Publication

Generalizing, Optimizing, and Decoding Support Vector Machine Classification

Mario Michael Krell, Sirko Straube, Hendrik Wöhrle, Frank Kirchner

Poster DFKI GmbH DFKI Documents (D) 14-07 11/2014.

Abstract

This poster summarizes the content of a paper, presented at the ECML PhD session. It focusses on the main contributions of the main author for his PhD thesis. The classification of complex data requires the good choice of a classifier and the composition of processing steps. We provide three approaches to ease work of data scientists. First, we summarize the connections between support vector machine (SVM) variants and introduce a generalized model which shows that these variants are not to be taken separately but that they are highly connected. Second, we present a framework to optimize the processing chain and the hyperparameters of the used algorithms, including the classifier. At the final third step, we provide an approach to get back information from the optimized processing chain with the help of the backtransformation. This approach enables a joint visualization of the complete processing chain in the input data space and thereby allows for a joint interpretation of preprocessing and classification to decode the decision process. With the help of the framework, these approaches can be directly used and combined.

German Research Center for Artificial Intelligence
Deutsches Forschungszentrum für Künstliche Intelligenz