
Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Java Coding Standards

Jörg Steffen, DFKI

steffen@dfki.de

15.11.2022

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Why Coding Standards are Important

• “Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.” -
- Martin Fowler, "Refactoring: Improving the Design of Existing
Code"

• Improve the readability of code by providing a consistent level
of quality

• Code is easier to understand, develop and maintain
• Transition of code to other developers for further maintenance

and enhancement is easy
 Hardly any software is maintained for its whole life by the
original author

• Reduce overall costs of the application

Code Quality

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Source File Organization

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

General Code Organization

• One file per top-level class
 File name equals class name

• Files are encoded in UTF-8
 Only non-printable characters in Unicode escapes \Uxxxx
 Avoid Unicode escape outside of string literals

• Use spaces for indentation instead of tabs

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Source File Structure

• Package statement
• Import statements

 No wildcard imports

• Class declaration
 Static fields

• constants
• non-constants

 Non-static fields
 Constructors
 Methods

• setters and getters
• other methods

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Code Formatting

Brackets

• Curly brackets in Kernighan and Ritchie style, aka Egyptian style
 No line break before opening brace
 Line break after opening brace
 Line break before closing brace
 Line break after closing brace if brace terminates statement or method

body no line break if else or catch follows

if (condition()) {

try {

something();

} catch (ProblemException e) {

recover();

}

} else if (otherCondition()) {

somethingElse();

} else {

lastThing();

}

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Brackets

• Put blocks in curly brackets, even if they only contain a single
statement

if (a.equals(b)) {

c = b;

}

• Specify the order of operations using round brackets, even if
redundant

(a && b) || c

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Indentation and Lines

• Indent your code (!)
• 2 spaces per indentation level
• One statement per line
• A line of code is limited to 100 characters
• If you have to break a line

 break before non-assignment operator
 break after comma or assignment operator
 Indent continuation lines with 4 spaces per level
numberOfParticipants =

numberOfStudents

+ numberOfTeachers;

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Whitespaces

• Use whitespaces in your code
grandTotal = invoice.total() + getAmountDue();

grandTotal=invoice.total()+getAmountDue();

• Use single empty lines to organize the code into logical
paragraphs

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Method Size

• Follow the Thirty-Seconds Rule:
 Another programmer should be able to fully understand what a method

does, why it does it, and how it does it in less than 30 seconds

• If a method is longer than a screen then it is probably too long

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Conventions

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

What Makes Up a Good Name

• Use mixed case to make names readable
 lower letters in general
 capitalize first letter of class and interface names
 capitalize first letter of non-initial words CamelCase
 e.g. StringTokenizer

• Use full English descriptors that accurately describe the
variable/field/class
 firstName, totalSum

 x1, x2, fn

 The name is already the first part of the documentation!

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

What Makes Up a Good Name

• Do not abbreviate names by removing vowels
 appendSignature(String signature)

 appndSgntr(String sgntr)

• Capitalize only the first letter in acronyms
 loadXmlDocument()

 loadXMLDocument()

• Avoid names that are similar or differ only in case
 sqlDataBase vs sqlDatabase

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Packages, Classes and Interfaces

• Use the reversed, lowercase form of the Internet domain name
as root qualifier for package names
 de.dfki.mlt.<project>.<subpackage>

• Use nouns to names classes
 nouns define objects or things
 class CustomerAccount { ...

• Use nouns or adjectives for interfaces
 public interface ActionListener { ...

 adjectives describe the capability of the implementing class
 public interface Runnable { ...

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Methods

• Use a strong, active verb for the first word of a method
 openAccount(), printMailingLabel()

• Getters
 return the value of a field
 prefix the word ‘get’ to the name of the field
 if it is a boolean field, prefix ‘is’ to the name of the field
 getFirstName(), isPersistent()

• Setters
 modify the values of a field
 prefix the word ‘set’ to the name of the field
 setFirstName(String firstName)

 setPersistent(boolean flag)

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Variables

• Use nouns to name variables
• Pluralize the names of collection references such as arrays and

lists
 Customer[] customers = ...

 Alternative: a suffix like Set or List

• Standard names for variables
 Loop counters: i, j, k
 Exceptions: e

• The shorter the name of a variable, the smaller its scope

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Fields and Parameters

• Qualify fields with this. to distinguish them from local
variables

• When a constructor or setter assigns a parameter to a field,
give that parameter the same name as the field
 private String name;

public Person(String name) {

this.name = name;

}

 This is the only situation where name shadowing should occur!

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Naming Constants

• Implemented as static final fields

• Use full English words, all in uppercase, with underscores
between the words UPPER_SNAKE_CASE
 MINIMUM_BALANCE, MAX_VALUE

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Documentation Conventions

“If your program isn't worth documenting, it probably isn't
worth running.” – Jonathan Nagler, "Coding Style and Good
Computing Practices"

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Comment Types

• Documentation comments describe the programming interface
 /**

* This is a documentation comment.
*/

• Standard comments hide code without removing it
 /*

This is a standard comment.
*/

• One-line comments explain implementation details
 // This is a one-line comment.

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

General Documentation Guidelines

• Comments should add to the clarity of your code

• Keep comments simple

• Keep comments and code in sync

• Write the comments before you write the code
 at least comment your code as you write it!

• Write your comments in English!

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

A Quick Overview of javadoc

• @param <name> <description>
 Used for methods and constructors
 Describes the usage of a passed parameter
 Declare what happens with extreme values (null etc.)
 Use one tag per parameter

• @return <description>
 Used for methods
 Describes the return value, if any, of a method
 Indicate the potential use(s) of the return value

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

A Quick Overview of javadoc

• @throws <name> <description>
 Used for methods and constructors
 Describes under what circumstances the exception is thrown
 Use one tag per exception

• @author <name>
 Used for interfaces and classes
 Indicates the author(s) of the code
 Use one tag per author

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

A Quick Overview of javadoc

• {@link <ClassName#MethodName>}
 Used for any javadoc comment
 Generates a hypertext link in the documentation to the specified class

or method

• {@code <text>}
 Used for any javadoc comment
 Text is displayed verbatim in a fixed-width font
 Indicates that the text refers to source code

• Standard HTML tags are allowed: <p>, , <pre>, …

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

A Quick Overview of javadoc
/**

* Returns a new string that is a substring of this string. The substring

* begins with the character at the specified index and extends to the

* end of this string.

*

* <p>Examples:

*

* <pre>

* "unhappy".substring(2) returns "happy"

* "Harbison".substring(3) returns "bison"

* "emptiness".substring(9) returns "" (an empty string)

* </pre>

*

* @param beginIndex the beginning index, inclusive

* @return the specified substring, the empty string on border cases,

* never returns {@code null}

* @throws IndexOutOfBoundsException if {@code beginIndex} is negative or

* larger than the length of this {@link String} object

*/

public String substring(int beginIndex) {...}

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Documenting Class Headers

• The purpose of the class

• Known bugs or restrictions

• Author using the appropriate javadoc tag @author

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Documenting Method Headers

• What and why the method does what it does

• How a method changes the object or its parameter with side
effects

• Document parameters, return value and possible exceptions
using the appropriate javadoc tags @param, @return and
@throws

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Documenting Method Bodies

• Rule of thumb: if your code isn’t obvious, then you need to
document it

• Document why something is being done, not just what
 // increase count by one

count++;

• Avoid the use of end-line comments

• Document empty blocks

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Programming Conventions

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Variables

• One variable per declaration
 String a, b, c = null;

• Declare local variables immediately before their use
• Use local variables for one thing only
• Use interfaces for variable types instead of implementing

classes if possible
 e.g. Set instead of HashSet, List or Collection instead of
ArrayList

 Set<String> set = new HashSet<>()

 ArrayList<String> list = new ArrayList<>()

 more flexible when replacing the implementation
 the same is true for the parameters and return types of methods

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Class Visibility

• Use default visibility for classes internal to a component

• Use public visibility for the facades of components

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Method Visibility

• Be as restrictive as possible!

• If a method doesn’t have to be public, make it protected

• If a method doesn’t have to be protected, make it private or
default

• Minimize the public and protected ‘interface’
 Improved learnability
 Reduced coupling

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Field Visibility

• All non-constant field should be declared private
• Ideal Case: The only methods that are allowed to directly work

with a field are the getter/setter methods
 Fields are encapsulated
 Complete control over how fields are accessed and by whom
 Enables lazy initialization
 Handling of side effects

• Relaxation: Define getter/setter for fields that have to be
accessed/modified from external classes
 Internal methods may access fields directly
 Use the prefix this. to distinguish between local variables and fields

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Exceptions

• Use unchecked runtime exceptions to indicate errors in your
program's logic that cannot be reasonably recovered from at
runtime
 avoid catching runtime exceptions
 e.g. NullPointerException

• Use checked exceptions to indicate invalid conditions in areas
outside the immediate control of the method
 e.g. IOException

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Exceptions

• Don’t do catch (Exception e) because this also includes
runtime exceptions

• Don’t do throws Exception because it forces the client to
do a catch (Exception e)

• Don’t use empty catch blocks
 at least, add a comment why it’s empty

• Never ever do
catch (Exception e) {

}

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Final Remarks

• There is not one ultimate style guide for Java

• Our style guide is largely based on Google’s style guide

• For this course, follow the style guide presented in these slides

Java for Advanced Programmers - WS 2022/2023 Jörg Steffen, DFKI

Further Reading

• Google Java Style Guide
 https://google.github.io/styleguide/javaguide.html

• How To Write Unmaintainable Code
 http://mindprod.com/jgloss/unmain.html

• Robert C. Martin: Clean Code - A Handbook of Agile
Software Craftsmanship
 http://www.amazon.de/Clean-Code-Handbook-Software-

Craftsmanship/dp/0132350882/ref=sr_1_1?ie=UTF8&qid=1351073737
&sr=8-1

