
1

22/02/2002 1

Information Extraction and
Question-Answering Systems

Foundations and methods

Dr. Günter Neumann
LT-Lab, DFKI

neumann@dfki.de

22/02/2002 2

What the lecture will cover

Basic Terms &
ExamplesEvaluation

Methods

Generic NL
Core system

Lexical processingMachine Learning
for IE

Parsing of
Unrestricted Text

Domain
Modelling

Question/Answering
Core components

Advanced Topics

2

22/02/2002 3

Machine Learning for IE
• Recently, the problem of using machine

learning methods to induce IE routines has
received more attention

• The majority of current approaches are variants
of inductive supervised learning

• Goal: given a set of annotated text documents
induce automatically template filler rules by
successively generalizing the initialized
instantiated rules computed from the tagged
examples

22/02/2002 4

Machine Learning for IE
• Usually, the documents are preprocessed by NL

components
� tokenization (Freitag, 98)
� POS tagging (Califf&Mooney,98)
� phrase recognition (Hufman,96)
� shallow sentence parsing (Riloff,96a;Soderland,97)

• most approaches learn slot-filler rules, some newer
learn relational structures (Califf&Mooney,98)

• current trend is towards minimally supervised
strategies (Riloff,96b)

3

22/02/2002 5

An initial example
<PNG> Sue Smith </PNG>, 39, of Menlo Park, was appointed
<TNG> president </TNG> of <CNG> Foo Inc. </CNG>

n_was_named_t_by_c:
noun-group(PNG, head(isa(person-name))),
noun-group(TNG, head(isa(title))),
noun-group(CNG,head(isa(company-name))),
verb-group(VG, type(passive), head(named or elected or

appointed)),
prep(PREP, head(of or at or by)),
subject(PNG,VG), object(VG,TNG),

post_nominal_prep(TNG,PREP), prep_obj(PREP,CNG)

⇒management_appointment(M,person(PNG), title(TNG),
company(CNG))

22/02/2002 6

Machine Learning for IE
• Current approaches show already

impressive results (for flat sentence-
based templates):
�Huffman,96:

management changes task =>
85.2% F (89.4%)

�Califf&Mooney,98 :
computer-related job postings =>
87.1% P & 58.8% R

4

22/02/2002 7

Overview of different
approaches

• We review extraction patterns that are used only
to process documents that contain grammatical,
plain text.

• Such extraction rules are based on syntactic and
semantic constraints that help identify the
relevant information within a document.

• Consequently, in order to apply the extraction
patterns below, one has to pre-process the original
text with a syntactic analyzer and a semantic
tagger.

22/02/2002 8

AutoSlog (E. Riloff, 1996)

• AutoSlog builds a dictionary of extraction
patterns that are called concepts or concept
nodes.

• Each concept C consists of:
� conceptual anchor (triggering word) that

activates C
� linguistic pattern, which, together with the set

of enabling conditions, guarantees C‘s
applicability.
� Enabling conditions represent constraints on the

components of the linguistic pattern.

5

22/02/2002 9

AutoSlog example

• Goal: extract the target of the terrorist attack from the
sentence
� The Parliament was bombed by the guerrillas.

• Concept:
� triggering word: bombed
� linguistic pattern: <subject> passive-verb

• Application:
� Parse sentence (determines linguistic categories like

subject, object, PP, verb form)
� Activate concept by matching the verb form bombed
� Match linguistic pattern against sentence and the subject

is extracted as the target of the terrorist attack

22/02/2002 10

Determination of concept
dictionary

1. Run a text through the CIRCUS (UMass) parser and
identify information that should have been extracted but
was not (the „targeted“ information).

2. Determine whether the targeted information was the
subject of a clause, the direct object, or a PP.

3. Determine which word in the sentence was the strongest
indicator that the information should have been extracted.
Use this word as the trigger word for a concept word.

4. Create a concept node that is activated by the triggering
word in the same immediate context, and extract
information from the syntactic constituent identified in step
(2).

6

22/02/2002 11

Step 3 seems like the most
difficult to automate

• Trigger words can be reliabley
identified using simple linguistic
rules.

• Based on linguistic category of
targeted NP, identify restriction on
linguistic category of triggering word.

• Predefine generic linguistic pattern
rules.

22/02/2002 12

Predefined linguistic patterns

Was aimed at <target>Passive-verb prep <np>

Killed with <target>Active-verb prep <np>

Bomb against <target>Noun prep <np>

Fatality was <victim>Noun aux <dobj>

Killing <victim>Gerund <dobj>

Tried to attack <target>Verb infin. <dobj>

To kill <victim>infin. <dobj>

Bombed <target>Active-verb <dobj>

Killed <victim>Passive-verb <dobj>

<victim> was victim<subj> aux noun

<perp> attemped to kill<subj> verb infin.

<perp> bombed<subj> active-verb

<victim> was murdered<subj> passive-verb

ExamplePattern

Each rule generates
an expression that likely
defines the conceptual
role of the NP.
An extraction pattern is
created by instantiating
the rule with the specific
words that it matched in
the sentence.
The rules are ordered so
the first one that is satified
generates an extraction
pattern with the longest
patterns being tested before
the shorter ones.

7

22/02/2002 13

AutoSlog is a supervised ML
approach

• Example text annotations for
Autoslog (adapted)
It was officially reported that a policeman was
wounded today when urban guerrillas attacked the
guards at a power substation located in downtown
San Salvador.
� A policeman=injury victim
� urban guerrillas=attack perpetrator
� the guards=attack victim
� San Salvador=attack location

22/02/2002 14

Overview of training
• For each targeted NP in the training corpus, Autoslog

identifies the sentence from which it should be extracted.
• Autoslog makes the assumption that the first sentence

containing the NP is the one from which ist should have been
extracted.

• Parse sentence with CIRCUS parser
� Assigns each NP to one of three syntactic categories:

subject, direct object, PP
• Apply heuristics to identify triggering words

� Should be the word that determines the conceptual role of
NP

� Apply predefined linguistic patterns according to longest
match

� If NP is part of PP apply specialized PP-attachment
algorithm to attach PP to preceding noun or verb

8

22/02/2002 15

Examples of learned concept
node

CONCEPT NODE:
Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable Slots: (target (Subj 1))
Constraints: (class phys-target Subj)
Constant Slots: (type bombing)
Enabling Conditions: (passive)

Example sentence:
In La Oroya, Junin department, in the central Peruvian
mountain range, public buildings were bombed and a car-bomb
was detonated.

22/02/2002 16

Examples of learned concept
node

CONCEPT NODE:
Name: perpetrator-subject-verb-infinitive-threatened-to-murder
Trigger: murder
Variable Slots: (perpetrator(Subj 1))
Constraints: (class perpetrator Subj)
Constant Slots: (type perpetrator)
Enabling Conditions: ((active)

(trigger-preceded-by `threatened `to)

Example sentence:
The Salvadoran guerrillas today threatened to murder
individuals involved in 19 March presidential elections if
they do not resign from their posts.

9

22/02/2002 17

Evaluation on MUC-4 corpus
• Created a concept dictionary for the MUC-4 terrorism

domain using AutoSlog and compare it with the hand-
crafted dictionary used in MUC-4.

• 722 texts (marked with answer keys) used for training
• Contained 4780 tagged NPs corresponding to six types

1. Human target description, „a security guard“
2. Human target name, „Ricardo Castellar“
3. Instrument id, „car-bomb“
4. Perpetrator individual, „a group of subversives“
5. Perpetrator organisation, „the FMLN“
6. Physical target id, „car dealership“

• AutSlog generated 1237 unique concept node definition
• Human in the loop filtered out 787 unreliable concept nodes

(easy job, took only 5 hours for untrained student)

22/02/2002 18

Comparision with hand-made
system

• Official Umass/MUC-4 system
� One instance using orginal dictionary
� One instance using AutSlog dictionary

• Perform evaluation of both systems on two blind test sets of
100 text each

41.794539AutoSlog/TST 4

41.904044MUC-4/TST4

48.655643AutoSlog/TST3

50.515646MUC-4/TST3

F-measurePrecisionRecallSystem/Test set AutSlog achieved
98% of the performance
of a dictionary that was
built manually, with
substantially less time
required for
knowledge enineering

10

22/02/2002 19

LIEP (S. Huffman, 1995)
• LIEP is a learning system that generates multi-slot extraction rules

� Rather then learning one extraction pattern for each item of
interest in a sentence (e.g., target and perpetrator), LIEP
generates a single rule for all items of interest.

� An extraction rule corresponds to an event, basically consisting
of a group of entities (realized as noun groups) which stand in a
certain relationship (expressed via verb group)

• Example:
The Parliament was bombed by the guerrillas.

TARGET-was-bombed-by-PERPETRATOR:
noun-group(TRGT, head(isa(physical-target))),
noun-group(PERP, head(isa(perpetrator)))
verb-group(VG, type(passive), head(bombed))
preposition(PREP, head(by))
subject(TRGT, VG), post-verbal-prep(VG, PREP),
prep-object(PREP, PERP)

=> bombing-event(BE, target(TRGT), agent(PERP))

22/02/2002 20

The extraction system
• The extraction system that LIEP learns extraction patterns for is

called ODIE (for On Demand Information Extractor).

• Given an input text
� tokenizes the text and breaks it into sentences.

� For each sentence, ODIE checks whether the sentence contains
any of a set of keywords that indicate the possibility that the
sentence expresses an event of interest.

� If so, the words in the sentence are tagged with their POS.
� Next, a set of pattern-matchers run over the sentence to identify

entities of interest (for management changes, this is people,
company names, and management titles) and contiguous syntactic
constituents (noun groups, verb groups, and prepositions).

11

22/02/2002 21

Continue
• Next, ODIE applies a set of information extraction patterns
• Patterns match syntactic constituents by testing their head

words/entities and other simple properties (e.g. active/passive
for verb groups), and attempt to verify syntactic relationships
between the constituents. If all of the syntactic relationships are
verified, an event is logged.

• ODIE performs a partial parsing: it verifies the plausibility of
specific syntactic relationships between pairs of constituents
tested in extraction patterns. For instance,
� subject(ng,vg) if ng is directly to the left of vg, or if ng is further to

the left, and everything in between ng and vg could possibly be a
right-modifier of ng (e.g., prepositional phrases, comma-delimited
strings of words like relative clauses, parentheticals, etc.)

� Note that locallity of test are unsecure (but robust)

22/02/2002 22

Learning extraction patterns
• LIEP is a supervised learning method using a set of training

exambles annotated with corresponding template tags.
• LIEP tries to build a set of extraction patterns that will

maximize the number of extractions of positive examples and
minimize spurious extractions.

• Given a new example that is not already matched by a known
pattern, LIEP first attempts to generalize a known pattern to
cover the example.

• If generalization is not possible or fails to produce a high-
quality pattern, LIEP attempts to build a new pattern based
on the example.

12

22/02/2002 23

Building extraction patterns
• LIEP creates potential patterns from an example sentence/

event by searching for sets of relationships that relate all of
the role-filling constituents in the event to one another.

• Example „Bob was named CEO of Foo Inc.“
� Three constituents: Bob, CEO, Foo Inc.
� LIEP attempts to find paths of relationships between each

pair of consituents, (Bob, CEO), (Bob, Foo Inc), (CEO, Foo
Inc)

� then merges those paths to create sets of relationships
relating all three

• Relationship can be direct, e.g., subject(ng,vg), or
• Indirect where constituents start/end of a path, e.g.,

(subject(Bob,named),object(named,CEO))

22/02/2002 24

Algorithm for identifying
relationships between entities

Find_relationships(C1,C2) {
if direct_relationship(C1, C2, R) then return(R)
else
while (choose_next_intermediate_constituent(CIntermediate)) {

Rels1 = find_relationships(C1,CIntermediate)
Rels2 = find_relationships(C2,CIntermediate)
return(Rels1 + Rels2)}

else failure}

choose_next_intermediate_constituent(CIntermediate):
selects intermediate constituents to use, starting from the rightmost
constituent between the two being related, and moving left to the
beginning of the sentence.

13

22/02/2002 25

Multiple paths
• In many cases, there are multiple paths of relationships between a pair

of constituents. The multiple paths very roughly correspond to multiple
syntactic parses of the sentence.

• Example above „of Foo Inc." could modify the verb named or the noun
CEO. Thus, Bob and Foo Inc. are related by both:
� [subject(Bob,named),object(named,CEO),

post_verbal_post_object_prep(named,of),
prep_object(of,Foo Inc.)]

� and:
[subject(Bob,named),object(named,CEO),
post_nominal_prep(CEO,of),
prep_object(of,Foo Inc.)]

• LIEP does not reason about what „Foo Inc." modifies; it simply
generates both of the possibilities because ODIE's plausible syntactic
knowledge indicates that both postverbal post object prep(named,of)
and post nominal prep(CEO,of) hold.

22/02/2002 26

Algorithm for building new
patterns

Build_new_pattern(Example) {
HighestAccuracy = 0, Result = failure
do 3 times {
Rels = find_relationships_between_role_fillers(Example)
if (Rels != failure) then {

Pattern = create_pattern_from_relationships(Rels)
Acc = compute_f_score_on_old_examples(Pattern)
if Acc > HighestAccuracy then {

HighestAccuracy = Acc
Result = Pattern }}}

return(Result)}

Calls find_relationships for
each pair of roles in the
example event, and merges
the resulting sets of
relationships. Calling it
multiple times causes
Find_relationships to
backtrack and find multiple
paths between
constituents if they exist.

14

22/02/2002 27

Example
„Bob was named CEO of Foo Inc."

• First set of relationships Find_relationships_between_role_fillers() finds relating
Bob, CEO, and Foo Inc. is:
� [subject(Bob,named),object(named,CEO),

post_verbal_post_object_prep(named,of),
prep_object(of,Foo Inc.)]

• Create_pattern_from_relationships() creates the pattern: LIEP_pattern1:
� noun-group(PNG,head(isa(person-name))),
� noun-group(TNG,head(isa(title))),
� noun-group(CNG,head(isa(company-name))),
� verb-group(VG,type(passive),head(named)),
� preposition(PREP,head(of)),
� subject(PNG,VG),
� object(VG,TNG),
� post_verbal_post_object_prep(VG,PREP),
� prep_object(PREP,CNG)

� => management_appointment(M, person(PNG),title(TNG),company(CNG)).
• After up to three such patterns are constructed, they are compared by running

them on all the example sentences LIEP has seen so far. The pattern with the
highest F-measure is returned and added to the system's dictionary.

22/02/2002 28

Generalizing patterns

• Often, later training examples have the same
syntactic relationships as previously learned pattern,
but with dierent constituent head words or properties.

• LIEP assumes that non-role-filler constituents' head
words and properties within a pattern can be
generalized, but that constituents' syntactic types and
relationships (syntactic footprint) should not be
generalized.

• LIEP makes use of special versions of the patterns
that test only the „ syntactic footprint“, i.e., the non-
generalizable parts.

15

22/02/2002 29

Specialized patterns
• LIEP_pattern1 (NON-GENERALIZABLE-PORTION)

� noun-group(PNG,head(isa(person-name))),

� noun-group(TNG,head(isa(title))),
� noun-group(CNG,head(isa(company-name))),
� verb-group(VG), preposition(PREP)

� subject(PNG,VG),
� object(VG,TNG),

� post_verbal_post_object_prep(VG,PREP),
� prep_object(PREP,CNG)

� => matches_positive_example(
person(PNG),title(TNG),company(CNG)).

22/02/2002 30

Example

• „Joan has been appointed vp, finance, at XYZ Company.“
� Same syntactic relationships between person, title, company NGs

� Create generalization of pattern1 by inserting disjunctive values
within each generalizable test in the pattern

• Generalized version of pattern1: next slide

16

22/02/2002 31

Generalized pattern

Gen1_LIEP_pattern1:
noun-group(PNG,head(isa(person-name))),
noun-group(TNG,head(isa(title))),
noun-group(CNG,head(isa(company-name))),
verb-group(VG, type(passive),
head(member(genclass1))),
preposition(PREP, head(member(genclass2))),
subject(PNG,VG),
object(VG,TNG),
post_verbal_post_object_prep(VG,PREP),
prep_object(PREP,CNG)

==> management_appointment(M,
person(PNG),title(TNG),company(CNG)).

genclass1=(named,appointed)

genclass2 = (of,at)

22/02/2002 32

Evaluation

• Test corpus of 300 naturally-occurring texts
reporting management changes. Each text
contained 1 or 2 complex sentences.

• ODIE's average F-measure using a hand-built
set of patterns (100 test texts):
�89.4% (recall 85.9%; precision 93.2)

• LIEP‘s average f-measure (150 test texts):
�85.2% (recall 81.6%; precision 89.4%)

17

22/02/2002 33

RAPIER (CaliffMooney,2002)

• Approaches so far are used as part of a
larger IE system

• Rapier learns rules for complete IE tasks
directly from document without prior
(shallow) parsing

• Of course, so far only used for English.
Open question:
What about free word order languages?

22/02/2002 34

What does Rapier learn?

• Shallow patterns that make very limited syntactic
and semantic information, basically POS taggers & lexica

• The rules built from these patterns can consider an
unbounded context, giving them an advantage over more
limited representations which consider only a fixed number
of words.

• In order to do so, Rapier employs a relational learning
algorithm which uses techniques from several Inductive
Logic Programming (ILP) systems.

• Core approach: primarily a specific to general (bottom-up)
search.

18

22/02/2002 35

Domain: job posting from
newsgroups

Subject: US-TN-SOFTWARE PROGRAMMER

Date: 17 Nov 1996 17:37:29 GMT

Organization: Reference.Com Posting Service

Message-ID: <56nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-
Based Voice Mail systems. Experienced in C Programming. Must be familiar with
communicating with and controlling voice cards; preferable Dialogic, however,
experience with others such as Rhetorix and Natur Microsystems is okay. Prefer 5 years
or more experience with PC Based Voice Mail, but will consider as little as 2 years.
Need to find a Senior level person who can come on board and pick up code with very
little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:

Kim Anderson

AdNET

(901) 458-2888 fax

kimander@memphisonline.com

22/02/2002 36

Filled template computer_science_job

id: 56nigp$mrs@bilbo.reference.com

title: SOFTWARE PROGRAMMER

salary:

company:

recruiter:

state: TN

city:

country: US

language: C
platform: PC \ DOS \ OS-2 \ UNIX

application:
area: Voice Mail
req_years_experience: 2

desired_years_experience: 5
req_degree:

desired_degree:
post_date: 17 Nov 1996

By way:
domain is evident;
see FlipDog, a job
posting webside, developed
by WhizBang!
www.whizbanglabs.com

19

22/02/2002 37

Relational Learning

• In order to accurately estimate probabilities from limited data, most
statistical techniques base their decisions on a very limited context,
such as bigrams or trigrams (2 or 3 word contexts). However, NLP
decisions must frequently be based on much larger contexts that
include a variety of syntactic, semantic, and pragmatic cues.

• Relational learning methods allow induction over structured examples
that can include first-order logical predicates and functions and
unbounded data structures such as lists and trees. Inductive logic
programming (ILP) studies the induction of rules in first-order logic
(Prolog programs).

• While Rapier is not an ILP system, it is a relational learning algorithm
learning a structured rule representation, and its algorithm was inspired
by ideas from ILP systems.

22/02/2002 38

Two sorts of systems
• compression: Systems begin by creating an initial set of highly specific

rules, typically one for each example.
� At each iteration a more general rule is constructed, which replaces

the rules it subsumes, thus compressing the rule set.
� At each iteration, all positive examples are under consideration to

some extent, and the metric for evaluating new rules is biased
toward greater compression of the rule set.

� Rule learning ends when no new rules to compress the rule set are
found.

• Covering: Systems begin with a set of positive examples.
� Then, as each rule is learned, all positive examples the new rule

covers are removed from consideration for the creation of future
rules.

� Rule learning ends when all positive examples have been covered.

20

22/02/2002 39

Rapier: Rule representation
• The extraction rules are indexed by template name and slot name and

consist of three parts:
� a pre-filler pattern: matches text immediately preceding the filler,
� a pattern: must match the actual slot filler,
� a post-filler pattern: must match the text immediately following

the filler
• Each pattern is a sequence (possibly of length zero in the case of pre-

and post-filler patterns) of pattern elements.
• two types of pattern elements: pattern items and pattern lists
• A pattern list species a maximum length N and matches 0 to N words

or symbols from the document, each of which must match the list's
constraints

• Constraints: POS or semantic class of words in a pattern

22/02/2002 40

Example

• A rule for extracting the transaction amount from
a newswire concerning a corporate acquisition:

� sold to the bank for an undisclosed amount

� paid Honey- well an undisclosed price".

Pre-filler pattern:
1) syntactic: {nn,nnp}
2) list: length 2

Filler pattern:
1) word: undisclosed

syntactic: jj

Post-filler pattern:
1) semantic: prices

• Rapier uses Brill‘s tagger and WordNet synsets as
semantic classes. Both are freely available.

21

22/02/2002 41

Rapier‘s design decisions

• Compression-based and primarily consists of a specific to general
(bottom-up) search.

• Bottom-up approach: prefer overly specific rules to overly general
ones

� A bottom-up approach will tend to produce specific rules, which
also tend to be precise rules.

• Rapier begins with a most specific definition and then attempts to
compact that definition by replacing rules with more general rules.

• Since in Rapier's rule representation rules for the different slots are
independent of one another, the system actually creates the most
specific definition and then compacts it separately for each slot in the
template (order independence wrt. Slots)

22/02/2002 42

Initial Rulebase construction

• Most-specific patterns for each slot are created for
each example, specifying words and tags for the
filler and its complete context.

• Pre-filler contains an item for each word from the
beginning of the document to the word
immediately preding the filler

• Filler has one item from each word in the filler
(tagged text fragment).

• Post-filler has one item for each word from the end
of the filler to the end of the document

22

22/02/2002 43

Generalization
• New rules are created by selecting pairs of existing rules and

creating generalizations.
• Assumption: the relevant information for extracting a slot-

filler will be closer to that filler in the document.
• Rapier begins by generalizing the two filler patterns and creates rules

with the resulting generalized filler patterns and empty pre-filler and
post-filler patterns.

• It then specializes those rules by adding pattern elements to the pre-
filler and post-filler patterns, working outward from the filler.

• The elements to be added to the patterns are created by generalizing
the appropriate portions of the pre-fillers or post-fillers of the pair of
rules from which the new rule is generalized.

• Advantage: take into account of NL locality without disregarding fairly
distant elements

22/02/2002 44

Algorithm for rule induction
For each slot, S in the template being learned

SlotRules = most specific rules for S from example documents
while compression has failed fewer than CompressLim times

initialize RuleList to be an empty priority queue of length k
randomly select M pairs of rules from SlotRules

find the set L of generalizations of the fillers of each rule pair
for each pattern P in L

create a rule NewRule with filler P and empty pre- and post-fillers
evaluate NewRule and add NewRule to RuleList

let n = 0 loop
increment n

for each rule, CurRule, in RuleList
NewRuleList = SpecializePreFiller (CurRule, n)

evaluate each rule in NewRuleList and add it to RuleList
for each rule, CurRule, in RuleList

NewRuleList = SpecializePostFiller (CurRule, n)
evaluate each rule in NewRuleList and add it to RuleList

until best rule in RuleList produces only valid fillers or the value of the best rule in
RuleList has failed to improve over the last LimNoImprovements iterations

if best rule in RuleList covers no more than an allowable percentage of spurious fillers
add it to SlotRules and remove empirically subsumed rules

23

22/02/2002 45

Rule creation: example for City slot

Pre-filler pattern:
1) word: located

tag: vnb
2) word: in

tag: in

Filler pattern:
1) word: atlanta

tag: nnp

Post-filler pattern:
1) word: , tag: ,
2) Word: georgia

tag: nnp
3) Word: . tag: .

Pre-filler pattern:
1) word: offices

tag: nns
2) word: in

tag: in

Filler pattern:
1) word: kansas

tag: nnp
2) Word: city

tag: nnp

Post-filler pattern:
1) word: , tag: ,
2) Word: missouri

tag: nnp
3) Word: . tag: .

Ex 1: „located in Atlanta, Georgia.“

Ex 2: „offices in Kansas City, Missouri.“

22/02/2002 46

Example continued

Fillers are generalized to produce two possible rules with
empty pre/post fillers, one rule with words disjuncted and one
rule with words dropped. Because one rule has two elements
and the other one, a list of length 2 is created.

Pre-filler pattern: Filler pattern:
1) list: len: 2

word: [atlanta, kansas, city]
tag: nnp

Post-filler pattern:

Pre-filler pattern: Filler pattern:
1) list: len: 2

tag: nnp

Post-filler pattern:

24

22/02/2002 47

Example continued

The new rules are likely to cover spurious example
(mainly because empty pre/post fillers), so further
specialization:

Pre-filler pattern:
1) word: in

tag: in

Filler pattern:
1) list: len: 2

tag: nnp

Post-filler pattern:
1) word: , tag: ,
2) tag: nnp

semantics: state

Prep IN produced because identical in both rules,
so a good constraint. In case of post, specific word
is underspecifed (dropped) and generalized by
means of a semantic class (if available).

22/02/2002 48

Evaluation 1

• Results from 300 computer related job
postings, containing 17 different slots

• Precision: ~89%, recall: ~65%
• Hints:

�words & POS constraint best
�wordnet does not improve performance

25

22/02/2002 49

Evaluation 2

• 485 seminar announcements from
CMU (half used for training/testing)

stime etime loc speaker

Prec/Rec Prec/Rec Prec/Rec Prec/Rec

93.9/92.9 95.8/94.6 91.0/60.5 80.9/39.4

