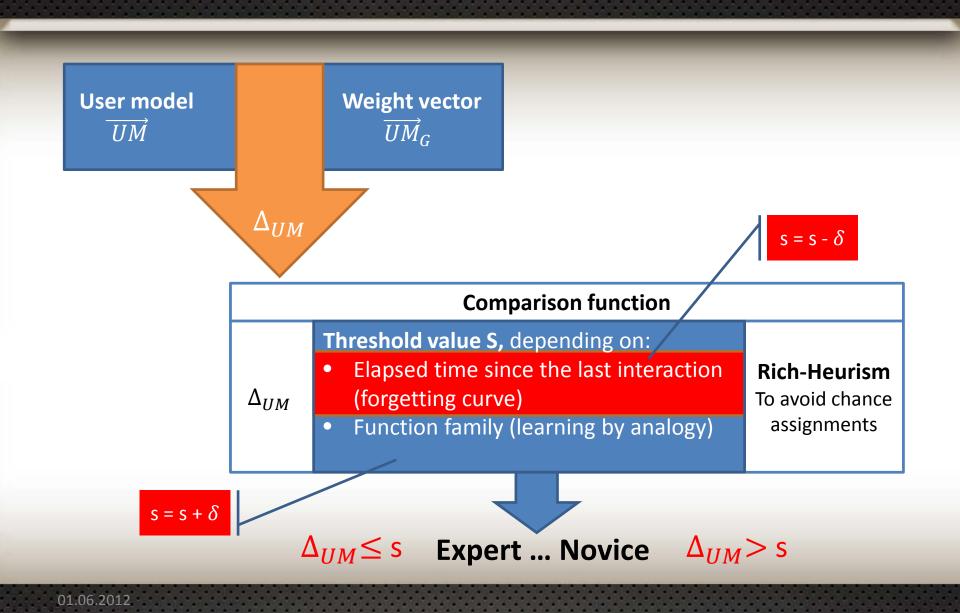
(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$ (3) e = e + 1(4) t = t + 1(5) o = o + 1

"Choose Frequency."

(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$ (3) e = e + 1(4) t = t + 1(5) o = o + 1(6) $T_m = T_m + 1$

"Which frequency do you want?"

(1) e = e + 1(2) e = e + 1, $T_m = T_m + 1$ (3) e = e + 1(4) t = t + 1(5) o = o + 1(6) $T_m = T_m + 1$ $\overline{UM}_{Choose\ Frequency}$ = [h, o, t, e, T_m] = [0, 1, 1, 3, 2]



01.06.2012

Weight vector

- \overrightarrow{UM}_G represents \overrightarrow{UM} by weights to tell the user experience
- Overall score (User status) is the sum of weighted values
- $\sum_{i=1}^{n} v_{G_i} = 1$ for each v_{G_i} in \overrightarrow{UM}_G
 - initially $v_{G_i} = \frac{1}{n}$
- Multi linear regression of:
 - The user status as independent variable
 - Recorded components of \overrightarrow{UM} as independent variable^{[16] (Hassel 2006)}
- Example:
 - $\overrightarrow{UM}_{G} = \langle \nu_{G_{h}} = 0.17 \ \nu_{G_{o}} = 0.22 \ \nu_{G_{t}} = 0.16 \ \nu_{G_{e}} = 0.45 \rangle \text{reference system}$
 - $\overrightarrow{UM}_{G} = \langle \nu_{G_{h}} = 0.12 \ \nu_{G_{o}} = 0.25 \ \nu_{G_{t}} = 0.13 \ \nu_{G_{e}} = 0.50 \rangle \text{ prototype}$

Calculating the user category

Outline

- Motivation
- Classification of the users
- Adaptation of user prompts
- Evaluation
- Related work
- Conclusion

Adaptation of the users prompts

• Explicitness

Utterance type	Novice	Expert
Opening/closing	U: <ptt> (<i>Action-directive</i>) S: Speech input <tone a="">/Speech input terminated <tone b=""></tone></tone></ptt>	U: <ptt> S: <tone a="">/<tone b=""></tone></tone></ptt>
Signal understanding	U: Play CD. (<i>Action-directive)</i> S: CD is being played.	U: Play CD. S: <music heard="" is=""></music>
Signal understanding (+ Open-option)	U: Entertainment. (<i>Action-directive)</i> S: Entertainment. Say AM, FM, CD or DVD	U: Entertainment. S: Entertainment.
Assert	U: Destination input. (Action-directive) S: This task is currently not available	U: Destination input S: Currently not available.
(Assert +) Action- directive	U: Select CD. (<i>Action-directive</i>) S: CD slot is empty. Insert a CD.	U: Select CD. S: Insert CD.
(Signal non- understanding +) Action-directive	U: <not recognized=""> S: I could not understand you, repeat.</not>	U: <not recognized=""> S: Pardon me?</not>

01.06.2012

Outline

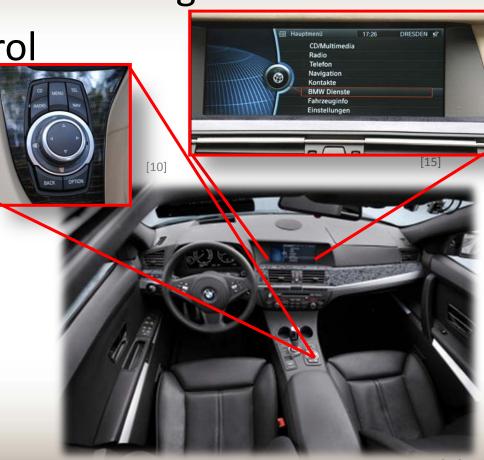
- Motivation
- Classification of the users
- Adaptation of user prompts
- Evaluation
- Related work
- Conclusion

Evaluation – test design

BMW 7 Series

BMW 5 Series

Prototype Reference system


01.06.2012

Evaluation – test design

- BMW iDrive
- PARADISE evaluation framework
- Real driving conditions
- 30 males and 14 females
- 22 subjects for each system
- Driving part (30-40 min) and questionnaire
- No one has used the systems before

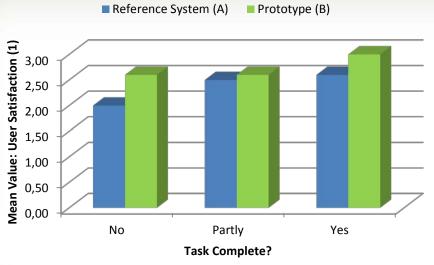
BMW iDrive

- Keep track of all important things
- Intuitive way of control
- Since 2001
- Configured for 3000 words and phrases
- Available in several languages

PARADISE evaluation framework

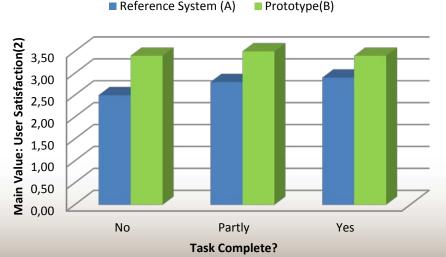
- Maximizing the tasks performance
 - Maximize the task success (Kappa coefficient k)
 - Minimizing the cost (c)
- User satisfaction
 - $-US = (\alpha \times N(k)) \sum_{i=1}^{n} w_i \times N(c_i)$
 - w_i and α are model parameters
 - N() normalizing function

Evaluation – test tasks


- Task 1:Choose frequency 93.3
- Task 2:Choose station Bayern 5
- Task 3: Play title number 4 of the current cd
- Task 4:Activate traffic program
- Task 5: Dial a phone number
- Task 6: Dial a name from the address book
- Task 7: Display the navigation map
- Task 8: Change the map scale to 100m
- Task 9:Change the map style (north, driving, arrows)
- Task 10:Choose an arbitrary frequency
- Task 11:Choose an arbitrary station

Evaluation - prototype vs. reference

Measure	Prototype	Reference System
ASR-failures per task	1.2 times	1.6 times
Timeouts	2 times more	/
Requested options and help	/	2.5 times more
Commands uttered too soon	12.5 times more	/
Turns to complete task	6.8 turns	8.4 turns
Average time to complete task	40.7 s	60.4 s
		A A


Evaluation – user satisfaction

6 questions with grades (0 lowest, 4 highest)

- I would recommend the system"
- I really want to have such a system in my car?
- I find the system very useful?

- I could complete all tasks without problems?
- I find the system easy to use?
- I got frequently upset during the test?

01.06.2012

Outline

- Motivation
- Classification of the users
- Adaptation of user prompts

• Evaluation

Related work

Conclusion

Virtual Intellectual Co-Driver - VICO

- Robust speech technology
- User- and situation-adaptive intelligent dialogue strategies
- User-friendly, comfortable, efficient and safeto-use vocal interfaces
- User acceptance and satisfactions

VICO – dialogue example

User:	"VICO!"		
System:	"Yes Please"		
User:	"I'd like to see the movie 'What woman want' tonight."		
System:	"In which city would you like to see the movie?"		
User:	"In Stuttgart"		
System:	"In Stuttgart 'What woman want' is shown at the movie theaters Europa and Gloria. Which one would you prefer?"		
User:	"That depends on the starting times. I'd like to go at around 8 p.m."		
System:	"The Gloria starts at 7.45 p.m., the Europa at 8.15 p.m."		
User:	"Then I'd rather go to the Europa theatre."		
System:	"Do you want me to make a reservation for you?"		
User:	"Yes if its possible. I need two tickets."		
System:	"One moment please Two tickets will be reserved for you. They have to be picked up until 8 p.m."		

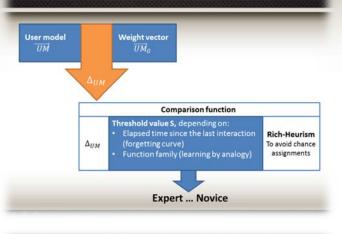
01.06.2012

Outline

- Motivation
- Classification of the users
- Adaptation of user prompts
- Evaluation

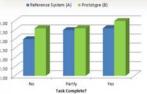
• Related work

Conclusion


Conclusion

- Adaptation contribute to improve usability
 - Good for learning the system
 - Tedious for long run
- Extended prompts could lead to less straightforward manner of operation
- Better user satisfaction and cost factors

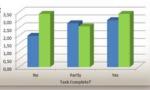
Summary



Calculating the User Category

Evaluation – User Satisfaction

6 questions with grades (0 lowest, 4 highest)


I would recommend the system"

I find the system very useful?

in my car?


· I really want to have such a system

- I could complete all tasks without problems?
 I find the system easy to use?
 - I got frequently upset during the test?

Reference System (A) Prototype (8)

Questions

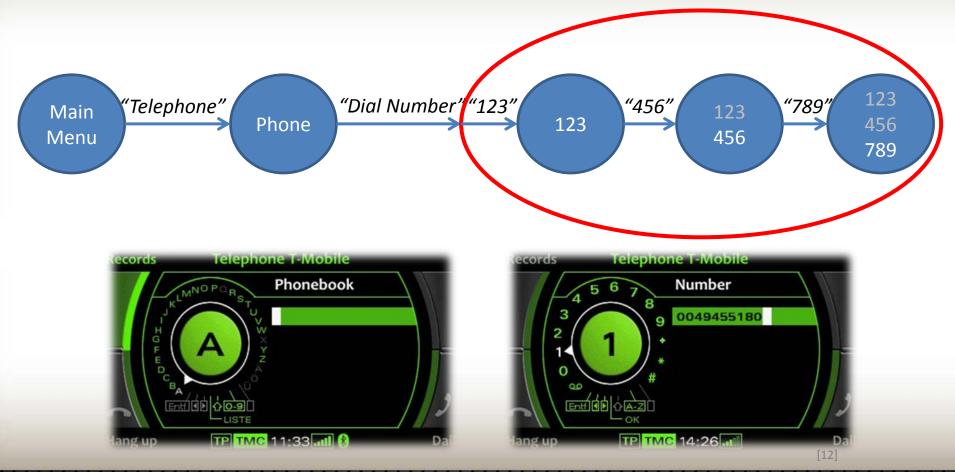
Reference

- [1] <u>http://en.memory-alpha.org/wiki/File:Neural_interface.jpg</u>
- [2] <u>http://plasma.dk/wordpress/</u>
- [3] <u>http://madamenoire.com/wp-content/uploads/2012/05/Woman-driving.jpg</u>
- [4] <u>http://images.thetruthaboutcars.com/2012/03/Sanyo-new-car-navigation-system.jpg</u>
- [5] <u>http://www.deshow.net/d/file/car/2008-10/bmw-car-z4-2.jpg</u>
- [6] <u>http://www.bbpremierins.com/student%20driver%20-%20bb.jpg</u>
- [7] <u>http://www.cbc.ca/gfx/images/news/photos/2009/06/19/formula-one-cp-6901673.jpg</u>
- [8] <u>http://www.buyacar.co.uk/nvdimg/lrg_bmw_7_series_saloon_48161.jpeg</u>
- [9] <u>http://images.cardekho.com/images/car-images/large/BMW/BMW520d/BMW-5-Series-sedan5.jpg</u>
- [10] <u>http://www.motorbeam.com/wp-content/uploads/BMW_X1_idrive.jpg</u>
- [11] <u>http://www.xbimmers.com/forums/attachment.php?attachmentid=199657&stc=1&d=12254</u> <u>91202</u>
- [12] <u>http://www.audi-sport.net/vb/a3-s3-sportback-8p-chassis/81540-mobile-telephone-preparation-%96-bluetooth-interface.html</u>
- [15] <u>http://images.drive.com.au/drive_images/Editorial/2008/10/16/16idrive_m_m.jpg</u>
- [16] Hassel 2006

Backup slides

• Some backup slides follow:

Why did it take the user in the analyzed dialogue about 65 seconds to complete the task?


• Main reason: user is **novice**

User:	< presses PTT >	(1)
System:	"Speech input."	
User:	< Pause >	(2)
System:	"I could not understand you. Please repeat."	
User:	< Speaks too soon> "Change:" < pause > "Oh! Ehh options"	(3)
System:	"Board information". < End of speech input >	
User:	< presses PTT >	(4)
System:	"Speech input"	
User:	"Options"	(5)
System:	"Options. Say board computer, travel board computer"	
User:	"Eeeehhh? Map style"	(6)
System	"Map style. Please choose a style."	
User:	"Options"	(7)
System:	"Options. Choose a map scale, for example: 'scale 5 km', or say: map style north, map style driving or map style arrows"	
User:	"Map style driving"	(8)

01.06.2012

Evaluation – Test Task Example

• Dialing a telephone number

