Design and evaluation of an end-effector for a reconfigurable multi-robot system for future planetary missions

Wiebke Brinkmann, Thomas M. Roehr, Sankaranarayanan Natarajan, Florian Cordes, Roland Sonsalla, Roman Szczuka, Sebastian Bartsch, Frank Kirchner

In: Proceedings of the 2018 IEEE Aerospace Conference. IEEE Aerospace Conference March 3-10 Big Sky Montana United States Pages 1-10 IEEE 3/2018.


This paper presents the design, functionality and evaluation of an end-effector, operating at the end of a 6 degree-offreedom manipulator of the existing planetary rover SherpaTT. The end-effector consists of an active electro-mechanical interface (EMI), which has an active mechanical docking interface, as well as power and data connectors, a camera primary used for visual servoing and LED lights. The ability of the end-effector to grapple different robotic systems and change their configuration is proved under laboratory and field conditions in the framework of a heterogeneous multi-robot system. The end-effector of SherpaTT is an improved version of the previous end-effector of the predecessor project RIMRES. This paper outlines the development process and improvements of the end-effector and describes its the role within different terrestrial test scenarios in more detail. Learned lesson will help to develop the end-effector in the H2020 EU-funded project SIROM(Standard Interface for Robotic Manipulation of Payloads in Future Space Missions), which will be deployed at the manipulator of SherpaTT for experimental verification for future planetary missions.


2019Design_and_evaluation_of_an_end-effector.pdf (pdf, 560 KB)

German Research Center for Artificial Intelligence
Deutsches Forschungszentrum für Künstliche Intelligenz