
Java for Advanced Programmers Exercise # 6

1 Price Monitor (5 points)

Apply the observer pattern presented in the lecture to implement price monitors for
products. A monitor should track if a product is a bargain. A product is considered as a
bargain by the monitor if its price falls below a given threshold. If the price rises again
above the threshold, it’s no longer considered as a bargain.

Define interfaces Observer and Product and implementing classes PriceMonitor and
Car. Write a unit test that checks the correct behavior of three price monitors with
different thresholds monitoring a single car.

2 Operators for Arithmetic Expressions (4 points)

We want to implement a simple calculator that can parse and evaluate arithmetic expres-
sions like the following:

7 * (3 * - 3) - 8 * (7.5 + 6)

All the constants can be arbitrary floating point numbers, the available operators are
addition, subtraction, multiplication, division, and unary minus.

Expressions are modeled as nested Operator instances, where Operator is an interface
at the top of the following class hierarchy:

Operator

Constant UnaryOperator

UnaryMinus

BinaryOperator

Add Subtract Multiply Divide

The Java files for Operator, UnaryOperator and BinaryOperator classes are provided
in https://www.dfki.de/˜steffen/advanced-java/calculator.zip
As you can see from the code template, Operator defines a method double evaluate()
that needs to be implemented in the subclasses. A UnaryOperator has one internal
Operator field, and BinaryOperator two, that are inherited to the subclasses.

When evaluating an Operator, evaluate has to be recursively called on the sub-Operators
(if any) and the results have to be combined depending on the concrete subclass. Note
that the constructor of Constant must take a floating point number in form of a string
as argument!

Implement the missing operators and write a unit test that manually constructs a (nested)
operator for the arithmetic expression above. Test that evaluating the operator returns
the correct result.

https://www.dfki.de/~steffen/advanced-java/calculator.zip


3 Operator Factory (6 points)

Manually creating nested operators is not efficient, so we provide a parser for creating
them from a string (Parser.java in the provided archive). This parser is then used in
the Calculator class (also provided).

The parser requires an OperatorFactory with a single static method getOperator(String
op, Operator ... args), that returns an object of the appropriate Operator subclass
depending on the op string ("+", "-", "*", "/" ) and the number of arguments.

Constant is special in that there are no args, and the number representation is directly
in the op string, which has to be turned into a double (for example in the constructor of
Constant).

Implement the required OperatorFactory and write unit tests that check that OperatorFactory’s
getOperatormethod produces the correct operators and that they evaluate to the correct
results. Also write unit test for the provided Calculator.


	Price Monitor (5 points)
	Operators for Arithmetic Expressions (4 points)
	Operator Factory (6 points)

