1 Architecture

- Role-based Access
- Revision Control
- Lua
- RuleML
- Activity/I
 nference
- Object
 Memory
 Server
- OMM+
- RDFa
- Microdata
- Mapper
- HTML5
- Java
- REST
- User
- Application
- PiVis
- Mapper
- SQL-DB

2 Data Input

- Lightweight Editor for Ontology Files (Leo)
 - Support for using semantic data ad-hoc
 - Easily create OWL Allbox from fixed Tbox
 - End user smart assistance during data input
 - Admin mode allows to reduce visible relations to minimum
- Configurable SOL-DB Converter
 - Extraction of existing DB-data to data formats and storage to OMM blocks
 - Conversion, data format, and block layout can be configured and fixed by user

3 Data Storage

- OMM+, OMS, Revision Control

- Memory storage based on W3C OMM-XG Model (http://www.w3.org/2005/11/repository/omm/)
 - Object Memory Model for structuring and declaring memory data
 - Allows data partitioning to blocks with dedicated meaning
 - Each block indicates payload with a set of describing metadata
 - XML-based file representation

- OMM+ extends Model
 - RDFa and Microdata representation for embedding memory data to web pages
 - Binary representation with configurable data mapper (e.g. for RFID labels)
 - Additional defined blocks with fixed payload structure (e.g. for named graph like structures)

- Object Memory Server (OMS)
 - Centralized server based framework for memory management
 - Covers a large amount of memories within one service instance
 - Utilizes OMM+ as data exchange format
 - Provides revision control capabilities for
 - Storage of memory lifetime changes and access
 - Revert to earlier memory state for demonstration purposes
 - Access to older memories

4 Data Access

- REST, Role-based Access

- Challenges:
 - Flexible and secure access to memory data based on existing standards
 - Extensible RESTful interface provided by OMS for memory interaction
 - Command set is grouped to functional sets
 - Feature negotiation allows applications to detect
 which functions are available
 - Storage interface allows access to and manipulation of OMM-blocks
 - Additional feature modules uses for activity (see below)
 - OMS allows to define access restriction to entire memories
 - OMS-wide queries allow reverse lookup of memories that fulfill requested conditions

- Role-based Access
 - Object memories may contain sensitive data
 (e.g. private or confidential data)
 - OMS allows to define access restriction to entire memories or single memory blocks
 - Restrictions can be bound to simple secrets (like username/password) or X.509 certificates (including certificate chains)
 - Additional use-cake realized with RFID-based new German ID card (nPa eID)

5 Activity

- Lua-Scripts, Data Inference

- Challenges:
 - Equip object memories with processing logic for monitoring and inference tasks
 - Activity Modules based on LUA-scripts
 - LUA-based scripts extend memory functionality and are triggered by external calls or periodically
 - OMS operator can upload scripts to memories and end users can enable and configure scripts for each memory

- Data inference based on in-memory rules
 - Memory can bring with a set of rules (e.g. alerts on threshold exceedance) that should be monitored during its lifetime
 - Conclusions may trigger external events (e.g. e-mail) or generate new block data

6 Visualization

- PiVis

- Challenges:
 - Make heterogeneous memory data available to end users

- Visualization Framework for Object Memory Data
 - Requirements: Extensibility, Reusability, Customizability
 - Solution: Data processing and visualization pipeline
 - Each pipeline
 - Starts with a Data Source Plugin
 - May contain several Filter Plugins
 - And ends with a Visualization Plugin
 - Plugins are semantically annotated regarding input/output types and capabilities
 - Backward-chaining algorithm automatically creates pipeline based on given data and requested visualization
 - Implementation done with Java and JavaFX Scene Graph used within several demonstrator systems

Contact: jens.haupert@dfki.de
More details: http://www.dfki.de/~haupert/omm-tools/

This research was funded in part by the German Federal Ministry of Education and Research under grant number 01 IA 1001 A (project RES-COM). The responsibility for this publication lies with the author.