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Abstract

We describe a method for the automatic extraction of a Stochastic Lexicalized
Tree Insertion Grammar from a linguistically rich HPSG Treebank. The extraction
method is strongly guided by HPSG–based head and argument decomposition rules.
The tree anchors correspond to lexical labels encoding fine–grained information. The
approach has been tested with a German corpus achieving a labeled recall of 77.33%
and labeled precision of 78.27%, which is competitive to recent results reported for
German parsing using the Negra Treebank.

1 Introduction

In recent years several approaches have been proposed to improve the performance of Nat-
ural Language systems, which are based on the linguistic theory of Head–Driven Phrase
Structure Grammars (HPSG, e.g., Kasper et al. [1995], van Noord [1997], Makino et al.
[1998], Torisawa et al. [2000], Kiefer et al. [2002], Toutanova et al. [2002], and Toutanova
and Manning [2002]). Common to all these approaches is that the coverage of the orig-
inal general grammar is not affected. Thus if the original grammar is defined domain-
independently it might also define a great many theoretically valid analyses covering a
wide range of plausible linguistic constructions, including the rarest cases. However, in
building real-world applications it has been shown to be a fruitful compromise to focus
on frequency and plausibility of linguistic structures wrt. a certain domain. A number
of attempts have been made to automatically adapt a general grammar to a corpus in
order to achieve efficiency through domain-adaptation, e.g., using PATR-style grammars
Briscoe and Carroll [1993]; Samuelsson [1994]; Rayner and Carter [1996] or lexicalized
TAGs Srinivas [1997].
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In Neumann and Flickinger [2002] and Neumann [2003] we applied the idea of a data–
oriented approach for achieving domain-adaptation to HPSG.1 We called this approach
HPSG–DOP, because it had some strong corresponding relationships to the framework of
Data–Oriented Parsing (DOP), cf. Bod et al. [2003]. The basic idea of HPSG–DOP is
to parse all sentences of a representative training corpus using an HPSG grammar and
parser in order to automatically acquire from the parsing results a stochastic lexicalized
tree grammar (SLTG) such that each resulting parse tree is recursively decomposed into
a set of subtrees. The decomposition operation is guided by the head feature principle
of HPSG. Each extracted tree is automatically lexically anchored and each node label of
the extracted tree compactly represents a set of relevant features by means of a simple
symbol. A major drawback of this approach was that non–headed constructions were not
factored out consequently due to the lack of structural refinements, e.g., recursive modifier
constructions were restricted by the number of the largest embedding found in the corpus.

However in Hwa [1998], Neumann [1998], Xia [1999], Chen and Vijay-Shanker [2000],
and Chiang [2000] a number of approaches for the automatic extraction of Tree Adjoining
Grammars (TAGs) from treebanks are presented, which treat the factorization of modifier
constructions more systematically. In particular, the approach developed by Chiang [2000]
and further elaborated in Chiang [2004] is of interest, because his approach only requires
a minimal amount of treebank preprocessing, and – more importantly – he interprets the
head/argument rules exploited by Magerman [1995] and Collins [1997] as a heuristic for
reconstructing full structural descriptions from partial ones rather than as a means for
rearranging information in the training data, which eases the adaptation of his approach
also to other natural languages and treebanks. For example, Bikel and Chiang [2000] apply
this method to a Chinese treebank.

In this paper, we extend HPSG–DOP by combining it with Chiang’s method and
apply it on a linguistically rich HPSG treebank for German which is based on the recently
developed Redwoods Treebank (cf. Oepen et al. [2002] and sec. 3). To our knowledge, our
approach is the first time that a rich linguistic theory together with a stochastic TAG is
applied to the German language. This is not a trivial task, as recently Dubey and Keller
[2003] and Levy and Manning [2004] have shown that treebank parsing for German (using
the rather shallow Negra Treebank) yields substantial lower performance compared to
English Penn treebank parsing, probably due to the fact that differences in both languages
and treebank annotation may be involved (cf. sec. 7). To give our new approach a
name, we call it HPSG–Supertag following Srinivas [2003] who defines the elementary
structures of a lexicalized TAG as supertags.

The rest of the paper is structured as follows. We begin by summarizing the formalism
of the used tree structures. The HPSG treebank and details concerning the German HPSG
are described in sec. 3, before in sec. 4 the method for the induction of the stochastic
grammar from the HPSG treebank is described. This also includes a description of the

1A first initial approach for applying data–oriented methods to HPSG is described in Neumann [1994],
where an approach for memory–based processing with HPSG based on Explanation–Based Learning is
described.
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HPSG–based head/argument rules used for the grammar reconstruction process. In sec. 5
we describe experiments using the standard parseval measurement. In sec. 7 important
related work is discussed, before we conclude our chapter in sec. 8 by also giving an outline
into future work.

2 Stochastic Lexicalized Tree Grammars

The set of lexically anchored trees extracted via the original HPSG–DOP method already
characterizes a lexical tree–substitution grammar, i.e., a tree–adjoining grammar with no
auxiliary trees, cf. Schabes [1990]. In Neumann [1998], and subsequently in Xia [1999],
Chen and Vijay-Shanker [2000], and Chiang [2000] it is shown how tree adjoining grammars
can be extracted from the Penn Treebank by performing a re–construction of the derivations
using head–percolation rules. Here, we follow the approach developed in Chiang [2000],
because his approach only requires a minimal amount of treebank preprocessing, which
makes it easier to adapt it to other kind of treebanks.2

For efficiency reasons, a restricted form of lexicalized tree adjoining grammars is con-
sidered viz. lexicalized tree insertion grammars (LTIGs). LTIG has been introduced in
Schabes and Waters [1995] as a TAG–formalism in which all auxiliary trees are either
left or right auxiliary trees. No elementary wrapping auxiliary trees or elementary empty
auxiliary trees are allowed. Furthermore, left (right) auxiliary trees cannot be adjoined
to a node that is on the spine of an elementary right (left) auxiliary tree; and there is no
adjunction allowed to the right (left) of the spine of an elementary left (right) auxiliary
tree (cf. figure 1).

Figure 1: Left and right adjunction.

There is an additional tree composition operation called sister–adjunction used by Chi-
ang [2000], which is based on the extended notion of TAG derivation introduced in Sch-
abes and Shieber [1994]. In sister–adjunction, the root of a modifier tree is added as a
new daughter to any other node, and multiple trees may be sister–adjoined at the same
position. The main motivation for introducing this operation is its potential for deriving
the flat structures found in the Penn Treebank (cf. figure 2). Note that in our case the

2And because his approach can be seen as a substantial improvement of the initial work we have layed
out and described in Neumann [1998].
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HPSG–derivations are deeply nested binary trees, so that sister–adjunction is actually not
effective, however we leave it here for completeness.

Figure 2: Sister adjunction.

The parameters of a probabilistic TAG which control the combination of trees by the
substitution and adjunction are:

∑
α

Pi(α) = 1

∑
α

Ps(α | η) = 1

∑
β

Pa(β | η) + Pa(NONE | η) = 1

∑
α

Psa(β | η, i,X) + Psa(STOP | η, i,X) = 1

where α ranges over initial trees, and β over auxiliary trees, and η over nodes. Pi(α) is
the probability of beginning a derivation with α; Ps(α | η) is the probability of substituting
α at η; Pa(β | η) is the probability of adjoining β at η; Pa(NONE | η) is the probabil-
ity of nothing adjoining at η; Psa(β | η, i,X) is the probability of sister–adjoining, and
Psa(STOP | η, i,X) is the probability of no further sister–adjunction. X is the root label
of the previous tree to sister–adjoin at the site (η, i), or START if none. The probability
of a derivation can then be expressed as the product of the probabilities of the individual
operations of the derivation, cf. Chiang [2004] for more details.

LTIGs have context–free power and can be parsed in O(n3). Two parseres are available
to us: a two–phase Early–style LTIG parser based on Schabes and Waters [1995] written in
Lisp at our Lab, and a CKY–style bottom–up parser based on Schabes and Waters [1993]
written in C by David Chiang. For the experiments reported in this paper in sec. 5, we are
using David’s parser, because currently, it is much faster than the Early–based Lisp parser,
and can be handled much more flexible. The CKY–parser implements sister–adjunction,
and uses a beam search, computing the score of an item [η, i, j] by multiplying it by the
prior probability P (η). All items with score less than a given threshold compared to the
best item in a cell are pruned (cf. Chiang [2000] and sec. 5 on details concerning the used
parser settings).
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3 HPSG TreeBank

The HPSG treebank (codename Eiche) we use in our study is based on a subset of the
Verbmobil corpus which has been automatically annotated with a German HPSG grammar.
The analyses provided by the grammar have then been manually disambiguated using the
Redwoods treebanking technology, cf. Oepen et al. [2002].

The underlying HPSG grammar itself has originally been developed as a large-scale
competence grammar of German by Stefan Müller and Walter Kasper in the context of the
Speech-to-Speech machine translation project Verbmobil (see [Müller and Kasper, 2000]),
and has subsequently been ported to the LKB (Copestake [2001]) and PET (Callmeier
[2000]) processing platforms. In 2002, grammar development has been taken over by
Berthold Crysmann. Since then, the grammar has undergone several major changes, most
importantly the treatment of verb placement in clausal syntax [Crysmann, 2003].

3.1 Some basic properties of German syntax

The syntax of German features a variety of phenomena that makes syntactic analysis much
harder than that of more configurational languages. Chief among these is the relative free
word order in which syntactic arguments of a verb can appear within the clausal domain.

(1) a. weil
because

der
the

Lehrer
teacher.NOM

dem
the

Schüler
pupil.DAT

das
the

Buch
book.ACC

schenkte
donated

‘because the teacher gave the book to the pupil as a present’

b. weil der Lehrer das Buch dem Schüler schenkte

c. weil dem Schüler der Lehrer das Buch schenkte

d. weil dem Schüler das Buch der Lehrer schenkte

e. weil das Buch der Lehrer dem Schüler schenkte

f. weil das Buch dem Schüler der Lehrer schenkte

Almost anywhere between the arguments modifiers can be interspersed quite freely.

(2) weil
because

(gestern)
(yesterday)

der
the

Lehrer
teacher.NOM

(gestern)
(yesterday)

dem
the

Schüler
pupil.DAT

(gestern)
(yesterday)

das
the

Buch
book.ACC

(gestern)
(yesterday)

schenkte
donated

‘because yesterday the teacher gave the book to the pupil as a present’

This situation is further complicated by the combined effects of verb cluster formation
and argument composition, which permit permutation even amongst the arguments of
different verbs within the cluster.

(3) a. weil
because

der
the

Lehrer
teacher.NOM

das
the

Buch
book.ACC

zu
to

kaufen
buy

versprach
promised

‘because the teacher promised him to buy the book.’
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b. weil
because

das
the

Buch
book.ACC

der
the

Lehrer
teacher.NOM

zu
to

kaufen
buy

versprach
promised

‘because the teacher promised him to buy the book.’

Furthermore, realisation of the verb cluster is often discontinuous, typically in matrix
clauses.

(4) a. da
there

versprach
promised

der
the

Lehrer.NOM
teacher.NOM

das
the

Buch
book.ACC

zu
to

kaufen
buy

‘There, the teacher promised him to buy the book.’

b. da
there

versprach
promised

das
the

Buch
book.ACC

der
the

Lehrer
teacher.NOM

zu
to

kaufen
buy

‘There, the teacher promised him to buy the book.’

Assuming continuous constituents only, the argument structure is therefore only par-
tially known in bottom-up parsing, until the other member of the discontinuous verb cluster
is found.

In German matrix clauses, the finite verb typically surfaces in second position, the first
position being occupied by some fronted, i.e. extracted, constituent. Thus, in contrast to
English, presence of non-local dependencies is the norm, rather than the exception.

Taken together, permutation of arguments, modifier interspersal, discontinuous com-
plex predicates and the almost categorial presence of non-local dependencies give rise to a
considerable degree of variation in tree structure. As a consequence, we expect data-driven
approaches to parsing to be more prone to the problem of data-sparseness. In the context
of grammar induction from treebanks, it has already been observed, e.g., by Dubey and
Keller [2003] that methods which are highly successful in a more configurational language,
such as Collins PCFG parser for English (cf. Collins [1997]), give less optimal results when
applied to German.

This problem is further enhanced by the fact that German is a highly inflectional
language, with 4 distinct cases, 3 gender and 2 number distinctions, all of which enter into
agreement relations. The same holds for the verbal domain, where up to 5 person/number
combinations are clearly distinguished.

3.2 The grammar

In the spirit of HPSG as a highly lexicalised grammatical theory, most of the information
about an items combinatorial potential is encoded in the lexical entries itself, in terms
of typed feature structures. Syntactic composition is then performed by means of highly
general rule schemata, again, implemented as typed feature structures, which specify the
flow of information within syntactic structure. As a result, the DFKI German HPSG
specifies only 87 phrase structure schemata, as compared to some 280+ leaf types for
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the definition of parameterised3 lexical entries, augmented by 56 lexical rules and 286
inflectional rules.

da

adv-flex-lr-0-0

versucht

v1-fin-lrule-rb

er

er-pis

es

es-acc-pis

im

im-appr

park

nx-nda-s

h-comp

zu

zu_sprep

verkaufen

tensed-non-fin-lrule

inf-zu

eps-vcomp-0

adjunct-h

comp-h

subj-h

adj-slash-intro-vfin

v1-s

filler-h

da

ADV

versucht

V

er

NP-NOM-SG

es

NP-ACC-SG

im

P-MOD-V

park

N’

PP

zu

P-COMP

verkaufen

V

V

EPS

EPS

EPS

EPS

EPS/ADV

S/ADV

S

Figure 3: Examples of a derivation tree and its corresponding phrase tree representation. See
text below for an explanation of the different symbols.

The rule schemata, which make up the phrase structure backbone of the HPSG gram-
mar, correspond quite closely to principles of syntactic composition: by themselves they
encode basic functional relations between daughter constituents, such as head-subject,
head-complement, or head-adjunct, rather than intrinsic properties of the node itself. Thus,
a rule like h-comp can be used to saturate a subcategorised complement of a preposition, a
verb, or, a noun. Similarly, which constituents can function as the complement daughter of
the h-comp rule is mainly determined by the information represented on the SUBCAT list

3Lexical entries may get further specialised beyond the information encoded in the lexical leaf type:
typically, this includes subcategorisation for lexical case, selection of prepositional complements and verb
particles, specification of auxiliary type (have vs. be), as well as sortal restrictions on complements.
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of the lexical head. The rule schemata merely ensure that the subcategorisation constraints
formulated by the head will actually be imposed on the complement daughter, and that
the saturated valence requirement will be canceled off.

Since the underlying processing platforms (LKB/PET) do not currently support the
segregation of immediate dominance and linear precedence, some rule schemata are fur-
ther specialised according to the position of the head: alongside h-adjunct, h-subj and
h-comp rules for verb-initial clauses and prepositional phrases, the grammar also defines
their head-final counterparts (adjunct-h, subj-h, comp-h), required for verb-final clauses,
adjectival phrases and postpositional phrases. Within NPs some modifiers, e.g. adjectives
are licensed by adjunct-h structures, whereas PPs are licensed in post-head position only.
To summarise, the rules of the CF backbone provide crucial information about the position
of the syntactic head, as well as the functional status of the non-head daughter.

Scrambling of complements is licensed in the German grammar by special lexical rules
that permute the elements on a head’s SUBCAT list. Modifier interspersal and scrambling
across the subject are accounted for by permitting the application of h-subj, h-comp, and
h-adjunct rules in any order.

Argument composition and scrambling of arguments from different verbs is captured
by shuffling the SUBCAT lists of the upstairs and downstairs verb (e.g., vcomp-h-0 . . .
vcomp-h-4). Discontinuous verb clusters are modelled by means of simulated verb move-
ment (Müller and Kasper [2000] expanding an earlier idea proposed by Kiss and Wesche
[1991]). Essentially, the subcategorisation requirements of the initial verb are percolated
down the tree to be shuffled with those of the final verb.

Finally, extraction is implemented in a fairly standard way using slash feature perco-
lation. Slash introduction is performed, at the gap site, by a unary rule. For subjects and
complements, slash introduction saturates an argument requirement of the head by insert-
ing its LOCAL value into the SLASH list. For adjuncts, the slash introduction also inserts
a local object into SLASH, but since there is no valency to be saturated, it only semanti-
cally attaches the extracted modifier to the head. At the filler-site, SLASH specifications
are retrieved, under unification: for semantic reasons, the grammar crucially distinguishes
here between wh-fillers (wh-h rule) and non-wh-fillers (filler-h rule).

Besides these more basic constructions, the grammar also provides rule schemata for
different types of coordinate structures, extraposition phenomena (Crysmann [in press]),
dislocation, as well as some constructions more specific to German, such as auxiliary flip
and partial VP fronting.

3.3 The treebank

The version of the HPSG formalism underlying the LKB and PET processing systems as-
sumes continuous constituents only. Thus, the derivation tree of a sentence analysed by the
grammar corresponds to a context free phrase structure tree. Given a grammar, the full
HPSG analysis of a sentence can therefore always be reconstructed deterministically, once
the derivation tree is stored together with the unique identifiers of the lexical entries on the
terminal nodes. This fact is actually exploited by the Redwoods treebanking infrastructure
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to provide a compact representation format. From the fully reconstructed feature struc-
ture representation of a parse, it is possible to extract additional derived structures: one
such auxiliary structure that deserves particular mentioning is an isomorphic constituent
tree decorated with more conventional node labels, such as S, NP, VP, PP, etc. These
labels are obtained by testing the unifiability of a feature structure description against the
AVM associated with the node, and assigning the label of the first matching description.
Since these derived trees are isomorphic to the derivation history, the “functional” deco-
rations provided by the rule backbone can be enriched straightforwardly with “categorial”
information, providing for a very rich annotation.

As already mentioned before, the primary data used for the construction of the Eiche
treebank are taken from the Verbmobil test corpora. In order to minimise duplication of
annotation effort, only unique sentence strings have been incorporated into the treebank.
Thus, redundancy in the data is limited to partial structures.

4 HPSG–Supertag Extraction from the Treebank

The main purpose of the grammar extraction process is twofold: 1) extract automatically
all possible supertags, i.e., an LTIG, and 2) to obtain a maximum–likelihood estimation
of the parameters of the extracted LTIG. The grammar extraction process actually re–
constructs TAG derivations underlying the parse trees and is quite similar to the head–
driven decomposition operation used in HPSG–DOP, but now adapted for the case of
LTIG extraction.

4.1 The extraction method

Similar to Magerman [1995] and Chiang [2000], we use head–percolation and argument
rules that classify for each node η exactly one child of η as the head and the others as
either argument or modifier. However, as we will discuss below, our rules are based on
HPSG and as such, are much more smaller in number and less heuristic in nature as those
defined in Chiang [2000]. Using these rules, the derivations are re–constructed using the
method described in Chiang [2000], and summarized here for your convenience:

• If η is an adjunct, excise the subtree rooted at η to form a modifier tree.

• If η is an argument, excise the subtree rooted at η to form an initial tree, leaving
behind a substitution node.

• If η has a right corner θ which is an argument with the same label as η (and all
intervening nodes are heads), excise the segment from η down to θ to form an auxiliary
tree.

From the determined structures, supertags are generated in two steps: first the tree
template (i.e., the elementary tree minus its anchor), then the anchor. From there, the
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probabilities are decomposed accordingly and three back-off levels are computed, as de-
scribed in Chiang [2000]. Furthermore, all words seen n or fewer times in training are
treated as a single symbol unknown, in order to handle unknown words.

4.2 The rule definition

The following two tables contain the HPSG–based head and argument rules currently in
use:

Parent: Child:
SUBJ-H last *

ADJUNCT-H last *
COMP-H last *

FILLER-H last *
WH-H last *

POS-ES last *
DET-NBAR last *

NP-NBAR last *
VCOMP-H-0 last *
VCOMP-H-1 last *
VCOMP-H-2 last *
VCOMP-H-3 last *
VCOMP-H-4 last *

BINARY-COORD last *
RECURSIVE-EV-COORD last *

RECURSIVE-NOM-COORD last *
* first *

Table 1: Head rules for the HPSG Treebank. The symbol * stands for any label.

Parent: Child:
SUBJ-H first *
H-SUBJ last *

COMP-H first *
H-COMP last *

H-COMP-EXTRAPOSED last *
H-SUBJ-EXTRAPOSED last *

Table 2: Arg rules for the HPSG Treebank. The symbol * stands for any label.
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The list of rules is processed in the order specified and the first rule that fires is applied.
A rule fires if the label of the current node matches with one of the parent node labels
specified in the rule list. A head rule like “SUBJ-H last *” determines that the last child
of a parent node with label SUBJ-H is the head, regardless of the child’s label. The head
rule “* first *” means that for a parent with an arbitrary node label its leftmost child is
chosen as the head daughter. This rule plays the role of a default head rule. The argument
rules work in the same way. For an explanation of the linguistic content of these rules, cf.
sec. 3.

5 Experiments

We performed a ten–fold cross–validation over a corpus of 3528 sentences from the Verbmo-
bil domain with an average sentence length of 7.2 words. We used “evalb”4 to compute the
standard parseval scores for our results, and focused on the Labeled Precision (LP) and
Labeled Recall (LR) scores, as they are commonly used to rank parsing systems. During
the experiments we used the same settings for the parser as used by Chiang [2000] for his
Penn Treebank experimentations: a.) beam size set to 10−5, b.) unknown word threshold
set to 4.

The anchors of the extracted supertags consist of the preterminals of the derivation trees
and are lexical labels. These are much more fine–grained than Penn Treebank preterminal
tags, covering information about POS, morpho-syntactic, valence and other information.
The input to the parser is then a sequence of pairs (LEX-LABEL WORDFORM) (i.e., we
also ignore upper and lower case). For example for the sentence Wann hätten Sie denn
dann noch Zeit? (‘When would you have still time, then?’), the input to the parser is (see
appendix A for the corresponding derivation and phrase tree represenations):

(WANN-ADV WANN)(HABEN-T HAETTEN)(SIE SH-PIS SIE)(DENN SCADV-
ADV DENN)(DANN SCADV-VVPP DANN)(NOCH PADV-ADV NOCH)(ZEIT-
N ZEIT)

Since, we do not have any HPSG–based lexical tagger available, we used the (LEX-
LABEL WORDFORM) sequence of each sentence extracted from the parse trees of the
test corpus (i.e., from the 10% blind data used in each iteration of the cross–validation
step). Note that the unknown symbol only relates to corresponding words in the training
set (it maps words seen fewer than N times to this symobl), i.e., stems that only occur
in the test set, but not in the training set, are not covered by the grammar. Hence, the
parser will deliver no result for sentences which contain “out–of–vocabulary” stems.

We trained and tested our method on the full encoding of the symbols, which among
others encode values for gender, number, person, case, tense and mood. Furthermore, the
symbols also encode the valency of verbs. The number of different node labels is 2069;

4http://nlp.cs.nyu.edu/evalb/
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appendix B shows the top fifty most frequent symbols in the corpus (together with the
frequency count).

It seems clear that using lexical labels as anchors will effect at least the coverage and
recall. In order to test this, we also run an experiment, where we used only the Part–of–
Speech (POS) of the lexical labels, which are retrieval from the yield of the corresponding
phrase tree (but note, that the labels of all non–terminal nodes are labels from the deriva-
tion trees). This will lead to a much more coarse–grained classification of word forms,
but probably also to a less restrictive tree selection. The table below presents our current
results, where we computed the average values for the labeled recall and precision results
determined in all ten iterations:

Anchor Cov. LR(tot.) LP(tot.) LR(cov.) LP(cov.)
Lexical label 77.47 57.68 77.07 77.33 78.27
POS 98.12 76.42 78.36 77.92 78.44

where LR(tot.)/LP(tot.) is measured over all sentences, and LR(cov.)/LP(cov.) over the
parsed sentences, i.e., for sentences without out–of–vocabulary stems.

6 Discussion

In Neumann [2003] we discussed initial results for our HPSG–DOP approach using an
English HPSG grammar and a less detailed analysis. For example instead of a cross–
validation analysis, we used 1000 Verbmobil sentences for training, and another 1000 for
testing. We did not measure recall and precision, but checked whether it was possible to
expand each one, by unifying the feature constraints of the original HPSG grammar. Thus
seen, we consider a sentence analysis as valid, if it is consistent with respect to the HPSG
constraints (including all lexical constraints, of course). Following this way, 704 sentences
were recognized which corresponds to a coverage of 70.4% .

Our current results suggest, that the HPSG–Supertag method is superior compared
to our earlier work. It should be clear, that the moderate coverage is basically due to the
very specific nature of the tree anchors. The size of the current corpus is small compared
to the Penn Treebank, so we assume that it will improve for larger corpora. Note also,
that the redundancy in the corpus is limited to partial structures (see also sec. 3.3), which
also effects the performance.

Nevertheless, our current results are encouraging, if we compare them with other recent
approaches of probabilistic parsing for German. To date, there is only little work on
full probabilistic parsing of German from treebanks — mainly using the Negra Treebank
(Skut et al. [1997]) — and the parseval measurement. The first probabilistic treebank
parser for German (using the Negra Treebank) is presented in Dubey and Keller [2003].
They obtain (for sentence length of ≤ 40): LR=71.32% and LP=70.93% (coverage =
95.9%). Müller et al. [2003] also present a probabilistic parser for Negra. They study
the consequences that the Negra implies for probabilistic parsing, and concentrate on
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the role of two factors (1) lexicalization and (2) grammatical functions. The results they
report: LR=71.00% and LP=72.85% (coverage = 100%). Furthermore, Levy and Manning
[2004] present experiments on probabilistic parsing using Negra concentrating on non–local
dependency reconstruction. Their results also suggest that current state–of–art statistical
parsing is far better on Penn Treebank than on the Negra Treebank.

7 Related Work

Here, we will briefly mention and discuss other relevant work, in addition to the already
discussed work done for LTAG and German treebank parsing.

Our approach is also related to approaches of grammar specialization based on Explanation-
based Learning (EBL), cf. Samuelsson [1994]; Srinivas and Joshi [1995]; Rayner and Carter
[1996], and other grammar approximation methods. For example, Krieger [2005], presents
an approximation method that specialized an English HPSG–grammar to a probabilistic
context–free grammar. In Keselj and Cercone [2002] an interesting approach called “just–
in–time subgrammar extraction” is presented, which has some ideas in common with our
HPSG–DOP approach, but differs in that they perform a subgrammar extraction in form
of a PCFG on–line for a piece of text, rather than off–line for a specific domain.

In Foth et al. [2004] a broad–coverage parser for German based on weighted constraint
dependency grammar is presented and analysed using the Negra Treebank. In order to
evaluate their parsing result with the Negra parse trees, the phrase-based trees are mapped
to dependency trees. Then the accuracy is measured by counting the number of correctly
computed dependency edges. Using the same subset of Negra sentences for testing as done
by Dubey and Keller [2003], they report an labeled edge accuracy of 87%.

Current stochastic approaches for HPSG basically focus on parse tree disambiguation
using the English Redwoods Treebank, cf. Oepen et al. [2002]. For example, Toutanova
et al. [2002], present a parse selection method using conditional log-linear models built
over the levels of derivation tree, phrase structure tree, and semantic dependency graph
in order to analyse the effect of different information levels represented in the Redwoods
Treebank. The best reported result (in terms of accuracy) is obtained for the derivation
tree representation and by implementing an extended PCFG that conditions each node’s
expansion on several of its ancestors in the derivation tree (with a manually specified upper
bound of 4 ancestors). They report an exact parse accuracy of 81.80% for such an extended
PCFG, which was only slightly improved when combining it with a PCFG based on the
semantic dependency graph representation (82.65%). In Toutanova and Manning [2002]
this work is extended by the integration of automatic feature selection methods based on
decision trees and ensembles of decision trees. Using this mechanism, they are able to
improve the parse selection accuracy for the derivation tree based PCFG from 81.82% to
82.24%.
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8 Conclusion and Future Work

We have presented an approach of extracting supertags from a HPSG–based treebank, and
have evaluated the performance of the grammar using a stochastic LTIG parser. In future
work, we will consider the following aspects. First, we will explore how the current results
can be improved by either adding more information to the tree labels or by generalizing
those tree labels which are currently too specific. Second, we will investigate how this
technology can be used to provide the N–best derivation trees and to use them as input
for the deterministic feature structure expansion step using the HPSG–source grammar.
In this way, a preference–based parsing schema for HPSG using a treebank model will
function as a filter.
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A Appendix

The treebank representation of the derivation tree and the phrase tree for the sentence
Wann hätten Sie denn dann noch Zeit? (‘When would you have still time, then?’):

(1347 WH-H -2.03203 0 7 (44 PX-ALL_INFL_RULE 1.98206 0 1

(8 WANN-ADV 0 0 1 ("wann" 0 1)))

(1137 ADJ-SLASH-INTRO-VINI -3.15029 1 7

(1133 H-COMP -1.90074 1 7

(610 H-ADJUNCT 4.23003 1 6

(492 H-ADJUNCT 6.68481 1 4

(171 H-SUBJ 2.84761 1 3

(40 V1-FIN-LRULE-NO-RB 2.49282 1 2

(39 PERS-SILR-LRULE 3.79787 1 2

(38 VX-PAST-CONJ-PL-1-3_INFL_RULE 3.79787 1 2

(21 HABEN-T 0 1 2 ("haetten" 1 2)))))

(98 PX-ALL_INFL_RULE -2.2774 2 3

(27 SIE_SH-PIS 0 2 3 ("sie" 2 3))))

(46 PX-ALL_INFL_RULE 1.63737 3 4

(29 DENN_SCADV-ADV 0 3 4 ("denn" 3 4))))

(54 ADJUNCT-H 2.2854 4 6

(50 PX-ALL_INFL_RULE 1.63737 4 5

(32 DANN_SCADV-VVPP 0 4 5 ("dann" 4 5)))

(48 PX-ALL_INFL_RULE 1.63737 5 6

(33 NOCH_PADV-ADV 0 5 6 ("noch" 5 6)))))

(860 EMPTY-DET-SG -5.40906 6 7

(96 NX-FEM-SG_INFL_RULE -1.66928 6 7

(35 ZEIT-N 0 6 7 ("zeit" 6 7)))))))

(S (ADV

(ADV (wann)))

(S/ADV

(S

(V (V (V (V (V (V (V (haetten)))))

(NP-NOM-PL (NP-NOM-PL (sie))))

(ADV (ADV (denn))))

(ADV (ADV (ADV (dann)))

(ADV (ADV (noch)))))

(NP-ACC-SG (N’ (N’ (zeit)))))))
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B Appendix

The top fifty fully encoded symbols together with their frequency counts:

PX-ALL INFL RULE 13143 H-COMP 4095 ADJUNCT-H 3499
PERS-SILR-LRULE 3475 H-ADJUNCT 2768 FILLER-H 2293
NX-MAS-NDA-SG INFL RULE 1943 DET-NBAR 1940
V1-FIN-LRULE-NO-RB 1890
V1-S 1284 V1-FIN-LRULE-RB 1284 SUBJ-SLASH-INTRO 1244
H-SUBJ 1228 ADV-FLEX-LR-0-0 1167 EMPTY-DET-SG 1157
FULL-PREP-NOUN-TO-VERB-MOD-LRULE 1096 DET-D-DET 1093
EPS-VCOMP-0 1027 ICH-PIS 988 SUBJ-H 982
EMPTY-NOUN-MODIFIER-RULE 895 COMP-H 892
NX-FEM-SG INFL RULE 887
NON-FIN-SILR-LRULE 822 VX-PAST-CONJ-SG-1-3 INFL RULE 803
ADJ-SLASH-INTRO-VINI 775 DX-INFL-EN INFL RULE 748
VX-PRES-PL-1-3 INFL RULE 747 TENSED-NON-FIN-LRULE 741
VX-SUP-BARE INFL RULE 727 WIR-PIS 722
INTERJECTION-RULE 711 AX-POS-NULL INFL RULE 684
DEF-PREP-NOUN-TO-VERB-MOD-LRULE 661 DAS-NP-NEU-SG-NA 600
CARDINAL INFL RULE 519 VX-PRES-IND-SG-3 INFL RULE 511
ADJ-SLASH-INTRO-VFIN 498 JA INT-ADV 455
EIN QUA-ADJA 448 VX-PRES-SG-1 INFL RULE 447
DA SCOP 430 DANN ADV-VVPP 413 ES-NOM-PIS 402
NX-NEU-NDA-SG INFL RULE 391 MIR-PIS 391
COMP-SLASH-INTRO 391 AM-APPRART 389
DX-DEF-EN INFL RULE 387 DX-DEF-EN INFL RULE 369
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