Advances in Hybrid Artificial Intelligence

Seminar an der Universität des Saarlandes, Fachrichtung Informatik, LSF

The topics for seminar time slots (see schedule) are as follows. Currently assigned topics are marked in redSelected background paper references for these topics are given below; these papers and the indicated topic reference papers in the table are available in the web or on request from seminar organizers.

Topic #

Topic

1

Neuro-Symbolic Learning (1)

Li, Z., et al. (2023). Neuro-Symbolic Learning Yielding Logical Constraints. Proc. International Conference on Advances in Neural Information Processing Systems (NeurIPS). Curran Associates.  [Ref]

2

Neuro-Symbolic Learning (2)

Giunchiglia, E., et al. (2024). CCN+: A Neuro-Symbolic Framework for Deep Learning with Requirements. Approximate Reasoning, 171, Elsevier.  [Ref]

3

Neuro-Symbolic Learning (3)

Wang, C., et al. (2024). Imperative Learning: A Self-Supervised Neuro-Symbolic Learning Framework for Robot Autonomy. Robotics Research, Sage.  [Ref]

4

Neuro-Symbolic Learning (4)

Cunnington, D., et al. (2024). The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning. Proc. International Conference on Neural-Symbolic Learning and Reasoning. Springer.   [Ref]

5

Neuro-Symbolic Planning (1)

Danesh, M.H., et al.  (2023). LEADER: Learning Attention over Driving Behaviors for Planning under Uncertainty. Proc. of Machine Learning Research (PMLR) for Conference on Robot Learning, 205. [Ref]

6

Neuro-Symbolic Planning (2)

de la Rosa, T., et al. (2024). TRIP-PAL: Travel Planning with Guarantees by Combining Large Language Models and Automated Planners. arXiv preprint arXiv:2406.10196.  [Ref]

7

Neuro-Symbolic Planning (3)

Dai, Z., et al. (2024). Optimal Scene Graph Planning with Large Language Model Guidance. Proc. IEEE International Conference on Robotics and Automation (ICRA). IEEE.  [Ref]

8

Neuro-Symbolic Planning (4)

Tuisov, A., et al. (2025). LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore?. arXiv preprint arXiv:2501.18784.  [Ref]

9

Neuro-Symbolic Planning (5)

Lee, C., et al. (2025). VeriPlan: Integrating Formal Verification and LLMs into End-User Planning. Proc. ACM International Conference on Human Factors in Computing Systems (CHI). ACM. [Ref]

10

Neuro-Symbolic Planning (6)

Bai, D., et al. (2025). TwoStep: Multi-Agent Task Planning Using Classical Planners and Large Language Models. arXiv preprint arXiv:2403.17246v2. [Ref]

Selected Background Papers:

  1. Bhuyan, B.P., Ramdane-Cherif, A., Tomar, R., & Singh, T. P. (2024). Neuro-Symbolic Artificial Intelligence: A Survey. Neural Computing and Applications, 36(21) [Ref]
  2. Colelough, B.C., & Regli, W. (2025). Neuro-symbolic AI in 2024: A Systematic Review. arXiv preprint arXiv:2501.05435  [Ref]
  3. Michel-Delétie, C., & Sarker, M.K. (2024). Neuro-Symbolic Methods for Trustworthy AI: A Systematic Review. Neurosymbolic Artificial Intelligence. IOS Press [Ref]
  4. Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., & Zhou, L. (2022). Neuro-Symbolic Approaches in Artificial Intelligence. National Science Review, 9(6).  [Ref]