Publication

Implementing SCADA Scenarios and Introducing Attacks to Obtain Training Data for Intrusion Detection Methods

Simon Duque Antón, Michael Gundall, Daniel Fraunholz, Hans Dieter Schotten

In: Proceedings of the 14th International Conference on Cyber Warfare and Security. International Conference on Cyber Warfare and Security (ICCWS-2019) February 28-March 1 Stellenbosch South Africa ACPI 2019.

Abstract

Cyber-attacks on industrial companies have increased in the last years. The Industrial Internet of Things increases production efficiency, at the cost of an enlarged attack surface. Physical separation of productive networks has fallen prey to the paradigm of interconnectivity, presented by the Industrial Internet of Things. This leads to an increased demand for industrial intrusion detection solutions. There are, however, challenges in implementing industrial intrusion detection. There are hardly any data sets publicly available that can be used to evaluate intrusion detection algorithms. The biggest threat for industrial applications arises from state-sponsored and criminal groups. Often, formerly unknown exploits are employed by these attackers, so-called 0-day exploits. They cannot be discovered with signature-based intrusion detection. Thus, statistical or machine learning based anomaly detection lends itself readily. These methods especially, however, need a large amount of labelled training data. In this work, an exemplary industrial use case with real-world industrial hardware is presented. Siemens S7 Programmable Logic Controllers are used to control a real world-based control application using the OPC UA protocol: A pump, filling and emptying water tanks. This scenario is used to generate application specific network data. Furthermore, attacks are introduced into this data set. This is done in three ways: First, the normal process is monitored and captured. Common attacks are then synthetically introduced into this data set. Second, malicious behaviour is implemented on the Programmable Logic Controller program and executed live, the traffic is captured as well. Third, malicious behaviour is implemented on the Programmable Logic Controller while still keeping the same output behaviour as in normal operation. An attacker could exploit an application but forge valid sensor output so that no anomaly is detected. Sensors are employed, capturing temperature, sound and flow of water to create data that can be correlated to the network data and used to still detect the attack. All data is labelled, containing the ground truth, meaning all attacks are known and no unknown attacks occur. This makes them perfect for training of anomaly detection algorithms. The data is published to enable security researchers to evaluate intrusion detection solutions.

Projekte

German Research Center for Artificial Intelligence
Deutsches Forschungszentrum für Künstliche Intelligenz